Skip to content

Latest commit

 

History

History
292 lines (242 loc) · 5.08 KB

slides.md

File metadata and controls

292 lines (242 loc) · 5.08 KB

Functional Programming?

  • Referential Transparency
  • Side effect free
  • Declarative vs Imperative
  • First class / higher order functions
  • Concurrency friendly
  • State free

A Definition

Wikipedia:

a style of building the structure and elements of computer programs, that treats computation as the evaluation of mathematical functions and avoids state and mutable data. Functional programming emphasizes functions that produce results that depend only on their inputs and not on the program state - i.e. pure mathematical functions.


Sample code

> git clone https://github.com/Bijnagte/functional-groovy-code.git
> cd functional-groovy-code/src/main/groovy
> groovysh

Immutability

  • consistent inputs
  • safe sharing
  • values not places
  • cacheable

@Immutable

Immutability the groovy way

import groovy.transform.Immutable

@Immutable(copyWith = true)
class ImmutableType {
	int integer
	String string
	List list
}

Recursion

Minimizing moving parts by eliminating mutation

sizeOfList = { list, counter = 0 ->
    if (list.size() == 0) {
        counter
    } else {
        sizeOfList(list.tail(), counter + 1)
    }
}

sizeOfList(1..100)

=> 100

sizeOfList(1..10000)

=> java.lang.StackOverflowError

Trampoline

Tail call optimization

sizeOfList = { list, counter = 0 ->
	if (list.size() == 0) {
		counter
	} else {
		sizeOfList.trampoline(list.tail(), counter + 1)
	}
}.trampoline()

sizeOfList(1..10000)

=> 10000

@TailRecursive

Groovy 2.3 + only

import groovy.transform.TailRecursive

@TailRecursive
long sizeOfList(list, counter = 0) {
	if (list.size() == 0) {
		counter
	} else {
		sizeOfList(list.tail(), counter + 1)
	}
}
sizeOfList(1..10000)

=> 10000

Closures as first class functions

Closures can be...

assigned to variables

def greet = { greeting, recipient ->  "$greeting $recipient" }
greet('hello', 'world')

=> 'hello world'

used in maps

thing = [func: {-> 'called' } ]
thing.func()

=> 'called'

passed as arguments

capitalize = { string -> string.toUpperCase() }
callWithString = { string, function -> function(string) }
callWithString('hello', capitalize)

=> 'HELLO'

callWithString('hello') { it.reverse() }

=> 'olleh'

Methods vs functions

Methods are functions with a hidden first argument 'this'

@Immutable
class Point {
    int x
    int y
    Point plus(Point other) {
        new Point(this.x + other.x, this.y + other.y)
    }
}

static Point plus(Point that, Point other) {
    new Point(that.x + other.x, that.y + other.y)
}
a = new Point(1, 2)
b = new Point(3, 4) 

plus(a, b) == a.plus(b)

Categories - static functions as methods

class PointFunctions {
	static Point minus(Point that, Point other) {
	    new Point(that.x - other.x, that.y - other.y)
	}
}
use(PointFunctions) {
	a - b	
}

=> Point(-2, -2)

Extensions - registration of Categories

Categories applied globally in the Groovy runtime

DefaultGroovyMethods

Imperative vs declarative

int addIntegers(int... integers) {
	int result = 0

	for (int i = 0; i < integers.size(); i++) {
		result += integers[i]
	}
	result
}

addIntegers(1, 2, 3) == [1, 2, 3].sum()

Functions operating on data

Alan Perlis:

It is better to have 100 functions operate on one data structure than 10 functions on 10 data structures.


Collect - groovy's map

list = [1, 2, 3, 4, 5, 6]
multiplied = list.collect { it * 2 }

=> [2, 4, 6, 8, 10, 12]

findAll - groovy's filter

list = [1, 2, 3, 4, 5, 6]
filtered = list.findAll { it % 2 == 0 }

=> [2, 4, 6]

inject - groovy's reduce

list = [1, 2, 3, 4, 5, 6]
list.inject(1) { a, b -> a * b }

=> 720

list.inject { a, b -> a * b }

=> 720

Currying

Partial application of functions

people = ['Jane', 'Dave', 'Wendy']
nth = { sequence, index -> sequence[index] }
nthPerson = nth.curry(people)
nthPerson(2)

=> 'Wendy'

second = nth.rcurry(1)
second(people)

=> 'Dave'

Function composition

Combining simple functions to build more complicated ones

reverse = { it.reverse() }
capitalize = { it.toUpperCase() }
third = { it[2] }

input = ['hello', 'there', 'people']

thirdReverse = third >> reverse
thirdReverse(input)
=> 'elpoep'

reverseThird = third << reverse
reverseThird(input)
=> 'hello'

process = third >> reverse >> capitalize
process(input)
=>'ELPOEP'

Memoization

Caching repeatable results

add = { a, b ->
    println "$a * $b = ${a * b}" 
    a * b
}

memoizedAdd = add.memoize()

@Memoized

import groovy.transform.Memoized

@Memoized
int memoizedMultiply(int a, int b) {
    println "$a * $b = ${a * b}" 
    a * b
}

Benefits

  • Ability to reason about increases
  • Testability
  • Safer concurrency
  • Code reuse
  • Performance optimizations

Questions?