diff --git a/src/blosc2/lazyexpr.py b/src/blosc2/lazyexpr.py index a51cff23..5474530b 100644 --- a/src/blosc2/lazyexpr.py +++ b/src/blosc2/lazyexpr.py @@ -1353,10 +1353,10 @@ def reduce_slices( # noqa: C901 isinstance(value, blosc2.NDArray) and value.shape != () for value in operands.values() ) # Check that there is some NDArray that is persisted in the disk - # any_persisted = any( - # (isinstance(value, blosc2.NDArray) and value.shape != () and value.schunk.urlpath is not None) - # for value in operands.values() - # ) + any_persisted = any( + (isinstance(value, blosc2.NDArray) and value.shape != () and value.schunk.urlpath is not None) + for value in operands.values() + ) iter_disk = all_ndarray and any_persisted # Experiments say that iter_disk is faster than the regular path for reductions # even when all operands are in memory, so no need to check any_persisted @@ -1420,6 +1420,16 @@ def reduce_slices( # noqa: C901 smaller_slice = compute_smaller_slice(operand.shape, value.shape, slice_) chunk_operands[key] = value[smaller_slice] continue + if isinstance(value, blosc2.NDArray): + # Check if partitions are aligned and behaved + aligned = blosc2.are_partitions_aligned(shape, chunks, operand.blocks) + behaved = blosc2.are_partitions_behaved(shape, chunks, operand.blocks) + if aligned and behaved: + # Decompress the whole chunk + buff = value.schunk.decompress_chunk(nchunk) + bsize = value.dtype.itemsize * math.prod(chunks_) + chunk_operands[key] = np.frombuffer(buff[:bsize], dtype=value.dtype).reshape(chunks_) + continue chunk_operands[key] = value[slice_] # Evaluate and reduce the expression using chunks of operands