forked from bfrgoncalves/INNUENDO_REST_API
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlst_profiles_to_db.py
338 lines (252 loc) · 10.9 KB
/
mlst_profiles_to_db.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
from app import db
import datetime
import sys
import argparse
from app.app_configuration import database_correspondece
from config import allele_classes_to_ignore, base_metadata, \
metadata_to_use_all
def main():
"""Main function to trigger profile adding to the databases
The function parses the input of the user and triggers the function to add
profiles to the databases. Each database must be specified as a model in the
INNUENDO platform to allow the connection.
Returns
-------
"""
parser = argparse.ArgumentParser(
description="This program populates a database according with a set of "
"input files")
parser.add_argument('-i', nargs='?', type=str, help='Allelic profiles',
required=True)
parser.add_argument('-c', nargs='?', type=str, help='classification file',
required=True)
parser.add_argument('-m', nargs='?', type=str, help='metadata file',
required=True)
parser.add_argument('-d', nargs='?', type=str,
help='database to populate(str)', required=True)
parser.add_argument('-p', nargs='?', type=str, help='platform tag',
required=True)
parser.add_argument('-v', nargs='?', type=str, help='import version',
required=True)
args = parser.parse_args()
mlst_profiles_to_db(args.i, args.c, args.m, args.d, args.p, args.v)
def populate_db(name, classifierl1, classifierl2,
classifierl3, allelic_profile,
strain_metadata, from_platform_tag, importVersion, databaseid):
"""Adds a new Salmonella enterica profile to the database
Parameters
----------
name: str
classifierl1: str
classifierl2: str
classifierl3: str
allelic_profile: json
strain_metadata: json
from_platform_tag: str
Returns
-------
status: request status code
"""
try:
entry = database_correspondece[databaseid](name=name, classifier_l1=classifierl1,
classifier_l2=classifierl2,
classifier_l3=classifierl3,
allelic_profile=allelic_profile,
strain_metadata=strain_metadata,
platform_tag=from_platform_tag,
version=importVersion,
timestamp=datetime.datetime.utcnow())
db.session.add(entry)
db.session.commit()
except Exception:
print name + " already exists"
print "Updating data..."
db.session.rollback()
entry = db.session.query(database_correspondece[databaseid]).filter(
database_correspondece[databaseid].name == name).first()
if not entry:
print "Error updating " + name
else:
entry.classifier_l1 = classifierl1
entry.classifier_l2 = classifierl2
entry.classifier_l3 = classifierl3
entry.allelic_profile = allelic_profile
entry.strain_metadata = strain_metadata
entry.platform_tag = from_platform_tag
entry.version = importVersion
db.session.commit()
print name + " updated!"
return 200
return 201
def read_chewBBACA_file_to_JSON(file_path, type_species):
"""Loads chewBBACA profile file to a JSON format
This method parses the chewBBACA file by substituting the locus not found
variants by 0 and then it loads into a JSON object for a fastest data
retrieval.
Parameters
----------
file_path: str
type_species: str
Returns
-------
dict: JSON object devided by sample and locus.
"""
results_alleles = {}
headers_file_path = "./chewbbaca_database_profiles/profiles_headers/" + \
type_species + ".txt"
# Opens the chewBBACA file
with open(file_path, 'rtU') as reader:
# Creates an headers file to add all the loci and identifier into a
# single file.
with open(headers_file_path, 'w') as p:
loci = None
count = 0
for line in reader:
count += 1
line = line.splitlines()[0]
if len(line) > 0:
# Add headers to headers_file in case it is the first
# line and starts with the FILE identifier.
if line.startswith('FILE'):
loci = line.split('\t')[1:]
p.write("\n".join(line.split('\t')))
print "DONE profile headers file"
else:
line = line.split('\t')
sample = line[0]
results_alleles[sample] = {}
line = line[1:]
# Check if number of loci match with the headers
if len(line) != len(loci):
sys.exit('Different number of loci')
# Replace locus not found variants by 0
for x, allele_locus in enumerate(line):
if allele_locus.startswith(
tuple(allele_classes_to_ignore.keys())):
for k, v in allele_classes_to_ignore.items():
allele_locus = allele_locus.replace(k, v)
results_alleles[sample][loci[x]] = allele_locus
print "chewBBACA to JSON DONE"
return results_alleles
def read_metadata_file_to_JSON(file_path, table_id):
"""Load metadata file to a JSON object
This method loads a provided metadata file into a JSON object. This is
then used to be added to the profiles database.
Parameters
----------
file_path: str
table_id: str
Returns
-------
dict: JSON object with the strain metadata by sample and field
"""
results_metadata = {}
real_metadata_to_use = metadata_to_use_all
# Open metadata file
with open(file_path, 'rtU') as reader:
metadata_fields = None
for line in reader:
line = line.splitlines()[0]
if len(line) > 0:
# Get fields if is first line
if line.startswith('Uberstrain') or line.startswith('FILE'):
metadata_fields = line.split('\t')[0:]
else:
line = line.split('\t')
sample = line[0]
results_metadata[sample] = {}
line = line[0:]
# Check if number of columns match with the number of
# metadata fields.
if len(line) != len(metadata_fields):
sys.exit('Different number of fields')
for x, metadata_field in enumerate(metadata_fields):
for k, v in real_metadata_to_use.items():
if k == metadata_field:
results_metadata[sample][real_metadata_to_use[metadata_field]] = line[x]
return results_metadata
def read_classification_file_to_JSON(file_path):
"""Loads a classification file to JSON
This method loads a profile classification file to JSON. This is then
used when adding the profiles to the database.
Parameters
----------
file_path: str
Returns
-------
dict: JSON object with the classifications by sample.
"""
results_classification = {}
# Open classification file
with open(file_path, 'rtU') as reader:
for line in reader:
line = line.splitlines()[0]
if len(line) > 0:
# Add classification to the JSON object
if not line.startswith('FILE'):
line = line.split('\t')
sample = line[0]
results_classification[sample] = {}
line = line[1:]
classifications = []
for x, classification in enumerate(line):
classifications.append(classification)
results_classification[sample] = classifications
return results_classification
def mlst_profiles_to_db(chewbbaca_file_path, classification_file_path,
metadata_file_path, table_id, platform_tag,
importVersion):
"""Main function to parse and add profiles to db
This method merges all the required information obtained from profiles,
metadata, and classification and add them to the profile database.
Parameters
----------
chewbbaca_file_path: str
classification_file_path: str
metadata_file_path: str
table_id: str
platform_tag: str
Returns
-------
"""
chewbbaca_json = read_chewBBACA_file_to_JSON(chewbbaca_file_path, table_id)
print "DONE chewBBACA parse"
classification_json = read_classification_file_to_JSON(classification_file_path)
print "DONE classification parse"
metadata_json = read_metadata_file_to_JSON(metadata_file_path, table_id)
print "DONE metadata parse"
count_no_meta = 0
count_no_class = 0
no_results_class_path = "./app/utils/no_results_class.txt"
no_results_meta_path = "./app/utils/no_results_meta.txt"
with open(no_results_meta_path, 'w') as m:
with open(no_results_class_path, 'w') as w:
for strain_id, allelic_profile in chewbbaca_json.iteritems():
try:
classification_to_use = classification_json[strain_id]
except KeyError as e:
print e
print "No classification found for " + strain_id +\
". Adding undefined..."
w.write(strain_id + "\n")
classification_to_use = ["undefined", "undefined",
"undefined"]
count_no_class += 1
try:
metadata_to_use = metadata_json[strain_id]
except KeyError as e:
print e
print "No metadata for " + strain_id + ". Adding empty..."
m.write(strain_id + "\n")
count_no_meta += 1
metadata_to_use = base_metadata
populate_db(strain_id, classification_to_use[0],
classification_to_use[1],
classification_to_use[2],
allelic_profile, metadata_to_use,
platform_tag, importVersion, table_id)
print "DONE IMPORTING TO DB AND CREATING PROFILE HEADERS FILE"
print "Non classified: " + str(count_no_class)
print "No metadata: " + str(count_no_meta)
if __name__ == "__main__":
main()