-
Notifications
You must be signed in to change notification settings - Fork 177
/
Copy patheval.py
123 lines (100 loc) · 3.51 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# -*- coding: UTF-8 -*-
'''
@author: mengting gu
@contact: [email protected]
@time: 2021/2/19 16:57
@file: eval.py
@desc:
'''
# -*-coding:utf-8-*-
import argparse
import logging
import torch
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import yaml
from easydict import EasyDict
from models import get_model
from utils import (
Logger,
count_parameters,
data_augmentation,
get_data_loader,
)
from data import image_processing
import numpy as np
parser = argparse.ArgumentParser(description="PyTorch CIFAR Dataset Training")
parser.add_argument("--work-path", default= "./experiments/cifar10/vgg19", type=str)
parser.add_argument("--resume", action="store_true", help="resume from checkpoint")
args = parser.parse_args()
logger = Logger(
log_file_name=args.work_path + "/log.txt",
log_level=logging.DEBUG,
logger_name="CIFAR",
).get_log()
config = None
def eval(test_loader, net, device):
net.eval()
correct = 0
total = 0
logger.info(" === Validate ===")
with torch.no_grad():
for batch_index, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.to(device), targets.to(device)
targets = targets.squeeze()
outputs = net(inputs)
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
# logger.info(
# " == test acc: {:6.3f}% | true label : {}, predict as : {}".format(
# 100.0 * correct / total, targets, predicted
# )
# )
logger.info(
" == test acc: {:6.3f}% , model best prec : {:6.3f}%".format(
100.0 * correct / total, best_prec
)
)
def one_image_demo(image_path, net, device):
net.eval()
img = image_processing.read_image(image_path, resize_height=config.input_size, resize_width=config.input_size)
img = transforms.ToTensor()(img)
img = img[np.newaxis, :, :, :]
inputs = img.to(device)
outputs = net(inputs)
_, predicted = outputs.max(1)
print("img : {}, predict as : {}".format(image_path, predicted[0]))
def main():
global args, config, best_prec
# read config from yaml file
with open(args.work_path + "/config.yaml") as f:
config = yaml.load(f)
# convert to dict
config = EasyDict(config)
logger.info(config)
# define netowrk
net = get_model(config)
ckpt_file_name = args.work_path + "/" + config.ckpt_name + "_best.pth.tar"
checkpoint = torch.load(ckpt_file_name)
net.load_state_dict({k.replace('module.',''):v for k,v in checkpoint["state_dict"].items()}, strict=True)
best_prec = checkpoint["best_prec"]
logger.info(net)
logger.info(" == total parameters: " + str(count_parameters(net)))
# CPU or GPU
device = "cuda" if config.use_gpu else "cpu"
# data parallel for multiple-GPU
if device == "cuda":
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
net.to(device)
# load training data, do data augmentation and get data loader
transform_train = transforms.Compose(data_augmentation(config))
transform_test = transforms.Compose(data_augmentation(config, is_train=False))
train_loader, test_loader = get_data_loader(transform_train, transform_test, config)
eval(test_loader, net, device)
# one_image_demo demo
# image_path = "./data/cifar.jpg"
# one_image_demo(image_path, net, device)
if __name__ == "__main__":
main()