-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathog_utils.py
154 lines (129 loc) · 5.23 KB
/
og_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from omnigibson.sensors.vision_sensor import VisionSensor
import transform_utils as T
import numpy as np
import torch
class OGCamera:
"""
Defines the camera class
"""
def __init__(self, og_env, config) -> None:
self.cam = insert_camera(name=config['name'], og_env=og_env, width=config['resolution'], height=config['resolution'])
self.cam.set_position_orientation(config['position'], config['orientation'])
self.intrinsics = get_cam_intrinsics(self.cam)
self.extrinsics = get_cam_extrinsics(self.cam)
def get_params(self):
"""
Get the intrinsic and extrinsic parameters of the camera
"""
return {"intrinsics": self.intrinsics, "extrinsics": self.extrinsics}
def get_obs(self):
"""
Gets the image observation from the camera.
Assumes have rendered befor calling this function.
No semantic handling here for now.
"""
obs = self.cam.get_obs()
ret = {}
ret["rgb"] = obs[0]["rgb"][:,:,:3] # H, W, 3
ret["depth"] = obs[0]["depth_linear"] # H, W
ret["points"] = pixel_to_3d_points(ret["depth"], self.intrinsics, self.extrinsics) # H, W, 3
ret["seg"] = obs[0]["seg_semantic"] # H, W
ret["intrinsic"] = self.intrinsics
ret["extrinsic"] = self.extrinsics
return ret
def insert_camera(name, og_env, width=480, height=480):
try:
cam = VisionSensor(
prim_path=f"/World/{name}",
name=name,
image_width=width,
image_height=height,
modalities=["rgb", "depth_linear", "seg_semantic"]
)
except TypeError:
cam = VisionSensor(
relative_prim_path=f"/{name}",
name=name,
image_width=width,
image_height=height,
modalities=["rgb", "depth_linear", "seg_semantic"]
)
try:
cam.load()
except TypeError:
cam.load(og_env.scene)
cam.initialize()
return cam
def get_cam_intrinsics(cam):
"""
Get the intrinsics matrix for a VisionSensor object
::param cam: VisionSensor object
::return intrinsics: 3x3 numpy array
"""
img_width = cam.image_width
img_height = cam.image_height
if img_width != img_height:
raise ValueError("Only square images are supported")
apert = cam.prim.GetAttribute("horizontalAperture").Get()
focal_len_in_pixel = cam.focal_length * img_width / apert
intrinsics = np.eye(3)
intrinsics[0,0] = focal_len_in_pixel
intrinsics[1,1] = focal_len_in_pixel
intrinsics[0,2] = img_width / 2
intrinsics[1,2] = img_height / 2
return intrinsics
def get_cam_extrinsics(cam):
return T.pose_inv(T.pose2mat(cam.get_position_orientation()))
def pixel_to_3d_points(depth_image, intrinsics, extrinsics):
# if torch.is_tensor(intrinsics):
# intrinsics = intrinsics.detach().cpu().numpy()
# if torch.is_tensor(extrinsics):
# extrinsics = extrinsics.detach().cpu().numpy()
# Get the shape of the depth image
H, W = depth_image.shape
# Create a grid of (x, y) coordinates corresponding to each pixel in the image
i, j = np.meshgrid(np.arange(W), np.arange(H), indexing='xy')
# Unpack the intrinsic parameters
fx, fy = intrinsics[0, 0], intrinsics[1, 1]
cx, cy = intrinsics[0, 2], intrinsics[1, 2]
# Convert pixel coordinates to normalized camera coordinates
if torch.is_tensor(depth_image):
depth_image = depth_image.detach().cpu().numpy()
z = depth_image
x = (i - cx) * z / fx
y = (j - cy) * z / fy
# Stack the coordinates to form (H, W, 3)
camera_coordinates = np.stack((x, y, z), axis=-1)
# Reshape to (H*W, 3) for matrix multiplication
camera_coordinates = camera_coordinates.reshape(-1, 3)
# Convert to homogeneous coordinates (H*W, 4)
camera_coordinates_homogeneous = np.hstack((camera_coordinates, np.ones((camera_coordinates.shape[0], 1))))
# additional conversion to og convention
T_mod = np.array([[1., 0., 0., 0., ],
[0., -1., 0., 0.,],
[0., 0., -1., 0.,],
[0., 0., 0., 1.,]])
camera_coordinates_homogeneous = camera_coordinates_homogeneous @ T_mod
# Apply extrinsics to get world coordinates
# world_coordinates_homogeneous = camera_coordinates_homogeneous @ extrinsics.T
world_coordinates_homogeneous = T.pose_inv(extrinsics) @ (camera_coordinates_homogeneous.T)
world_coordinates_homogeneous = world_coordinates_homogeneous.T
# Convert back to non-homogeneous coordinates
world_coordinates = world_coordinates_homogeneous[:, :3] / world_coordinates_homogeneous[:, 3, np.newaxis]
# Reshape back to (H, W, 3)
world_coordinates = world_coordinates.reshape(H, W, 3)
return world_coordinates
def point_to_pixel(pt, intrinsics, extrinsics):
"""
pt -- (N, 3) 3d points in world frame
intrinsics -- (3, 3) intrinsics matrix
extrinsics -- (4, 4) extrinsics matrix
"""
pt_in_cam = extrinsics @ np.hstack((pt, np.ones((pt.shape[0], 1)))).T # (4, N)
# multiply y, z by -1
pt_in_cam[1, :] *= -1
pt_in_cam[2, :] *= -1
pt_in_cam = pt_in_cam[:3, :]
pt_in_cam = intrinsics @ pt_in_cam
pt_in_cam /= pt_in_cam[2, :]
return pt_in_cam[:2, :].T