forked from KnightSin/PIC2LCEDA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PIC2LCEDA.py
371 lines (351 loc) · 17.1 KB
/
PIC2LCEDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import cv2
import numpy as np
from numpy import mat
import datetime
import os
import chardet
# 显示图片
def showImg(img, k):
img = cv2.resize(img, (0, 0), fx=k, fy=k, interpolation=cv2.INTER_NEAREST)
cv2.imshow('preview', img)
# 拆分文件路径
def getpath(sourcefullpath):
if os.path.isfile(sourcefullpath):
(sourcepath, sourcename) = os.path.split(sourcefullpath)
#print((sourcepath, sourcename))
return sourcepath, sourcename
else:
return -1 # 图片文件不存在!!!
# 图片转换
def transformpic(sourcefullpath, x_size, y_size, width, layer, color_invert_f, x_invert_f, y_invert_f, threshold):
# 由文件绝对路径分离出路径和文件名
if getpath(sourcefullpath) == -1:
return -1
# 单位转换
x_size_mil = int(x_size / 2.54 * 100)
y_size_mil = int(y_size / 2.54 * 100)
# 图片处理
# 读取源图片数据
#img = cv2.imread(sourcefullpath)
img = cv2.imdecode(np.fromfile(
sourcefullpath, dtype=np.uint8), -1) # 中文路径解决方式
# 图片缩放
try:
im_raw, im_col = img.shape[0:2]
except:
return -1
if im_raw / y_size_mil > im_col / x_size_mil:
k = y_size_mil / im_raw
x_size_mil = int(im_col * k) + 1
else:
k = x_size_mil / im_col
y_size_mil = int(im_raw * k) + 1
img = cv2.resize(img, (int(im_col * k / width), int(im_raw * k / width)))
# 色相取反
if color_invert_f != 0:
img = cv2.bitwise_not(img)
# 拓展边缘
img = cv2.copyMakeBorder(img,
1,
1,
1,
1,
cv2.BORDER_CONSTANT,
value=[255, 255, 255])
# 去色
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值化
img = cv2.threshold(img, threshold, 255, cv2.THRESH_BINARY)[1]
# img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
# 翻转图片
if layer == 2 or layer == 4 or layer == 6 or layer == 8:
img = cv2.flip(img, 1)
# 旋转
# img = img.transpose()
if x_invert_f != 0:
img = cv2.flip(img, 1)
if y_invert_f != 0:
img = cv2.flip(img, 0)
return img, x_size_mil, y_size_mil, im_raw, im_col
# 转换生成库文件,正常转换返回0,图片不存在返回-1
def makepcb(sourcefullpath, x_size, y_size, width, layer, color_invert_f, copper_f, x_invert_f, y_invert_f, threshold):
# 由文件绝对路径分离出路径和文件名
if getpath(sourcefullpath) != -1:
(sourcepath, sourcename) = getpath(sourcefullpath)
path = os.path.join(
sourcepath,
'LCEDA_' + sourcename.split('.')[0] + '_' + str(datetime.datetime.now().strftime("%Y-%m-%d_%H_%M_%S")))
#print(path)
if not os.path.exists(path):
# 如果不存在则创建目录,win目录不能含有冒号
os.makedirs(path)
else:
return -1
lib_filename = 'LIB_' + sourcename.split('.')[0] + '.json' # Lib文件名
pcb_filename = 'PCB_' + sourcename.split('.')[0] + '.json' # PCB文件名
# 备份原图
#cv2.imwrite(os.path.join(path, 'pre.jpg'), img2, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
img2 = cv2.imdecode(np.fromfile(
sourcefullpath, dtype=np.uint8), -1) # 中文路径解决方式
cv2.imencode('.jpg', img2)[1].tofile(
os.path.join(path, 'pre.jpg')) # 中文路径解决方式
if transformpic(sourcefullpath, x_size, y_size, width, layer, color_invert_f, x_invert_f, y_invert_f, threshold) != -1:
(img, x_size_mil, y_size_mil, im_raw, im_col) = transformpic(sourcefullpath,
x_size, y_size, width, layer, color_invert_f, x_invert_f, y_invert_f, threshold)
else:
return -1
# 备份处理后的图片
#cv2.imwrite(os.path.join(path, 'after.jpg'), img, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
cv2.imencode('.jpg', img)[1].tofile(
os.path.join(path, 'after.jpg')) # 中文路径解决方式
# 将图片处理成线条
# 图片-> 线段
# o------>x (col) o---0-->o
# | ^ |1
# | 3 | v
# v o<--2---o
# y (raw)
# lines_mil(start_x, start_y, end_x, end_y)
# lines_mil(start_col, start_raw, end_col, end_raw)
lines_mil = mat([
[0, 0, x_size_mil / 10, 0], # 0
[x_size_mil / 10, 0, x_size_mil / 10, y_size_mil / 10], # 1
[x_size_mil / 10, y_size_mil / 10, 0, y_size_mil / 10], # 2
[0, y_size_mil / 10, 0, 0] # 3
])
im_raw1, im_col1 = img.shape[0:2]
lastPix = 255
line_start = 0
line_end = 0
report_f = 1
for i in range(im_raw1):
lastPix = img[i, 0]
for j in range(im_col1):
if lastPix != img[i, j] and lastPix == 255:
line_start = j
elif lastPix != img[i, j] and lastPix == 0:
line_end = j
lines_mil = np.vstack(
(lines_mil,
mat([
line_start / 10 * width, i * width / 10,
line_end / 10 * width, i * width / 10
])))
lastPix = img[i, j]
if (((i / img.shape[0]) * 100) - report_f) > 0.01:
report_f = report_f + 1
# 将图片数据写入Lib文件
# 打开文件,文件不存在则建立,文件已存在则覆盖
f = open(os.path.join(path, lib_filename), "w")
# 写入内容
f.write(
'{\n "head": {\n "docType": "4",\n "editorVersion": "6.4.2",\
\n "newgId": true,\n "c_para": {\n "package": "%s",\
\n "pre": "PIC?",\n "Contributor": "LCNB",\
\n "link": ""\n },\n "hasIdFlag": true,\
\n "x": %.4f,\n "y": %.4f\n },\n' %
(sourcename.split('.', 1)[0],
(lines_mil[0, 0] + lines_mil[2, 0]) / 2,
(lines_mil[0, 1] + lines_mil[2, 1]) / 2))
# 写入内容
f.write(
' "canvas": "CA~1000~1000~#000000~yes~#FFFFFF~10~1000~1000~line~10~mil\
~1~45~~0.5~%.4f~%.4f~0~none",\n "shape": [\n' %
((lines_mil[0, 0] + lines_mil[2, 0]) / 2,
(lines_mil[0, 1] + lines_mil[2, 1]) / 2))
report_f = 1
# 写入实心填充-铜皮数据
if copper_f == 2:
f.write(
' "SOLIDREGION~1~~M %.4f %.4f L %.4f %.4f L %.4f %.4f L%.4f,%.4f Z~solid~ggb0~~~~0",\n' % (
lines_mil[0, 0],
lines_mil[0, 1],
lines_mil[0, 2],
lines_mil[0, 3],
lines_mil[2, 0],
lines_mil[2, 1],
lines_mil[2, 2],
lines_mil[2, 3],
))
f.write(
' "SOLIDREGION~2~~M %.4f %.4f L %.4f %.4f L %.4f %.4f L%.4f,%.4f Z~solid~ggb1~~~~0",\n' % (
lines_mil[0, 0],
lines_mil[0, 1],
lines_mil[0, 2],
lines_mil[0, 3],
lines_mil[2, 0],
lines_mil[2, 1],
lines_mil[2, 2],
lines_mil[2, 3],
))
# 写入边框数据
for i in range(4):
f.write(' "TRACK~1~%d~~%.4f %.4f %.4f %.4f~ggc%d~0",\n' %
(layer, lines_mil[i, 0], lines_mil[i, 1], lines_mil[i, 2],
lines_mil[i, 3], i))
# 写入图像数据
for i in range(lines_mil.shape[0]):
f.write(' "TRACK~%.1f~%d~~%.4f %.4f %.4f %.4f~gge%d~0"' %
(width / 10, layer, lines_mil[i, 0], lines_mil[i, 1],
lines_mil[i, 2], lines_mil[i, 3], i))
if i != lines_mil.shape[0] - 1:
f.write(',')
f.write('\n')
if (((i / lines_mil.shape[0]) * 100) - report_f) > 0.01:
report_f = report_f + 1
# 写入内容
f.write('],\n"layers": [\n "1~TopLayer~#FF0000~true~true~true~",\n "2~\
BottomLayer~#0000FF~true~false~true~",\n "3~TopSilkLayer~#FFCC00~true~\
false~true~",\n "4~BottomSilkLayer~#66CC33~true~false~true~",\n "5~\
TopPasteMaskLayer~#808080~true~false~true~",\n "6~BottomPasteMaskLayer\
~#800000~true~false~true~",\n "7~TopSolderMaskLayer~#800080~true~false~\
true~0.3",\n "8~BottomSolderMaskLayer~#AA00FF~true~false~true~0.3",\
\n "9~Ratlines~#6464FF~false~false~true~",\n "10~BoardOutLine~#FF00FF~\
true~false~true~",\n "11~Multi-Layer~#C0C0C0~true~false~true~",\
\n "12~Document~#FFFFFF~true~false~true~",\n "13~TopAssembly~#33CC99~\
false~false~false~",\n "14~BottomAssembly~#5555FF~false~false~false~",\
\n "15~Mechanical~#F022F0~false~false~false~",\n "19~3DModel~#66CCFF~\
false~false~false~",\n "21~Inner1~#999966~false~false~false~~",\
\n "22~Inner2~#008000~false~false~false~~",\n "23~Inner3~#00FF00~false~\
false~false~~",\n "24~Inner4~#BC8E00~false~false~false~~",\n "25~Inner5~\
#70DBFA~false~false~false~~",\n "26~Inner6~#00CC66~false~false~false~~",\
\n "27~Inner7~#9966FF~false~false~false~~",\n "28~Inner8~#800080~false~\
false~false~~",\n "29~Inner9~#008080~false~false~false~~",\n "30~Inner10\
~#15935F~false~false~false~~",\n "31~Inner11~#000080~false~false~false~~",\
\n "32~Inner12~#00B400~false~false~false~~",\n "33~Inner13~#2E4756~false~\
false~false~~",\n "34~Inner14~#99842F~false~false~false~~",\n "35~Inner15~\
#FFFFAA~false~false~false~~",\n "36~Inner16~#99842F~false~false~false~~",\
\n "37~Inner17~#2E4756~false~false~false~~",\n "38~Inner18~#3535FF~false~\
false~false~~",\n "39~Inner19~#8000BC~false~false~false~~",\n "40~Inner20~\
#43AE5F~false~false~false~~",\n "41~Inner21~#C3ECCE~false~false~false~~",\
\n "42~Inner22~#728978~false~false~false~~",\n "43~Inner23~#39503F~false~\
false~false~~",\n "44~Inner24~#0C715D~false~false~false~~",\n "45~Inner25\
~#5A8A80~false~false~false~~",\n "46~Inner26~#2B937E~false~false~false~~",\
\n "47~Inner27~#23999D~false~false~false~~",\n "48~Inner28~#45B4E3~false~\
false~false~~",\n "49~Inner29~#215DA1~false~false~false~~",\n "50~Inner30\
~#4564D7~false~false~false~~",\n "51~Inner31~#6969E9~false~false~false~~",\
\n "52~Inner32~#9069E9~false~false~false~~",\n "99~ComponentShapeLayer\
~#00CCCC~false~false~false~",\n "100~LeadShapeLayer~#CC9999~false~false~\
false~",\n "Hole~Hole~#222222~~false~true~",\n "DRCError~DRCError~#FAD609\
~~false~true~"\n],\n"objects": [\n "All~true~false",\
\n "Component~true~true",\n "Prefix~true~true",\n "Name~true~false",\
\n "Track~true~true",\n "Pad~true~true",\n "Via~true~true",\
\n "Hole~true~true",\n "Copper_Area~true~true",\n "Circle~true~true",\
\n "Arc~true~true",\n "Solid_Region~true~true",\n "Text~true~true",\
\n "Image~true~true",\n "Rect~true~true",\n "Dimension~true~true",\
\n "Protractor~true~true"\n],\n')
# 写入内容
f.write(' "BBox": {\n "x": %.1f,\n "y": %.1f,\n "width": %.1f,\
\n "height": %.1f\n },' %
((lines_mil[0, 0] + lines_mil[2, 0]) / 2,
(lines_mil[0, 1] + lines_mil[2, 1]) / 2, x_size_mil, y_size_mil))
# 写入内容
f.write(' "netColors": {}\n}')
f.close()
# 将边框数据写入PCB文件
# 打开文件
f = open(os.path.join(path, pcb_filename), "w")
# 写入内容
f.write(
'{\n "head": {\n "docType": "3",\n "editorVersion": "6.4.2",\
\n "newgId": true,\n "c_para": {},\n "hasIdFlag": true\n },\
\n "canvas": "CA~1000~1000~#000000~yes~#FFFFFF~39.370079~1000~1000~line~\
3.937008~mm~1~45~~0.5~%.4f~%.4f~0~yes",\n "shape": [\n' %
((lines_mil[0, 0] + lines_mil[2, 0]) / 2,
(lines_mil[0, 1] + lines_mil[2, 1]) / 2))
# 输出提示信息
# 写入边框数据
for i in range(4):
f.write(' "TRACK~1~%d~S$998~%.4f %.4f %.4f %.4f~ggc%d~0"' %
(10, lines_mil[i, 0], lines_mil[i, 1], lines_mil[i, 2],
lines_mil[i, 3], i))
if i != 3:
f.write(',')
f.write('\n')
# 完成
# 写入内容
f.write(' ],\n"layers": [\n "1~TopLayer~#FF0000~true~false~true~",\
\n "2~BottomLayer~#0000FF~true~false~true~",\n "3~TopSilkLayer~#FFCC00\
~true~false~true~",\n "4~BottomSilkLayer~#66CC33~true~true~true~",\
\n "5~TopPasteMaskLayer~#808080~true~false~true~",\n "6~BottomPasteMaskLayer\
~#800000~true~false~true~",\n "7~TopSolderMaskLayer~#800080~true~false~true\
~0.3",\n "8~BottomSolderMaskLayer~#AA00FF~true~false~true~0.3",\
\n "9~Ratlines~#6464FF~false~false~true~",\n "10~BoardOutLine~#FF00FF~true\
~false~true~",\n "11~Multi-Layer~#C0C0C0~true~false~true~",\n "12~Document\
~#FFFFFF~true~false~true~",\n "13~TopAssembly~#33CC99~false~false~false~",\
\n "14~BottomAssembly~#5555FF~false~false~false~",\n "15~Mechanical~#F022F0\
~false~false~false~",\n "19~3DModel~#66CCFF~false~false~false~",\
\n "21~Inner1~#999966~false~false~false~~",\n "22~Inner2~#008000~false~false\
~false~~",\n "23~Inner3~#00FF00~false~false~false~~",\n "24~Inner4~#BC8E00\
~false~false~false~~",\n "25~Inner5~#70DBFA~false~false~false~~",\
\n "26~Inner6~#00CC66~false~false~false~~",\n "27~Inner7~#9966FF~false~false\
~false~~",\n "28~Inner8~#800080~false~false~false~~",\n "29~Inner9~#008080\
~false~false~false~~",\n "30~Inner10~#15935F~false~false~false~~",\
\n "31~Inner11~#000080~false~false~false~~",\n "32~Inner12~#00B400\
~false~false~false~~",\n "33~Inner13~#2E4756~false~false~false~~",\
\n "34~Inner14~#99842F~false~false~false~~",\n "35~Inner15~#FFFFAA\
~false~false~false~~",\n "36~Inner16~#99842F~false~false~false~~",\
\n "37~Inner17~#2E4756~false~false~false~~",\n "38~Inner18~#3535FF\
~false~false~false~~",\n "39~Inner19~#8000BC~false~false~false~~",\
\n "40~Inner20~#43AE5F~false~false~false~~",\n "41~Inner21~#C3ECCE~false\
~false~false~~",\n "42~Inner22~#728978~false~false~false~~",\n "43~Inner23\
~#39503F~false~false~false~~",\n "44~Inner24~#0C715D~false~false~false~~",\
\n "45~Inner25~#5A8A80~false~false~false~~",\n "46~Inner26~#2B937E~false\
~false~false~~",\n "47~Inner27~#23999D~false~false~false~~",\n "48~Inner28\
~#45B4E3~false~false~false~~",\n "49~Inner29~#215DA1~false~false~false~~",\
\n "50~Inner30~#4564D7~false~false~false~~",\n "51~Inner31~#6969E9~false\
~false~false~~",\n "52~Inner32~#9069E9~false~false~false~~",\
\n "99~ComponentShapeLayer~#00CCCC~false~false~false~",\
\n "100~LeadShapeLayer~#CC9999~false~false~false~",\n "Hole~Hole~#222222~\
~false~true~",\n "DRCError~DRCError~#FAD609~~false~true~"\n],\n"objects": [\
\n "All~true~false",\n "Component~true~true",\n "Prefix~true~true",\
\n "Name~true~false",\n "Track~true~true",\n "Pad~true~true",\
\n "Via~true~true",\n "Hole~true~true",\n "Copper_Area~true~true",\
\n "Circle~true~true",\n "Arc~true~true",\n "Solid_Region~true~true",\
\n "Text~true~true",\n "Image~true~true",\n "Rect~true~true",\
\n "Dimension~true~true",\n "Protractor~true~true"\n],')
# 写入内容
f.write('\n "BBox": {\n "x": %.1f,\n "y": %.1f,\
\n "width": %.1f,\n "height": %.1f\n }' %
((lines_mil[0, 0] + lines_mil[2, 0]) / 2,
(lines_mil[0, 1] + lines_mil[2, 1]) / 2, x_size_mil, y_size_mil))
# 写入内容
f.write(
',\n "preference": {\n "hideFootprints": "",\n "hideNets": ""\n },\
\n "DRCRULE": {\n "Default": {\n "trackWidth": 1,\n "clearance":\
0.6,\n "viaHoleDiameter": 2.4,\n "viaHoleD": 1.2\n },\
\n "isRealtime": false,\n "isDrcOnRoutingOrPlaceVia": false,\
\n "checkObjectToCopperarea": true,\n "showDRCRangeLine": true\n },\
\n "netColors": {}\n}')
f.close()
# 生成图片信息文件
# 输出提示信息
# 写入内容
f = open(os.path.join(path, 'info.txt'), "w")
f.write('\n| 参数\t\t| 值 \n'),
f.write('------------------------------------------------------\n')
f.write('| 原图X像素\t| %.4f pix\n' % im_col)
f.write('| 原图y像素\t| %.4f pix\n' % im_raw)
f.write("| 线宽\t\t| %d mil\n" % width)
f.write('| X最大尺寸\t| %.4f mm\n' % x_size)
f.write('| y最大尺寸\t| %.4f mm\n' % y_size)
f.write('| X实际像素\t| %.4f pix\n' % x_size_mil)
f.write('| y实际像素\t| %.4f pix\n' % y_size_mil)
f.write('| X实际尺寸\t| %.4f mm\n' % (x_size_mil / 100 * 2.54))
f.write('| y实际尺寸\t| %.4f mm\n' % (y_size_mil / 100 * 2.54))
layerstr = ['NULL', '顶层', '底层', '顶层丝印层', '底层丝印层',
'顶层焊盘层', '底层焊盘层', '顶层阻焊层', '底层阻焊层', '边框层', '文档层']
f.write('| 所在层\t\t| %s\n' % layerstr[layer])
f.write('| 源文件路径\t| %s\n' % sourcepath)
f.write('| 源文件名称\t| %s\n' % sourcename)
f.write('| 生成文件路径\t| %s\n' % path)
f.write('| Lib文件名称\t| %s\n' % lib_filename)
f.write('| Lib文件名称\t| %s\n' % pcb_filename)
f.write('| 图像取反\t| %s\n' % ('true' if color_invert_f != 0 else 'false'))
f.write('| 水平翻转\t| %s\n' % ('true' if x_invert_f != 0 else 'false'))
f.write('| 垂直翻转\t| %s\n' % ('true' if y_invert_f != 0 else 'false'))
f.write('| 创建铜皮\t| %s\n' % ('true' if copper_f != 0 else 'false'))
f.write("| 阈值\t\t| %d\n" % threshold)
f.close()
# 完成
return 0