Skip to content

Latest commit

 

History

History
149 lines (120 loc) · 8.85 KB

README.md

File metadata and controls

149 lines (120 loc) · 8.85 KB

m2cgen

GitHub Actions Status Coverage Status License: MIT Python Versions PyPI Version Downloads

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code (Python, C, Java, Go, JavaScript, Visual Basic, C#, PowerShell, R, PHP, Dart, Haskell, Ruby, F#, Rust, Elixir).

Installation

Supported Python version is >= 3.7.

pip install m2cgen

Development

Make sure the following command runs successfully before submitting a PR:

make pre-pr

Alternatively you can run the Docker version of the same command:

make docker-build docker-pre-pr

Supported Languages

  • C
  • C#
  • Dart
  • F#
  • Go
  • Haskell
  • Java
  • JavaScript
  • PHP
  • PowerShell
  • Python
  • R
  • Ruby
  • Rust
  • Visual Basic (VBA-compatible)
  • Elixir

Supported Models

Classification Regression
Linear
  • scikit-learn
    • LogisticRegression
    • LogisticRegressionCV
    • PassiveAggressiveClassifier
    • Perceptron
    • RidgeClassifier
    • RidgeClassifierCV
    • SGDClassifier
  • lightning
    • AdaGradClassifier
    • CDClassifier
    • FistaClassifier
    • SAGAClassifier
    • SAGClassifier
    • SDCAClassifier
    • SGDClassifier
  • scikit-learn
    • ARDRegression
    • BayesianRidge
    • ElasticNet
    • ElasticNetCV
    • GammaRegressor
    • HuberRegressor
    • Lars
    • LarsCV
    • Lasso
    • LassoCV
    • LassoLars
    • LassoLarsCV
    • LassoLarsIC
    • LinearRegression
    • OrthogonalMatchingPursuit
    • OrthogonalMatchingPursuitCV
    • PassiveAggressiveRegressor
    • PoissonRegressor
    • RANSACRegressor(only supported regression estimators can be used as a base estimator)
    • Ridge
    • RidgeCV
    • SGDRegressor
    • TheilSenRegressor
    • TweedieRegressor
  • StatsModels
    • Generalized Least Squares (GLS)
    • Generalized Least Squares with AR Errors (GLSAR)
    • Generalized Linear Models (GLM)
    • Ordinary Least Squares (OLS)
    • [Gaussian] Process Regression Using Maximum Likelihood-based Estimation (ProcessMLE)
    • Quantile Regression (QuantReg)
    • Weighted Least Squares (WLS)
  • lightning
    • AdaGradRegressor
    • CDRegressor
    • FistaRegressor
    • SAGARegressor
    • SAGRegressor
    • SDCARegressor
    • SGDRegressor
SVM
  • scikit-learn
    • LinearSVC
    • NuSVC
    • OneClassSVM
    • SVC
  • lightning
    • KernelSVC
    • LinearSVC
  • scikit-learn
    • LinearSVR
    • NuSVR
    • SVR
  • lightning
    • LinearSVR
Tree
  • DecisionTreeClassifier
  • ExtraTreeClassifier
  • DecisionTreeRegressor
  • ExtraTreeRegressor
Random Forest
  • ExtraTreesClassifier
  • LGBMClassifier(rf booster only)
  • RandomForestClassifier
  • XGBRFClassifier
  • ExtraTreesRegressor
  • LGBMRegressor(rf booster only)
  • RandomForestRegressor
  • XGBRFRegressor
Boosting
  • LGBMClassifier(gbdt/dart/goss booster only)
  • XGBClassifier(gbtree(including boosted forests)/gblinear booster only)
    • LGBMRegressor(gbdt/dart/goss booster only)
    • XGBRegressor(gbtree(including boosted forests)/gblinear booster only)

    You can find versions of packages with which compatibility is guaranteed by CI tests here. Other versions can also be supported but they are untested.

    Classification Output

    Linear / Linear SVM / Kernel SVM

    Binary

    Scalar value; signed distance of the sample to the hyperplane for the second class.

    Multiclass

    Vector value; signed distance of the sample to the hyperplane per each class.

    Comment

    The output is consistent with the output of LinearClassifierMixin.decision_function.

    SVM

    Outlier detection

    Scalar value; signed distance of the sample to the separating hyperplane: positive for an inlier and negative for an outlier.

    Binary

    Scalar value; signed distance of the sample to the hyperplane for the second class.

    Multiclass

    Vector value; one-vs-one score for each class, shape (n_samples, n_classes * (n_classes-1) / 2).

    Comment

    The output is consistent with the output of BaseSVC.decision_function when the decision_function_shape is set to ovo.

    Tree / Random Forest / Boosting

    Binary

    Vector value; class probabilities.

    Multiclass

    Vector value; class probabilities.

    Comment

    The output is consistent with the output of the predict_proba method of DecisionTreeClassifier / ExtraTreeClassifier / ExtraTreesClassifier / RandomForestClassifier / XGBRFClassifier / XGBClassifier / LGBMClassifier.

    Usage

    Here's a simple example of how a linear model trained in Python environment can be represented in Java code:

    from sklearn.datasets import load_diabetes
    from sklearn import linear_model
    import m2cgen as m2c
    
    X, y = load_diabetes(return_X_y=True)
    
    estimator = linear_model.LinearRegression()
    estimator.fit(X, y)
    
    code = m2c.export_to_java(estimator)

    Generated Java code:

    public class Model {
        public static double score(double[] input) {
            return ((((((((((152.1334841628965) + ((input[0]) * (-10.012197817470472))) + ((input[1]) * (-239.81908936565458))) + ((input[2]) * (519.8397867901342))) + ((input[3]) * (324.39042768937657))) + ((input[4]) * (-792.1841616283054))) + ((input[5]) * (476.74583782366153))) + ((input[6]) * (101.04457032134408))) + ((input[7]) * (177.06417623225025))) + ((input[8]) * (751.2793210873945))) + ((input[9]) * (67.62538639104406));
        }
    }

    You can find more examples of generated code for different models/languages here.

    CLI

    m2cgen can be used as a CLI tool to generate code using serialized model objects (pickle protocol):

    $ m2cgen <pickle_file> --language <language> [--indent <indent>] [--function_name <function_name>]
             [--class_name <class_name>] [--module_name <module_name>] [--package_name <package_name>]
             [--namespace <namespace>] [--recursion-limit <recursion_limit>]
    

    Don't forget that for unpickling serialized model objects their classes must be defined in the top level of an importable module in the unpickling environment.

    Piping is also supported:

    $ cat <pickle_file> | m2cgen --language <language>
    

    FAQ

    Q: Generation fails with RecursionError: maximum recursion depth exceeded error.

    A: If this error occurs while generating code using an ensemble model, try to reduce the number of trained estimators within that model. Alternatively you can increase the maximum recursion depth with sys.setrecursionlimit(<new_depth>).

    Q: Generation fails with ImportError: No module named <module_name_here> error while transpiling model from a serialized model object.

    A: This error indicates that pickle protocol cannot deserialize model object. For unpickling serialized model objects, it is required that their classes must be defined in the top level of an importable module in the unpickling environment. So installation of package which provided model's class definition should solve the problem.

    Q: Generated by m2cgen code provides different results for some inputs compared to original Python model from which the code were obtained.

    A: Some models force input data to be particular type during prediction phase in their native Python libraries. Currently, m2cgen works only with float64 (double) data type. You can try to cast your input data to another type manually and check results again. Also, some small differences can happen due to specific implementation of floating-point arithmetic in a target language.