generated from BCDA-APS/tiled-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
image_data.py
159 lines (133 loc) · 4.08 KB
/
image_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
"""
Read a variety of image file formats as input for tiled.
"""
from PIL import Image
from PIL.TiffImagePlugin import IFDRational
from tiled.adapters.array import ArrayAdapter
from tiled.adapters.mapping import MapAdapter
import numpy
import pathlib
import yaml
ROOT = pathlib.Path(__file__).parent
EXTENSIONS = []
# https://mimetype.io/all-types#image
MIMETYPES = """
image/bmp
image/gif
image/jpeg
image/png
image/tiff
image/vnd.microsoft.icon
image/webp
""".split()
# TODO: image/avif not handled by PIL
# TODO: image/svg+xml not handled by PIL
EMPTY_ARRAY = numpy.array([0,0])
def interpret_IFDRational(data):
if not isinstance(data, IFDRational):
raise TypeError(f"{data} is not of type {IFDRational.__class__}")
attrs = "numerator denominator imag".split()
md = {k: getattr(data, k) for k in attrs}
md["real"] = float(data.numerator) / data.denominator
return md
def interpret_exif(image):
from PIL.ExifTags import TAGS
exif = image.getexif()
md = {}
for tag_id in exif:
# get the tag name, instead of human unreadable tag id
tag = TAGS.get(tag_id, tag_id)
data = exif.get(tag_id)
# decode bytes
if isinstance(data, bytes):
data = data.decode()
if isinstance(data, IFDRational):
data = interpret_IFDRational(data)
md[tag] = data
return md
def image_metadata(image):
attrs = """
bits
filename
format
format_description
is_animated
layer
layers
mode
n_frames
size
text
""".split()
md = {k: getattr(image, k) for k in attrs if hasattr(image, k)}
if len(image.info) > 0:
md["info"] = {}
md["info"].update(image.info)
info = md.get("info")
if info is not None:
for k in "exif icc_profile xmp".split():
if k in info:
info.pop(k)
for k in "dpi resolution".split():
# fmt: off
if k in info:
items = []
for data in info[k]:
if isinstance(data, IFDRational):
v = interpret_IFDRational(data)
else:
v = data
items.append(v)
info[k] = tuple(items)
# fmt: on
value = info.get("version")
if isinstance(value, bytes):
info["version"] = value.decode()
value = info.get("extension")
if isinstance(value, tuple) and isinstance(value[0], bytes):
info["extension"] = (value[0].decode(), value[1])
# print(yaml.dump(md))
exif = interpret_exif(image)
if len(exif) > 0:
md["exif"] = exif
md["extrema"] = image.getextrema()
return md
def read_image(filename):
fn = pathlib.Path(filename).name
try:
image = Image.open(filename)
md = image_metadata(image)
# # special cases
# if image.format == "AVIF":
# pass
im = image.getdata()
pixels = list(im) # 1-D array of int or tuple
shape = list(reversed(im.size))
if im.bands > 1:
shape.append(im.bands)
pixels = numpy.array(pixels).reshape(shape)
if len(shape) > 2:
pixels = numpy.moveaxis(pixels, -1, 0) # put the colors first
return ArrayAdapter.from_array(pixels, metadata=md)
except Exception as exc:
arrays = dict(
ignore=ArrayAdapter.from_array(
numpy.array([0,0]), metadata=dict(ignore="placeholder, ignore")
)
)
return MapAdapter(
arrays, metadata=dict(
filename=str(filename),
exception=exc,
purpose="some problem reading this file as an image"
)
)
def main():
testdir = ROOT / "data" / "usaxs" / "2021"
for filepath in testdir.iterdir():
read_image(filepath)
testdir = ROOT / "data" / "images"
for filepath in testdir.iterdir():
read_image(filepath)
if __name__ == "__main__":
main()