-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLecture_6.Rmd
179 lines (159 loc) · 3.14 KB
/
Lecture_6.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
title: "Lecture 6 - Color"
output: html_notebook
---
# Loading data and preparing workspace
```{r}
library("colorspace")
library("viridis")
library("RColorBrewer")
library("ggthemes")
```
#
```{r}
pal_viridis <- viridis::cividis(6)
pal_set2 <- RColorBrewer::brewer.pal(6, "Set2")
# Most used categorical palette
pal_tableau <- ggthemes::tableau_color_pal()(6)
pal_viridis
```
```{r}
colorspace::swatchplot(
"Viridis" = pal_viridis,
"Brewer" = pal_set2,
"Tableau" = pal_tableau
)
```
## Assessing quantitatively palettes
```{r}
colorspace::specplot(pal_tableau)
```
## Assessing quality of palettes for color blind people
```{r}
pal_deu_tableau <- colorspace::deutan(pal_tableau)
```
```{r}
pal_deu_tableau |>
colorspace::specplot()
```
```{r}
colorspace::swatchplot(
"no cvd"=pal_tableau,
"cvd"=pal_deu_tableau
)
```
###Protan blindness
```{r}
pal_viridis |>
protan() |>
specplot()
```
### Tritan blindness
```{r}
pal_viridis |>
tritan() |>
specplot()
```
## Grey-White
```{r}
pal_viridis |>
desaturate(1) |>
specplot()
```
```{r}
pal_tableau |>
desaturate(1) |>
specplot()
```
```{r}
rainbow(6) |>
specplot()
```
# Quantitative assessment of contrast
Contrast ratio: luminance of the color / luminance of the background
What are good colors? Around 3 is lower bound
```{r}
colorspace::contrast_ratio(pal_viridis, col2="grey30", plot=TRUE)
```
# How can we fix tableau for blind people?
Therefore cathegorical data for blind people safe.
```{r}
# Okabe and Ito - Japanese professors inventors
palette.colors(6) |>
desaturate(1) |>
specplot()
```
# Now we play
```{r}
pal_random <- c("#ff6f59", "#254441", "#43aa8b", "#b2b09b", "#ef3054")
pal_random |>
specplot()
```
```{r}
#Then you can define the following function:
image_spec <- function(img_path, palette) {
p_image <- cowplot::ggdraw() +
cowplot::draw_image(img_path)
p_palette <- tibble(c = palette) |>
ggplot(aes(x=palette, y=0, fill=palette)) +
geom_tile(color="white", linewidth=4) +
coord_fixed() +
scale_fill_identity() +
theme_void()
plot_grid(p_palette, p_image, ncol=1)
}
```
```{r}
pal_dune <- c("#D96A6A","#8C4660","#592550","#F8AEA1","#260101")
img_path <- "data/download.jpg"
image_spec(img_path, pal_dune)
```
```{r}
pal_dune |>
desaturate(1) |>
specplot()
```
```{r}
pal_burano <- c("#B6DBF2","#049DBF","#055902","#F2B705","#F2CDAC")
img_path <- "data/images.jpg"
image_spec(img_path, pal_burano)
```
# Another complicate palette
```{r}
base1 <- "#C91024"
base2 <- "#1E8CE3"
saturations <- c(0.0, 0.5, 1.0)
lightenesses <- c(0.0, 0.3, 0.8)
```
```{r}
base1 |>
desaturate(0.5) |>
lighten(0.3) |>
swatchplot()
```
```{r}
color_base_tibble <- function(base, saturation, lightness){
tibble(c=base,
sat=saturation,
light=lightness) |>
transmute(
c=lighten(desaturate(c,sat),light),
c=fct_reorder(c, row_number())
)
}
```
```{r}
cols1 <- base1 |>
color_base_tibble(saturations, lightenesses) |>
rename(C1=c)
base2 |>
color_base_tibble(saturations, lightenesses) |>
rename(C2=c)
```
```{r}
blend_colors <- function(C1,C2){
hex(RGB(coords(hex2RGB(C1)) * coords(hex2RGB(c2)) ))
}
```
```{r}
```