-
Notifications
You must be signed in to change notification settings - Fork 0
/
BoXHED.py
403 lines (376 loc) · 19.3 KB
/
BoXHED.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: BoXHED
"""
import numpy as np
import scipy as sp
import regionTree as rt
#import time
def mergeSorted(a,b):
absort = np.concatenate((a,b), axis=0)
return(np.sort(absort))
def prepData(traj, tpart):
#Fill forward in time
#Add mid point between last interp point and traj End
lastPt = traj[-1,:]
penultPt = traj[-2,:]
newTraj = traj[0:-1,:]
midPtTime = (lastPt[0]+penultPt[0])/2
midPt = np.copy(lastPt)
midPt[0] = midPtTime
traj = np.concatenate((newTraj, midPt.reshape((1,midPt.size)), lastPt.reshape((1, lastPt.size))))
#END Fix for VK and UK on 29 NOV 2017
import bisect
trajEnd = traj[-1,:]
timeCol = traj[:,0]
tpart = mergeSorted(timeCol, np.array(tpart))
tpart = tpart[tpart <= timeCol[-1]]
tpart = tpart[tpart >= timeCol[0]]
interp = np.zeros((len(tpart),traj.shape[1]))
interp[:,0] = tpart
for t in timeCol:
partIdx = bisect.bisect_left(tpart, t)
idxRow = np.where(timeCol == t)[0][0]
trajRow = traj[idxRow,1:traj.shape[1]]
numRepeats = (len(tpart) - partIdx)
interp[partIdx:interp.shape[0],1:interp.shape[1]] = np.repeat(np.array([trajRow]),numRepeats, axis=0)
interp = interp[np.unique(interp[:,0], return_index=True)[1]]#Remove duplicates
dt = np.diff(interp[:,0])
dt = dt.reshape((dt.size,1))
interp = interp[0:-1,:]
#interp = np.hstack((interp,dt))
return (interp, dt, trajEnd)
def getData(lotraj, tpart):
#TODO - Optimize list size
trajEndPoint = np.zeros((len(lotraj), lotraj[0].shape[1]))
#mergedData = np.array([])
#mergedDT = np.array([])
i = 0
traj = lotraj[i]
interp, dt, trajEnd = prepData(traj, tpart)
#Fix for VK > 0 UK == 0 on 29 NOV 2017
#Add mid point between last interp point and traj End
#With value at Traj End
#Take last DT split in half and double -
#This is now to modify the mergedDT - but does not affect TPart
#lastdt = interp[-1]
#dttemp = dt[0:-1]
#dt = np.concatenate((dttemp, np.array(dt[-1]/2).reshape((1,1)),np.array(dt[-1]/2).reshape((1,1))), axis = 0)
#midTrajEnd = np.copy(trajEnd)
#midTrajEnd[0] = (lastdt[0] + trajEnd[0])/2
#interp=np.concatenate((interp, midTrajEnd.reshape((1, midTrajEnd.size))))
#END Fix for VK and UK on 29 NOV 2017
trajEndPoint[i,:] = trajEnd
mergedData = interp
mergedDT = dt
for i in range(1, len(lotraj)):
traj = lotraj[i]
interp, dt, trajEnd = prepData(traj, tpart)
trajEndPoint[i,:] = trajEnd
mergedData = np.vstack((mergedData,interp))
mergedDT = np.vstack((mergedDT, dt))
return (trajEndPoint, mergedData, mergedDT)
def getTimePartition(lotraj, numtimepartitions):
mergedTimeCol = np.array([])
for traj in lotraj:
mergedTimeCol = np.append(mergedTimeCol, traj[:,0])
percentiles = np.linspace(0, 100, numtimepartitions+1)#[10,20,30,40,50,60,70,80,90]
splitPoints = np.unique(np.percentile(mergedTimeCol, percentiles) )
return splitPoints[1:-1]#Remove Time 0 and Max Time
def getVarPartitions(trajEndPoints, mergedData, numvarpartitions, cat):
nCols = mergedData.shape[1]
percentiles = np.linspace(0, 100, numvarpartitions+1)#[10,20,30,40,50,60,70,80,90]
percentiles = percentiles[1:]
splits = []
for n in range(1, nCols): #Not considering Time
colData = np.append(mergedData[:,n], trajEndPoints[:,n])
if((cat is not None) and (n in cat)):
splits.append(np.unique(colData))
else:
splits.append(np.percentile(colData, percentiles))
return splits
def buildTree(trajEndPoints, mergedData, mergedDT, runningF, tpart, globalSplits, perNode, delta, maxsplits, cat, varImp):
numSplits = 0
tree = rt.regionTree()
trajEndPointsIDX = np.arange(0, trajEndPoints.shape[0])
mergedDataIDX = np.arange(0, mergedData.shape[0])
tree.setObs(trajEndPointsIDX, mergedDataIDX) #If we do row subsampling this will change
rootVK = np.sum(delta) #If we do row subsampling this will change
rootUK = np.inner(np.exp(runningF), mergedDT.flatten())
rootScore = 0
tree.root.setScore(rootUK, rootVK, rootScore)#Need to put actual uk, vk, score
tree.root.setGamma(None)
while(numSplits < maxsplits):
#print numSplits
numUncheckedNodes = tree.getNumUncheckedNodes()
for n in range(0, numUncheckedNodes):
node = tree.removeUncheckedNode()
splitCand = findBestSplit(node, node.getObs(), trajEndPoints, mergedData, mergedDT,runningF, tpart, delta, cat, globalSplits = globalSplits, perNode=perNode)
# splitCand = None if no good split point OR
#(col, splitPoint, score, np.log(lUK/lVK), np.log(rUK/rVK),
# childLTrajIDX, childRTrajIDX, childLMergedIDX, childRMergedIDX, cat) #True if col is categorical, #False otherwise
node.setSplitCand(splitCand)
bestLeafNodeIdx = None
bestLeafScore = 0
#Go through all leaf nodes, make sure at least one leaf has
#node.score < 0
for n in range(0, len(tree.leafs)):
currNode = tree.leafs[n]
if(currNode.score < bestLeafScore):
bestLeafScore = currNode.score
bestLeafNodeIdx = n
if(bestLeafNodeIdx != None):
splitNode, splitVar, splitScore = tree.splitLeafNode(bestLeafNodeIdx)
varImp[splitVar] -= splitScore
numSplits += 1
splitNode.deleteNode() #TODO : Make sure this really sets reference count to 0
del splitNode
else:
break
tree.cleanTree()
return (tree, varImp)
def findBestSplit(parentNode, tupleOfObs, trajEndPoints, mergedData, mergedDT, runningF, tpart, delta, cat, globalSplits = None, perNode=True):
nodeTrajEndPointIDX, nodeMergedIDX = tupleOfObs
numCols = mergedData.shape[1]
if(not(perNode)):
splits = globalSplits
#splits = getVarPartitions(trajEndPoints, mergedData)
else:
splits = getVarPartitions(trajEndPoints[nodeTrajEndPointIDX,:], mergedData[nodeMergedIDX,:], numvarpartitions, cat)##BUGGY - NEED TO UPDATE
splitCandidate = None
splitCandScore = 0
for col in range(0, numCols):
#loop through each column/variable
#Find Splits IN variable
if(col == 0):
curSplit = tpart
else:
curSplit = splits[col - 1]
for splitPoint in curSplit:
if((cat is not None) and (col in cat)):
#Ideally - Binary or Categorical
#likely - just categorical
lTrajIDX = np.where(trajEndPoints[:,col] == splitPoint)[0]
rTrajIDX = np.setdiff1d(np.arange(0, trajEndPoints.shape[0]), lTrajIDX)
childLTrajIDX = np.intersect1d(nodeTrajEndPointIDX, lTrajIDX, assume_unique=True)
childRTrajIDX = np.intersect1d(nodeTrajEndPointIDX, rTrajIDX, assume_unique=True)
lMergedDataIDX = np.where(mergedData[:,col] == splitPoint)[0]
rMergedDataIDX = np.setdiff1d(np.arange(0, mergedData.shape[0]), lMergedDataIDX)
childLMergedIDX = np.intersect1d(nodeMergedIDX, lMergedDataIDX, assume_unique=True)
childRMergedIDX = np.intersect1d(nodeMergedIDX, rMergedDataIDX, assume_unique=True)
else:
#CONTINUOUS VARIABLES
#loop through the partitions
lTrajIDX = np.where(trajEndPoints[:,col] <= splitPoint)[0]
rTrajIDX = np.setdiff1d(np.arange(0, trajEndPoints.shape[0]), lTrajIDX)
childLTrajIDX = np.intersect1d(nodeTrajEndPointIDX, lTrajIDX, assume_unique=True)
childRTrajIDX = np.intersect1d(nodeTrajEndPointIDX, rTrajIDX, assume_unique=True)
#Because trajectory is left continuous, integration
#uses the first to penultimate time-covariate points
#and sum-products them with dt over the time interval.
#Therefore we are strictly < in this, despite tree being built <=
#By construction. so <= for traj end points, < for all intermediate points
#Update 19 July 2017: This logic is only applies to time dimension
if(col == 0):
lMergedDataIDX = np.where(mergedData[:,col] < splitPoint)[0]
else:
lMergedDataIDX = np.where(mergedData[:,col] <= splitPoint)[0]
rMergedDataIDX = np.setdiff1d(np.arange(0, mergedData.shape[0]), lMergedDataIDX)
childLMergedIDX = np.intersect1d(nodeMergedIDX, lMergedDataIDX, assume_unique=True)
childRMergedIDX = np.intersect1d(nodeMergedIDX, rMergedDataIDX, assume_unique=True)
#Now Calculate UK and VK for each child
pUK, pVK, pScore = parentNode.getScore()
if(pVK == 1):
break
lVK = int(np.sum(delta[childLTrajIDX]))
rVK = pVK - lVK#np.sum(DELTA[childRTrajIDX])
if(rVK <= 0):
break #Since movingfromleft to right, if rVK is 0, it will
#Continue to be 0 with further split points to the right
#Because the left region is only getting bigger
elif(lVK > 0):
lUK = runningF[childLMergedIDX]#calcF(LOTREES, mergedData, childLMergedIDX)
lUK = np.inner(np.exp(lUK), mergedDT[childLMergedIDX].flatten())
rUK = pUK-lUK#np.inner(np.exp(rUK), mergedDT[childRMergedIDX].flatten())
#calc SplitScore
#FIX 11/30/2017
if((lUK == 0) or (rUK == 0)):
break
#End Fix 11/30/2017
score = lVK*(1 + np.log(lUK/lVK)) + rVK*(1 + np.log(rUK/rVK)) - pVK*(1 + np.log(pUK/pVK) )
if(score < splitCandScore):
splitCandScore = score
splitCandidate = (col, splitPoint, score, np.log(lUK/lVK), np.log(rUK/rVK),
childLTrajIDX, childRTrajIDX, childLMergedIDX, childRMergedIDX,
lUK, rUK, lVK, rVK, ((cat is not None) and (col in cat))) #SplitVar, SplitVal, SplitScore
return splitCandidate
class boostedTrees():
def __init__(self, LOTREES, F0, MAXSPLITS, NUMTIMEPARTITIONS, NUMVARPARTITIONS, SHRINK, NTREES, varImp):
self.lotrees = LOTREES
self.F0 = F0
self.maxsplits = MAXSPLITS
self.numtrees = NTREES
self.shrink = SHRINK
self.numtimepartitions = NUMTIMEPARTITIONS
self.numvarpartitions = NUMVARPARTITIONS
self.varImp = varImp
def dataPrep(delta, lotraj, numtimepartitions, numvarpartitions, cat):
TOTALTIME = 0.0
for traj in lotraj:
TOTALTIME += traj[-1,0] - traj[0,0]
tpart = getTimePartition(lotraj, numtimepartitions)
F0 = np.log(np.sum(delta)/TOTALTIME)
#start = time.time()
trajEndPoints, mergedData, mergedDT = getData(lotraj, tpart)
#end = time.time()
#print end - start
globalSplits = getVarPartitions(trajEndPoints, mergedData, numvarpartitions, cat)
return (trajEndPoints, mergedData, mergedDT, F0, tpart, globalSplits)
def treeEnsemble(delta, F0, trajEndPoints, mergedData, mergedDT, tpart, globalSplits, cat, maxsplits=2, numtrees=100, numtimepartitions=20, numvarpartitions=20, shrink=0.1, GlobalPartition = True, verbose=0):
varImp = {}
for i in range(0, trajEndPoints.shape[1]):
varImp[i] = 0
perNode = not(GlobalPartition)
lotrees = []
runningF = F0*np.ones(mergedData.shape[0])
runningF_endpoint = F0*np.ones(trajEndPoints.shape[0])
while(len(lotrees) < numtrees):
newTree, varImp = buildTree(trajEndPoints, mergedData, mergedDT, runningF, tpart, globalSplits, perNode, delta, maxsplits, cat, varImp)
if(len(newTree.leafs) == 1):
#Only a root node
#it means no splits help any more
#which means no new trees help
#Only true if not subsampling rows
#Tree should never split nodes if likelihood increases***
break
else:
lotrees.append(newTree)
values = newTree.getIntegrationValues(mergedData)
endValues = newTree.getPredictedValues(trajEndPoints)
runningF = runningF - shrink*values
runningF_endpoint = runningF_endpoint - shrink*endValues
estimator = boostedTrees(lotrees, F0, maxsplits, numtimepartitions, numvarpartitions, shrink, len(lotrees), varImp)
return estimator
def BoXHED(delta, lotraj, maxsplits=2, numtrees=100, numtimepartitions=10, numvarpartitions=10, shrink=0.1, GlobalPartition = True, verbose=0, cat=None):
trajEndPoints, mergedData, mergedDT, F0, tpart, globalSplits = dataPrep(delta, lotraj, numtimepartitions, numvarpartitions, cat)
return treeEnsemble(delta, F0, trajEndPoints, mergedData, mergedDT, tpart, globalSplits, cat, maxsplits, numtrees, numtimepartitions, numvarpartitions, shrink, GlobalPartition, verbose)
def predict(estimator, newdata, ntreelimit = np.Inf):
predF = estimator.F0*np.ones(newdata.shape[0])
if(ntreelimit > estimator.numtrees):
ntreelimit = estimator.numtrees
for tridx in range(0, ntreelimit):
tr = estimator.lotrees[tridx]
Fvalues = tr.getPredictedValues(newdata)
predF = predF - estimator.shrink*Fvalues
return predF
def logLik(estimator, delta, trajEndPoints, mergedData, mergedDT, candidatenumtrees, ntreelimit = np.Inf):
predF = estimator.F0*np.ones(mergedData.shape[0])
predF_endpoint = estimator.F0*np.ones(trajEndPoints.shape[0])
logLiks = np.zeros(len(candidatenumtrees))
if(ntreelimit > estimator.numtrees):
ntreelimit = estimator.numtrees
if(0 in candidatenumtrees):
logLiks[candidatenumtrees.index(0)] = (np.inner(np.exp(predF), mergedDT.flatten()) - np.inner(predF_endpoint, delta))
for tridx in range(0, ntreelimit):
tr = estimator.lotrees[tridx]
values = tr.getIntegrationValues(mergedData)
endvalues = tr.getPredictedValues(trajEndPoints)
predF = predF - estimator.shrink*values
predF_endpoint = predF_endpoint - estimator.shrink*endvalues
if((tridx+1) in candidatenumtrees):
logLiks[candidatenumtrees.index(tridx+1)] = (np.inner(np.exp(predF), mergedDT.flatten()) - np.inner(predF_endpoint, delta))
return logLiks
#PLOT MIGHT BREAK IN Categorical
def plot(estimator, varIndices, var1range, var2range, ntreelimit = np.Inf, plotPoints=500, clip=False, clipValue = None):
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
if(len(varIndices) > 2):
#Throw Error
print('Plot Error: varIndices length exceeds 2')
return #for now just return
var1 = np.linspace(var1range[0],var1range[1],plotPoints)
var2 = np.linspace(var2range[0],var2range[1],plotPoints)
var1v, var2v = np.meshgrid(var1,var2)
newdata = np.hstack((var1v.reshape((var1v.size,1)), var2v.reshape((var2v.size, 1))))
predF = predict(estimator, newdata, ntreelimit)
predLambda = np.exp(predF).reshape(var1v.shape)
if(clip):
predClipped = np.clip(predLambda, 0, clipValue)
else:
predClipped = predLambda
fig = plt.figure()
ax= fig.gca(projection='3d')
surf = ax.plot_wireframe(var1v, var2v, predClipped, rstride=1, cstride=1)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Hazard')
plt.show()
return surf
def plotData(estimator, newdata, var1, var2, ntreelimit = np.Inf, rstride = 10, cstride = 10, clip=False, clipValue = None):
import matplotlib.pyplot as plt
#from mpl_toolkits.mplot3d import Axes3D
#from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
predF = predict(estimator, newdata, ntreelimit)
predLambda = np.exp(predF).reshape(var1.shape)
if(clip):
predClipped = np.clip(predLambda, 0, clipValue)
else:
predClipped = predLambda
fig = plt.figure()
ax= fig.gca(projection='3d')
#surf = ax.plot_wireframe(var1v, var2v, predClipped, rstride=rstride, cstride=cstride)
surf = ax.plot_wireframe(newdata[:, var1], newdata[:, var2], predClipped, rstride=rstride, cstride=cstride)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Hazard')
plt.show()
return surf
def cv(delta, lotraj, nfolds = 5, maxsplits=[2,3,4], numtrees=[10,50,100,200], numtimepartitions=50, numvarpartitions=50, shrink=0.1, GlobalPartition = True, verbose=0, cat = None):
maxTrees = np.max(numtrees)
from sklearn.model_selection import StratifiedKFold
skf = StratifiedKFold(n_splits=nfolds)
X = np.array(lotraj)
#create 5 folds
trainIdxFolds = []
testIdxFolds = []
for train_index, test_index in skf.split(X, delta):
trainIdxFolds.append(train_index)
testIdxFolds.append(test_index)
logLiksTable = np.zeros((len(maxsplits),len(numtrees)))
for f in range(0, nfolds):
#For each fold
#For Future - If Cross-validation num time partitions
#and num var partitions - the first two loops would have to be out here
trainData = dataPrep(delta[trainIdxFolds[f]], X[trainIdxFolds[f]], numtimepartitions, numvarpartitions, cat)
testData = dataPrep(delta[testIdxFolds[f]], X[testIdxFolds[f]], numtimepartitions, numvarpartitions, cat)
#trainData = (trajEndPoints, mergedData, mergedDT, F0, tpart, globalSplits)
#grid search params
#Call treeEnsemble
#Fit estimator
#Check likelihood
for split in maxsplits:
estimator = treeEnsemble(delta[trainIdxFolds[f]], trainData[3], trainData[0], trainData[1],trainData[2], trainData[4], trainData[5], cat, split, maxTrees, numtimepartitions, numvarpartitions, shrink, GlobalPartition, verbose)
logLiksTable[maxsplits.index(split),:] += logLik(estimator, delta[testIdxFolds[f]], testData[0], testData[1], testData[2], numtrees, ntreelimit = maxTrees)
logLiksTable = logLiksTable/float(nfolds)
return(logLiksTable)
#Return params that minimize likelihood
#Also return the best fit estimator - CHECK THIS FOR MEMORY ISSUES
#IF TOO MUCH MEMORY - SIMPLY RETURN THE PARAMETERS THAT RESULTED IN BEST
def variableImportance(estimator, colnames=None):
#Colnames is either None, or an np.array of column names (including "time")
varImp = estimator.varImp
varImp = {k: v/max(varImp.values()) for k,v in varImp.items()}
#This normalizes varImp
orderedVars = sorted(varImp, key=lambda k: varImp[k], reverse = True)
orderedVals = [varImp[k] for k in orderedVars]
if(colnames is not None):
varNames = colnames[orderedVars]
else:
varNames = orderedVars
return{'varIndex':varNames, 'Importance':orderedVals}