-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathbamPlot_turbo.py
executable file
·685 lines (545 loc) · 26.3 KB
/
bamPlot_turbo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
#!/usr/bin/env python
# bamPlot.py
'''
The MIT License (MIT)
Copyright (c) 2013 Charles Lin
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
'''
#==========================================================================
#=======================DEPENDENCIES=======================================
#==========================================================================
import argparse
import cPickle
import sys
import utils
import pipeline_dfci
import subprocess
import os
import string
import tempfile
import zlib
from distutils.spawn import find_executable
# Try to use the bamliquidatior script on cluster, otherwise, failover to local default, otherwise fail.
bamliquidatorString = '/ark/home/cl512/pipeline/bamliquidator'
if not os.path.isfile(bamliquidatorString):
bamliquidatorString = find_executable('bamliquidator')
if bamliquidatorString is None:
raise ValueError('bamliquidator not found in path')
# as of now the number of bins to sample the space is hard wired
nBins = 200
# Get the script's full local path
whereAmI = os.path.dirname(os.path.realpath(__file__))
# script that takes in a list of bams, makes an intermediate table file, and then calls R to make the plot
# updated for batching with bamliquidator magic
#==========================================================================
#======================HELPER FUNCTIONS====================================
#==========================================================================
def loadAnnotFile(genome, skip_cache=False):
"""
load in the annotation and create a geneDict and transcription collection
"""
genomeDict = {
'HG18': 'annotation/hg18_refseq.ucsc',
'MM9': 'annotation/mm9_refseq.ucsc',
'MM10': 'annotation/mm10_refseq.ucsc',
'hg18': 'annotation/hg18_refseq.ucsc',
'mm9': 'annotation/mm9_refseq.ucsc',
'HG19': 'annotation/hg19_refseq.ucsc',
'hg19': 'annotation/hg19_refseq.ucsc',
'hg19_ribo': 'annotation/hg19_refseq.ucsc',
'HG19_RIBO': 'annotation/hg19_refseq.ucsc',
'rn4': 'annotation/rn4_refseq.ucsc',
'RN4': 'annotation/rn4_refseq.ucsc',
}
annotFile = whereAmI + '/' + genomeDict[genome]
if not skip_cache:
# Try loading from a cache, if the crc32 matches
annotPathHash = zlib.crc32(annotFile) & 0xFFFFFFFF # hash the entire location of this script
annotFileHash = zlib.crc32(open(annotFile, "rb").read()) & 0xFFFFFFFF
cache_file_name = "%s.%s.%s.cache" % (genome, annotPathHash, annotFileHash)
cache_file_path = '%s/%s' % (tempfile.gettempdir(), cache_file_name)
if os.path.isfile(cache_file_path):
# Cache exists! Load it!
try:
print('\tLoading genome data from cache.')
with open(cache_file_path, 'rb') as cache_fh:
cached_data = cPickle.load(cache_fh)
print('\tCache loaded.')
return cached_data
except (IOError, cPickle.UnpicklingError):
# Pickle corrupt? Let's get rid of it.
print('\tWARNING: Cache corrupt or unreadable. Ignoring.')
else:
print('\tNo cache exists: Loading annotation (slow).')
# We're still here, so either caching was disabled, or the cache doesn't exist
# geneList =['NM_002460','NM_020185']
geneList = []
geneDict = utils.makeGenes(annotFile, geneList, True)
txCollection = utils.makeTranscriptCollection(annotFile, 0, 0, 500, geneList)
if not skip_cache:
print('Writing cache for the first time.')
with open(cache_file_path, 'wb') as cache_fh:
cPickle.dump((geneDict, txCollection), cache_fh, cPickle.HIGHEST_PROTOCOL)
return geneDict, txCollection
def tasteTheRainbow(n):
'''
samples rainbow color space
'''
from colorsys import hsv_to_rgb
colorList = []
nRange = [x / float(n) for x in range(0, n)]
for i in nRange:
color = [int(255 * x) for x in list(hsv_to_rgb(i, .9, .9))]
colorList.append(color)
return colorList
def mapGFFLineToAnnot(gffLine, outFolder, nBins, geneDict, txCollection, sense='both', header=''):
'''
for every line produces a file with all of the rectangles to draw
'''
if len(header) == 0:
gffString = '%s_%s_%s_%s' % (gffLine[0], gffLine[6], gffLine[3], gffLine[4])
else:
gffString = header
diagramTable = [[0, 0, 0, 0]]
nameTable = [['', 0, 0]]
gffLocus = utils.Locus(gffLine[0], int(gffLine[3]), int(gffLine[4]), gffLine[6], gffLine[1])
scaleFactor = float(nBins) / gffLocus.len()
# plotting buffer for diagrams
plotBuffer = int(gffLocus.len() / float(nBins) * 20)
overlapLoci = txCollection.getOverlap(gffLocus, sense='both')
geneList = [locus.ID() for locus in overlapLoci]
if gffLine[6] == '-':
refPoint = int(gffLine[4])
else:
refPoint = int(gffLine[3])
offsetCollection = utils.LocusCollection([], 500)
for geneID in geneList:
gene = geneDict[geneID]
print(gene.commonName())
if len(gene.commonName()) > 1:
name = gene.commonName()
else:
name = geneID
offset = 4 * len(offsetCollection.getOverlap(gene.txLocus()))
offsetCollection.append(utils.makeSearchLocus(gene.txLocus(), plotBuffer, plotBuffer))
# write the name of the gene down
if gene.sense() == '+':
geneStart = gene.txLocus().start()
else:
geneStart = gene.txLocus().end()
geneStart = abs(geneStart - refPoint) * scaleFactor
nameTable.append([name, geneStart, -2 - offset])
# draw a line across the entire txLocus
[start, stop] = [abs(x - refPoint) * scaleFactor for x in gene.txLocus().coords()]
diagramTable.append([start, -0.01 - offset, stop, 0.01 - offset])
# now draw thin boxes for all txExons
if len(gene.txExons()) > 0:
for txExon in gene.txExons():
[start, stop] = [abs(x - refPoint) * scaleFactor for x in txExon.coords()]
diagramTable.append([start, -0.5 - offset, stop, 0.5 - offset])
# now draw fatty boxes for the coding exons if any
if len(gene.cdExons()) > 0:
for cdExon in gene.cdExons():
[start, stop] = [abs(x - refPoint) * scaleFactor for x in cdExon.coords()]
diagramTable.append([start, -1 - offset, stop, 1 - offset])
utils.unParseTable(diagramTable, outFolder + gffString + '_diagramTemp.txt', '\t')
utils.unParseTable(nameTable, outFolder + gffString + '_nameTemp.txt', '\t')
def makeBedCollection(bedFileList):
'''
takes in a list of bedFiles and makes a single huge collection
each locus has as its ID the name of the bed file
'''
bedLoci = []
print("MAKING BED COLLECTION FOR:")
for bedFile in bedFileList:
bedName = bedFile.split('/')[-1].split('.')[0]
print(bedName)
bed = utils.parseTable(bedFile, '\t')
for line in bed:
if len(line) >= 3:
#check that line[0]
if line[0][0:3] == 'chr':
try:
coords = [int(line[1]),int(line[2])]
bedLocus = utils.Locus(line[0], min(coords), max(coords), '.', bedName)
bedLoci.append(bedLocus)
except ValueError:
pass
print("IDENTIFIED %s BED REGIONS" % (len(bedLoci)))
return utils.LocusCollection(bedLoci, 50)
def mapGFFLineToBed(gffLine, outFolder, nBins, bedCollection, header=''):
'''
for every line produces a file with all of the rectangles to draw
'''
if len(header) == 0:
gffString = '%s_%s_%s_%s' % (gffLine[0], gffLine[6], gffLine[3], gffLine[4])
else:
gffString = header
diagramTable = [[0, 0, 0, 0]]
nameTable = [['', 0, 0]]
gffLocus = utils.Locus(gffLine[0], int(gffLine[3]), int(gffLine[4]), gffLine[6], gffLine[1])
scaleFactor = float(nBins) / gffLocus.len()
# plotting buffer for diagrams
# plotBuffer = int(gffLocus.len() / float(nBins) * 20) # UNUSED (?)
overlapLoci = bedCollection.getOverlap(gffLocus, sense='both')
print("IDENTIFIED %s OVERLAPPING BED LOCI FOR REGION %s" % (len(overlapLoci),gffLine))
# since beds come from multiple sources, we want to figure out how to offset them
offsetDict = {} # this will store each ID name
bedNamesList = utils.uniquify([locus.ID() for locus in overlapLoci])
bedNamesList.sort()
for i in range(len(bedNamesList)):
offsetDict[bedNamesList[i]] = 2 * i # offsets different categories of bed regions
if gffLine[6] == '-':
refPoint = int(gffLine[4])
else:
refPoint = int(gffLine[3])
# fill out the name table
for name in bedNamesList:
offset = offsetDict[name]
nameTable.append([name, 0, 0.0 - offset])
for bedLocus in overlapLoci:
offset = offsetDict[bedLocus.ID()]
[start, stop] = [abs(x - refPoint) * scaleFactor for x in bedLocus.coords()]
diagramTable.append([start, -0.5 - offset, stop, 0.5 - offset])
utils.unParseTable(diagramTable, outFolder + gffString + '_bedDiagramTemp.txt', '\t')
utils.unParseTable(nameTable, outFolder + gffString + '_bedNameTemp.txt', '\t')
def mapBamToGFFLine(bamFile, MMR, name, gffLine, color, nBins, sense='both', extension=200):
'''maps reads from a bam to a gff'''
print('using a MMR/scaling denominator value of %s' % (MMR))
line = gffLine[0:9]
gffLocus = utils.Locus(line[0], int(line[3]), int(line[4]), line[6], line[1])
# setting up the output clusterline
colorLine = color
bamName = bamFile.split('/')[-1]
clusterLine = [bamName, gffLocus.ID(), name, gffLocus.__str__()] + colorLine
binSize = gffLocus.len() / nBins
# some regions will be too short to get info on
# we just kick these back and abandon them
if binSize == 0:
clusterLine += ['NA'] * int(nBins)
return clusterLine
# flippy flip if sense is negative
senseTrans = string.maketrans('-+.', '+-+')
if sense == '-':
bamSense = string.translate(gffLocus.sense(), senseTrans)
elif sense == '+':
bamSense = gffLocus.sense()
else:
bamSense = '.'
# using the bamLiquidator to get the readstring
# print('using nBin of %s' % nBin)
bamCommand = "%s %s %s %s %s %s %s %s" % (bamliquidatorString, bamFile, gffLocus.chr(), gffLocus.start(), gffLocus.end(), bamSense, nBins, extension)
# print(bamCommand)
getReads = subprocess.Popen(bamCommand, stdin=subprocess.PIPE, stderr=subprocess.PIPE, stdout=subprocess.PIPE, shell=True)
readString = getReads.communicate()
denList = readString[0].split('\n')[:-1]
# flip the denList if the actual gff region is -
if gffLocus.sense() == '-':
denList = denList[::-1]
# converting from units of total bp of read sequence per bin to rpm/bp
denList = [round(float(x) / binSize / MMR, 4) for x in denList]
clusterLine += denList
return clusterLine
def callRPlot(summaryFile, outFile, yScale, plotStyle,multi):
'''
calls the R plotting thingy
'''
if multi == True:
pageFlag = 'MULTIPLE_PAGE'
else:
pageFlag = 'SINGLE_PAGE'
cmd = 'R --no-save %s %s %s %s %s < %s/bamPlot_turbo.R' % (summaryFile, outFile, yScale, plotStyle, pageFlag,whereAmI)
print('calling command %s' % (cmd))
return cmd
def makeBamPlotTables(gff, genome, bamFileList, colorList, nBins, sense, extension, rpm, outFolder, names, title, bedCollection,scale=''):
'''
makes a plot table for each line of the gff mapped against all the bams in the bamList
'''
# load in the gff
if type(gff) == str:
gff = utils.parseTable(gff, '\t')
# load in the annotation
print('loading in annotation for %s' % (genome))
geneDict, txCollection = loadAnnotFile(genome)
# make an MMR dict so MMRs are only computed once
print('Getting information about read depth in bams')
mmrDict = {}
if len(scale) >0:
print("Applying scaling factors")
scaleList = [float(x) for x in scale.split(',')]
else:
scaleList = [1]*len(bamFileList)
#now iterate through the bam files
for i,bamFile in enumerate(bamFileList):
# millionMappedReads
idxCmd = 'samtools idxstats %s' % (bamFile)
idxPipe = subprocess.Popen(idxCmd, stdin=subprocess.PIPE, stderr=subprocess.PIPE, stdout=subprocess.PIPE, shell=True)
idxStats = idxPipe.communicate()
idxStats = idxStats[0].split('\n')
idxStats = [line.split('\t') for line in idxStats]
rawCount = sum([int(line[2]) for line in idxStats[:-1]])
#implement scaling
readScaleFactor = scaleList[i]
if rpm:
MMR = round(float(rawCount) / 1000000 / readScaleFactor, 4)
else:
MMR = round(1/float(readScaleFactor),4)
mmrDict[bamFile] = MMR
ticker = 1
# go line by line in the gff
summaryTable = [['DIAGRAM_TABLE', 'NAME_TABLE', 'BED_DIAGRAM_TABLE', 'BED_NAME_TABLE', 'PLOT_TABLE', 'CHROM', 'ID', 'SENSE', 'START', 'END']]
for gffLine in gff:
gffString = 'line_%s_%s_%s_%s_%s_%s' % (ticker, gffLine[0], gffLine[1], gffLine[6], gffLine[3], gffLine[4])
ticker += 1
print('writing the gene diagram table for region %s' % (gffLine[1]))
mapGFFLineToAnnot(gffLine, outFolder, nBins, geneDict, txCollection, sense='both', header=gffString)
mapGFFLineToBed(gffLine, outFolder, nBins, bedCollection, header=gffString)
outTable = []
outTable.append(['BAM', 'GENE_ID', 'NAME', 'LOCUSLINE', 'COLOR1', 'COLOR2', 'COLOR3'] + ['bin_' + str(n) for n in range(1, int(nBins) + 1, 1)])
for i in range(0, len(bamFileList), 1):
bamFile = bamFileList[i]
name = names[i]
color = colorList[i]
print('getting data for location %s in dataset %s' % (gffLine[1], bamFile))
mmr = mmrDict[bamFile]
newLine = mapBamToGFFLine(bamFile, mmr, name, gffLine, color, nBins, sense, extension)
outTable.append(newLine)
# get the gene name
if geneDict.has_key(gffLine[1]):
geneName = geneDict[gffLine[1]].commonName()
else:
geneName = gffLine[1]
utils.unParseTable(outTable, outFolder + gffString + '_plotTemp.txt', '\t')
diagramTable = outFolder + gffString + '_diagramTemp.txt'
plotTable = outFolder + gffString + '_plotTemp.txt'
nameTable = outFolder + gffString + '_nameTemp.txt'
bedNameTable = outFolder + gffString + '_bedNameTemp.txt'
bedDiagramTable = outFolder + gffString + '_bedDiagramTemp.txt'
summaryTable.append([diagramTable, nameTable, bedDiagramTable, bedNameTable, plotTable, gffLine[0], geneName, gffLine[6], gffLine[3], gffLine[4]])
summaryTableFileName = "%s%s_summary.txt" % (outFolder, title)
utils.unParseTable(summaryTable, summaryTableFileName, '\t')
return summaryTableFileName
def main():
"""
main run function
"""
#usage = "usage: %prog [options] -g [GENOME] -b [SORTED BAMFILE(S)] -i [INPUTFILE] -o [OUTPUTFOLDER]"
parser = argparse.ArgumentParser(usage='%(prog)s [options]')
# required flags
parser.add_argument("-b", "--bam", dest="bam", nargs='*',
help="Enter a comma separated list of .bam files to be processed.", required=True)
parser.add_argument("-i", "--input", dest="input", type=str,
help="Enter .gff or genomic region e.g. chr1:+:1-1000.", required=True)
parser.add_argument("-g", "--genome", dest="genome", type=str,
help="specify a genome, HG18,HG19,MM8,MM9,MM10 are currently supported", required=True)
# output flag
parser.add_argument("-o", "--output", dest="output", type=str,
help="Enter the output folder.", required=True)
# additional options
parser.add_argument("--stretch-input", dest="stretch_input", default=None, type=int,
help="Stretch the input regions to a minimum length in bp, e.g. 10000 (for 10kb)")
parser.add_argument("-c", "--color", dest="color", default=None,
help="Enter a colon separated list of colors e.g. 255,0,0:255,125,0, default samples the rainbow")
parser.add_argument("-s", "--sense", dest="sense", default='both',
help="Map to '+','-' or 'both' strands. Default maps to both.")
parser.add_argument("-e", "--extension", dest="extension", default=200,
help="Extends reads by n bp. Default value is 200bp")
parser.add_argument("-r", "--rpm", dest="rpm", action='store_true', default=False,
help="Normalizes density to reads per million (rpm) Default is False")
parser.add_argument("-y", "--yScale", dest="yScale", default="relative",
help="Choose either relative or uniform y axis scaling. options = 'relative,uniform' Default is relative scaling")
parser.add_argument("-n", "--names", dest="names", default=None,
help="Enter a comma separated list of names for your bams")
parser.add_argument("-p", "--plot", dest="plot", default="MULTIPLE",
help="Choose either all lines on a single plot or multiple plots. options = 'SINGLE,MULTIPLE,MERGE'")
parser.add_argument("-t", "--title", dest="title", default='',
help="Specify a title for the output plot(s), default will be the coordinate region")
# DEBUG OPTION TO SAVE TEMP FILES
parser.add_argument("--scale", dest="scale", default='',
help="Enter a comma separated list of scaling factors for your bams. Default is none")
parser.add_argument("--save-temp", dest="save", action='store_true', default=False,
help="If flagged will save temporary files made by bamPlot")
parser.add_argument("--bed", dest="bed",
help="Add a space-delimited list of bed files to plot")
parser.add_argument("--multi-page", dest="multi", action='store_true', default=False,
help="If flagged will create a new pdf for each region")
args = parser.parse_args()
print(args)
if args.bam and args.input and args.genome and args.output:
# Support a legacy mode where a ',' delimited multiple files
bamFileList = args.bam
if len(args.bam) == 1:
bamFileList = args.bam[0].split(',')
# Make sure these are actually files & readable (!)
for filename in bamFileList:
assert(os.access(filename, os.R_OK))
# bringing in any beds
if args.bed:
bedFileList = args.bed
if type(bedFileList) == str:
bedFileList = args.bed.split(',')
print(bedFileList)
bedCollection = makeBedCollection(bedFileList)
else:
bedCollection = utils.LocusCollection([], 50)
# Load the input for graphing. One of:
# - A .gff
# - A .bed
# - a specific input region (e.g. chr10:.:93150000-93180000)
valid_sense_options = {'+', '-', '.'}
if os.access(args.input, os.R_OK):
if args.input.endswith('.bed'):
# Uniquely graph every input of this bed
parsed_input_bed = utils.parseTable(args.input, '\t')
gffName = os.path.basename(args.input) # Graph title
gff = None
try:
if parsed_input_bed[0][5] in valid_sense_options:
# This .bed might have a sense parameter
gff = [[e[0], '', args.input, e[1], e[2], '', e[5], '', ''] for e in parsed_input_bed]
except IndexError:
pass
if gff is None:
print("Your bed doesn't have a valid senese parameter. Defaulting to both strands, '.'")
# We only take chr/start/stop and ignore everything else.
gff = [[e[0], '', args.input, e[1], e[2], '', '.', '', ''] for e in parsed_input_bed]
else:
# Default to .gff, since that's the original behavior
gff = utils.parseTable(args.input, '\t')
gffName = args.input.split('/')[-1].split('.')[0]
else:
# means a coordinate line has been given e.g. chr1:+:1-100
chromLine = args.input.split(':')
try:
chrom = chromLine[0]
sense = chromLine[1]
except IndexError:
print('Invalid input line or inaccessible file. Try: chr1:.:1-5000')
exit()
assert(sense in valid_sense_options)
[start, end] = chromLine[2].split('-')
if chrom[0:3] != 'chr':
print('ERROR: UNRECOGNIZED GFF OR CHROMOSOME LINE INPUT')
exit()
gffLine = [chrom, '', args.input, start, end, '', sense, '', '']
gffName = "%s_%s_%s_%s" % (chrom, sense, start, end)
gff = [gffLine]
# Consider stretching the regions to a fixed minimum size
if args.stretch_input:
print('Stretching inputs to a minimum of: %d bp' % (args.stretch_input))
minLength = args.stretch_input
stretchGff = []
for e in gff:
difference = int(e[4]) - int(e[3])
if difference < minLength:
pad = int((minLength - difference) / 2)
stretchGff.append([e[0], e[1], e[2], int(e[3])-pad, int(e[4])+pad, e[5], e[6], e[7], e[8]])
else:
stretchGff.append(e)
gff = stretchGff
# Sanity test the gff object
assert(all([e[6] in valid_sense_options for e in gff])) # All strands are sane
#assert(all([int(e[3]) < int(e[4]) for e in gff])) # All start/stops are ordered
# bring in the genome
genome = args.genome.upper()
if ['HG18', 'HG19', 'HG19_RIBO','MM9', 'MM10', 'RN4'].count(genome) == 0:
print('ERROR: UNSUPPORTED GENOME TYPE %s. USE HG19,HG18, RN4, MM9, or MM10' % (genome))
parser.print_help()
exit()
# bring in the rest of the options
# output
rootFolder = args.output
if rootFolder[-1] != '/':
rootFolder += '/'
try:
os.listdir(rootFolder)
except OSError:
print('ERROR: UNABLE TO FIND OUTPUT DIRECTORY %s' % (rootFolder))
exit()
# Get analysis title
if len(args.title) == 0:
title = gffName
else:
title = args.title
# make a temp folder
tempFolder = rootFolder + title + '/'
print("CREATING TEMP FOLDER %s" % (tempFolder))
pipeline_dfci.formatFolder(tempFolder, create=True)
# colors
if args.color:
colorList = args.color.split(':')
colorList = [x.split(',') for x in colorList]
if len(colorList) < len(bamFileList):
print('WARNING: FEWER COLORS THAN BAMS SPECIFIED. COLORS WILL BE RECYCLED')
# recycling the color list
colorList += colorList * (len(bamFileList) / len(colorList))
colorList = colorList[0:len(bamFileList)]
else:
# cycles through the colors of the rainbow
colorList = tasteTheRainbow(len(bamFileList))
# sense
sense = args.sense
extension = int(args.extension)
rpm = args.rpm
scale = args.scale
yScale = args.yScale.upper()
# names
if args.names:
names = args.names.split(',')
if len(names) != len(bamFileList):
print('ERROR: NUMBER OF NAMES AND NUMBER OF BAMS DO NOT CORRESPOND')
parser.print_help()
exit()
else:
names = [x.split('/')[-1] for x in bamFileList]
# plot style
plotStyle = args.plot.upper()
if ['SINGLE', 'MULTIPLE','MERGE'].count(plotStyle) == 0:
print('ERROR: PLOT STYLE %s NOT AN OPTION' % (plotStyle))
parser.print_help()
exit()
# now run!
summaryTableFileName = makeBamPlotTables(gff, genome, bamFileList, colorList, nBins, sense, extension, rpm, tempFolder, names, title, bedCollection,scale)
print ("%s is the summary table" % (summaryTableFileName))
#running the R command to plot
multi = args.multi
outFile = "%s%s_plots.pdf" % (rootFolder, title)
rCmd = callRPlot(summaryTableFileName, outFile, yScale, plotStyle,multi)
# open a bash file
bashFileName = "%s%s_Rcmd.sh" % (tempFolder, title)
bashFile = open(bashFileName, 'w')
bashFile.write('#!/usr/bin/bash\n')
bashFile.write(rCmd)
bashFile.close()
print("Wrote R command to %s" % (bashFileName))
os.system("bash %s" % (bashFileName))
# delete temp files
if not args.save:
if utils.checkOutput(outFile, 1, 10):
# This is super dangerous (!). Add some sanity checks.
assert(" " not in tempFolder)
assert(tempFolder is not "/")
removeCommand = "rm -rf %s" % (tempFolder)
print(removeCommand)
os.system(removeCommand)
else:
print("ERROR: NO OUTPUT FILE %s DETECTED" % (outFile))
else:
parser.print_help()
sys.exit()
if __name__ == "__main__":
main()