-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgym_wrappers.py
205 lines (162 loc) · 6.95 KB
/
gym_wrappers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import gym
from gym.spaces import Box, Dict, MultiDiscrete
import numpy as np
import torch as th
class ObservationToInfos(gym.Wrapper):
"""
Adds the observation to the infos dict.
Useful when adding other wrappers that
transform the original observation.
"""
def __init_(self, env):
super().__init__(env)
def step(self, action):
obs, rew, done, info = self.env.step(action)
info["original_obs"] = obs
return obs, rew, done, info
class ObservationToCPU(gym.Wrapper):
"""Transfers Tensor observations to CPU"""
def __init__(self, env):
super().__init__(env)
def _to_cpu(self, obs):
if isinstance(obs, dict):
for key, obs_val in obs.items():
if isinstance(obs_val, th.Tensor):
obs[key] = obs[key].cpu()
elif isinstance(obs, th.Tensor):
obs = obs.cpu()
return obs
def reset(self):
obs = self.env.reset()
return self._to_cpu(obs)
def step(self, action):
obs, rew, done, info = self.env.step(action)
return self._to_cpu(obs), rew, done, info
class RewardModelWrapper(gym.Wrapper):
"""Replaces the environment reward with the one obtained
under a reward model"""
def __init__(
self, env, reward_model, reward_model_kwargs={"action_dependent": False}
):
super().__init__(env)
self.reward_model = reward_model
self.reward_model_kwargs = reward_model_kwargs
self.last_obs = None
def update_reward_model(self, reward_model, reward_model_kwargs):
self.reward_model = reward_model
self.reward_model_kwargs = reward_model_kwargs
def reset(self):
initial_obs = self.env.reset()
self.last_obs = initial_obs
return initial_obs
def step(self, action):
obs, _, terminated, info = self.env.step(action)
if self.reward_model_kwargs["action_dependent"]:
reward = self.reward_model(self.last_obs, action)
else:
reward = self.reward_model(obs)
return obs, reward, terminated, info
class DictToMultiDiscreteActionSpace(gym.Wrapper):
"""Converts Dict to MultiDiscrete action space for MineRL envs"""
def __init__(self, env, minerl_agent=None):
super().__init__(env)
if not isinstance(self.env.action_space, Dict):
raise ValueError("Original action space is not of type gym.Dict.")
assert minerl_agent is not None
self.minerl_agent = minerl_agent
# first dimension = camera, second dimension = buttons
self.action_space = MultiDiscrete([121, 8641])
# check action space conversion
random_env_action = self.env.action_space.sample()
agent_action = self.minerl_agent._env_action_to_agent(random_env_action)
array_action = self.to_array_action(agent_action)
assert array_action.squeeze() in self.action_space
agent_action2 = self.to_agent_action(array_action)
env_action = self.minerl_agent._agent_action_to_env(agent_action2)
env_action["ESC"] = env_action["swapHands"] = env_action["pickItem"] = np.array(
0
)
assert env_action in self.env.action_space
def to_array_action(self, agent_action):
if isinstance(agent_action["camera"], np.ndarray):
array_action = np.concatenate(
(agent_action["camera"], agent_action["buttons"]), -1
)
elif isinstance(agent_action["camera"], th.Tensor):
array_action = th.cat(
(agent_action["camera"], agent_action["buttons"]), dim=-1
)
return array_action
def to_agent_action(self, array_action):
agent_action = {"camera": array_action[..., 0], "buttons": array_action[..., 1]}
return agent_action
def step(self, action):
if len(action.shape) < 2:
action = action[np.newaxis, :]
# transform array action to agent action to MineRL action
agent_action = self.to_agent_action(action)
minerl_action = self.minerl_agent._agent_action_to_env(agent_action)
# TODO implement policy that controls the remaining actions (especially ESC):
minerl_action["ESC"] = np.array(0)
minerl_action["swapHands"] = minerl_action["pickItem"] = np.array(0)
obs, reward, terminated, info = self.env.step(minerl_action)
return obs, reward, terminated, info
class HiddenStateObservationSpace(gym.Wrapper):
"""Augments the observation space by the hidden state of the MineRLAgent"""
def __init__(self, env, minerl_agent=None):
super().__init__(env)
assert minerl_agent is not None
self.minerl_agent = minerl_agent
# define observation space based on model architecture
img_shape = self.minerl_agent._env_obs_to_agent(
self.env.observation_space.sample()
)["img"].shape
first_shape = self.minerl_agent._dummy_first.shape
img_width = img_shape[2]
hidden_width = self.minerl_agent.policy.net.lastlayer.layer.in_features
self.observation_space = Dict(
{
"img": Box(0, 255, shape=img_shape, dtype=np.uint8),
"first": Box(-10, 10, shape=first_shape),
"state_in1": Box(-10, 10, shape=(4, 1, img_width)),
"state_in2": Box(-10, 10, shape=(4, img_width, hidden_width)),
"state_in3": Box(-10, 10, shape=(4, img_width, hidden_width)),
}
)
def add_hidden_state(self, obs):
obs["first"] = self.minerl_agent._dummy_first.bool()
state_in1 = []
for i in range(len(self.minerl_agent.hidden_state)):
if self.minerl_agent.hidden_state[i][0] is None:
nan_tensor = th.zeros((1, 1, 128), dtype=th.float32)
nan_tensor[:, :, :] = float("nan")
state_in1.append(nan_tensor)
else:
state_in1.append(self.minerl_agent.hidden_state[i][0])
obs["state_in1"] = th.cat(tuple(state_in1), dim=0)
obs["state_in2"] = th.cat(
tuple(
self.minerl_agent.hidden_state[i][1][0]
for i in range(len(self.minerl_agent.hidden_state))
),
dim=0,
)
obs["state_in3"] = th.cat(
tuple(
self.minerl_agent.hidden_state[i][1][1]
for i in range(len(self.minerl_agent.hidden_state))
),
dim=0,
)
return obs
def reset(self):
self.minerl_agent.reset()
obs = self.env.reset()
agent_obs = self.minerl_agent._env_obs_to_agent(obs)
augmented_obs = self.add_hidden_state(agent_obs)
return augmented_obs
def step(self, action):
obs, reward, terminated, info = self.env.step(action)
agent_obs = self.minerl_agent._env_obs_to_agent(obs)
augmented_obs = self.add_hidden_state(agent_obs)
return augmented_obs, reward, terminated, info