Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fiducial Finder Initial Steps #30

Open
1 of 6 tasks
hjmjohnson opened this issue May 15, 2019 · 1 comment
Open
1 of 6 tasks

Fiducial Finder Initial Steps #30

hjmjohnson opened this issue May 15, 2019 · 1 comment
Assignees
Labels
help wanted Extra attention is needed

Comments

@hjmjohnson
Copy link
Member

User Story

As an AlgorithmDev ,
I want understand the current field of landmark identification from deep learning methods
so that anatomical landmarks may be identified

Detailed Description

Survey literature to identify potential landmark identification strategies.

Tasks to be completed

  • Survey different approaches to deep learning
  • Provide a proposal for initial testing (what will be tested, how will it be evaluated)
  • Provide small scale prototype

Acceptance Criteria

@hjmjohnson hjmjohnson added the help wanted Extra attention is needed label May 15, 2019
@hjmjohnson
Copy link
Member Author

cat requirements.txt
alabaster==0.7.12
appdirs==1.4.3
appnope==0.1.0
attrs==19.1.0
Babel==2.6.0
backcall==0.1.0
bids-validator==1.2.3
black==19.3b0
bleach==3.1.0
certifi==2019.3.9
chardet==3.0.4
Click==7.0
cycler==0.10.0
decorator==4.4.0
defusedxml==0.6.0
docopt==0.6.2
docutils==0.14
entrypoints==0.3
idna==2.8
imagesize==1.1.0
ipydatawidgets==4.0.0
ipykernel==5.1.0
ipympl==0.2.1
ipython==7.5.0
ipython-genutils==0.2.0
ipywidgets==7.4.2
itk==5.0rc1
itk-core==5.0rc2
itk-filtering==5.0rc2
itk-io==5.0rc2
itk-numerics==5.0rc2
itk-registration==5.0rc2
itk-segmentation==5.0rc2
itkwidgets==0.16.1
jedi==0.13.3
Jinja2==2.10.1
jsonschema==3.0.1
jupyter-client==5.2.4
jupyter-core==4.4.0
jupyterlab==0.35.6
jupyterlab-server==0.2.0
kiwisolver==1.1.0
MarkupSafe==1.1.1
matplotlib==3.0.3
mistune==0.8.4
nbconvert==5.5.0
nbformat==4.4.0
nibabel==2.4.0
notebook==5.7.8
num2words==0.5.9
numpy==1.16.3
packaging==19.0
pandas==0.24.2
pandocfilters==1.4.2
parso==0.4.0
patsy==0.5.1
pexpect==4.7.0
pickleshare==0.7.5
prometheus-client==0.6.0
prompt-toolkit==2.0.9
ptyprocess==0.6.0
pybids==0.8.0+77.g30d924c
Pygments==2.3.1
pyparsing==2.4.0
pyrsistent==0.15.1
python-dateutil==2.8.0
pytz==2019.1
pyzmq==18.0.1
requests==2.21.0
scikit-learn==0.20.3
scipy==1.2.1
Send2Trash==1.5.0
SimpleITK==1.2.0
six==1.12.0
snowballstemmer==1.2.1
Sphinx==2.0.1
sphinx-rtd-theme==0.4.3
sphinxcontrib-applehelp==1.0.1
sphinxcontrib-devhelp==1.0.1
sphinxcontrib-htmlhelp==1.0.2
sphinxcontrib-jsmath==1.0.1
sphinxcontrib-qthelp==1.0.2
sphinxcontrib-serializinghtml==1.1.3
terminado==0.8.2
testpath==0.4.2
toml==0.10.0
tornado==6.0.2
traitlets==4.3.2
traittypes==0.2.1
urllib3==1.24.3
wcwidth==0.1.7
webencodings==0.5.1
widgetsnbextension==3.4.2
zstandard==0.11.0
def read_fiducial_points(fcsv_file: str, fiducials:list) -> dict:
    col_names="id,x,y,z,ow,ox,oy,oz,vis,sel,lock,label,desc,associatedNodeID"
    with open(fcsv_file, 'r') as fid: 
        df = pd.read_csv(fid, sep=',', comment='#', names=col_names.split(',')) 

    fid_pts = {}
    for fid in fiducials:
        fid_pts[fid] = df[ df['label'] == fid].iloc[0][1:4].values
        # flip RAS fiducials to be LPS
        fid_pts[fid][0] = -1*fid_pts[fid][0]
        fid_pts[fid][1] = -1*fid_pts[fid][1]
    return fid_pts

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
help wanted Extra attention is needed
Projects
None yet
Development

No branches or pull requests

2 participants