-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathnormalizeRNASeq.R
678 lines (504 loc) · 24.4 KB
/
normalizeRNASeq.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
library(affy)
library(graphics)
# The MIT License (MIT)
# Copyright (c) 2015 Charles Lin
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#========================================================================
#===========================JOB PARAMETERS===============================
#========================================================================
args = commandArgs()
print(args)
geneFPKMFile = args[3]
outputFolder = args[4]
name = args[5]
groupString = args[6]
if(args[7] == 'TRUE'){
useERCC = TRUE
}else{
useERCC = FALSE
}
print(geneFPKMFile)
print(name)
groupVector=unlist(strsplit(groupString,','))
#========================================================================
#============================DEBUGGING===================================
#========================================================================
#========================================================================
#=========================HARD CODED STUFF===============================
#========================================================================
#set as path of the ERCC_Controls_Analysis.txt
erccTable = read.delim("/grail/genomes/ERCC_Technical_Data/ERCC_Controls_Analysis.txt")
#========================================================================
#=============================FUNCTIONS==================================
#========================================================================
#simple moving average
ma <- function(x,n=5){filter(x,rep(1/n,n), sides=2)}
## Add an alpha value to a colour
add.alpha <- function(col, alpha=1){
if(missing(col))
stop("Please provide a vector of colours.")
apply(sapply(col, col2rgb)/255, 2,
function(x)
rgb(x[1], x[2], x[3], alpha=alpha))
}
#panel function to do a scatter with a red diagonal line
panel.awesome <- function(x, y, col = par("col"), bg = NA, pch = par("pch"),
cex = 1, col.smooth = "red", span = 2/3, iter = 3, ...)
{
points(x, y, pch = pch, col = col, bg = bg, cex = cex,ylab='log2 expression (a.u.)',xlab='log2 expression (a.u.)')
ok <- is.finite(x) & is.finite(y)
if (any(ok))
#lines(stats::lowess(x[ok], y[ok], f = span, iter = iter),col = 'red', ...)
abline(a=0,b=1,lwd=2,col='red')
}
#panel function to do correlation
#adapted from http://www.r-bloggers.com/five-ways-to-visualize-your-pairwise-comparisons/
panel.cor <- function(x,y,digits=2,prefix="",...){
usr <- par("usr"); on.exit(par(usr))
par(usr=c(0,1,0,1))
r <- abs(cor(x,y,method='spearman',use='complete'))
txt <- round(r,4)
txt <- paste(prefix,txt,sep="")
cex <- 2
test <- cor.test(x,y,method='spearman',use='complete')
Signif <- symnum(test$p.value,corr=FALSE,na=FALSE,cutpoints = c(0,0.001,0.01,0.05,0.1,1),symbols = c("***","**","*",".","N.S"))
text(0.5,0.5,txt,cex=cex*r)
text(.8,.8,Signif,cex=cex,col=2)
}
#returns a vector of the concentrations for each ercc probe
plot_ercc <- function(erccTable,all_fpkm_exprs,tag){
#first get the erccRows
erccRows = grep("ERCC-",rownames(all_fpkm_exprs))
erccList = rownames(all_fpkm_exprs)[erccRows]
exprsRowVector = c()
concVector = c()
for(i in 1:length(erccList)){
erccProbe = erccList[i]
erccName = substr(erccProbe,1,10)
#print(erccName)
row = which(erccTable[,2] ==erccName)
#print(row)
if(length(row) >0){
concentration = as.numeric(erccTable[row,4])
#now check to see if probe is detected
if(min(all_fpkm_exprs[erccRows[i],]) > 0){
concVector = c(concVector,concentration)
exprsRowVector = c(exprsRowVector,erccRows[i])
}
}
}
#now let's do some cute plotting
plot(log10(concVector),log2(all_fpkm_exprs[exprsRowVector,1]),cex=0,xlab='log10 attomoles/ul',ylab='log2 expression (fpkm)',main=paste(tag,' spike-in expression',sep=""))
palette = rainbow(ncol(all_fpkm_exprs),alpha=0.3)
for(i in 1:ncol(all_fpkm_exprs)){
#color = add.alpha(i,0.2)
points(log10(concVector),log2(all_fpkm_exprs[exprsRowVector,i]),pch=19,col =add.alpha(i,0.2),cex=0.4)
lines(loess.smooth(log10(concVector),log2(all_fpkm_exprs[exprsRowVector,i])),lwd=2,col=i)
}
legend(-1.5,.95*max(log2(all_fpkm_exprs[exprsRowVector,])),colnames(all_fpkm_exprs),col=1:ncol(all_fpkm_exprs),lwd=2)
}
magnitude <- function(x){
return(sqrt((x[1])^2 + (log10(x[2]))^2))
}
makeMagnitudeMatrix <- function(m){
magnitudeMatrix = cbind(m,apply(m[,3:4],1,magnitude))
magnitudeOrder = order(magnitudeMatrix[,5],decreasing=TRUE)
magnitudeMatrix = magnitudeMatrix[magnitudeOrder,]
colnames(magnitudeMatrix)[5] = 'MAGNITUDE_POP_POP'
return(magnitudeMatrix)
}
#makes a color vector to accompany a numeric vector x
makeColorVector <- function(x){
colorSpectrum <- colorRampPalette(c("blue","grey","grey","red"))(100)
#setting a color data range
minValue <- -2
maxValue <- 2
color_cuts <- seq(minValue,maxValue,length=100)
color_cuts <- c(min(x,na.rm=TRUE), color_cuts,max(x,na.rm=TRUE))
#add one extra min color to even out sampling
colorSpectrum <- c(colorSpectrum[1],colorSpectrum[1],colorSpectrum)
colorVector = c()
for(i in x){
color = colorSpectrum[max(which(color_cuts <= i))]
colorVector =c(colorVector,color)
}
return(colorVector)
}
#========================================================================
#============================DATA PROCESSING=============================
#========================================================================
#formatting the genes.fpkm file
all_fpkm_exprs = read.table(geneFPKMFile,header=TRUE)
print(all_fpkm_exprs[1:5,])
#gene row names must be unique.
#this finds all uniquely named rows (takes first instance)
usedGenes = c()
uniqueRows = c()
for(i in 1:nrow(all_fpkm_exprs)){
geneName = as.character(all_fpkm_exprs[i,1])
if(!(geneName %in% usedGenes)){
uniqueRows = c(uniqueRows,i)
usedGenes = c(usedGenes,geneName)
}
}
if(length(uniqueRows) != nrow(all_fpkm_exprs)){
print("WARNING: GENE ROW NAMES NOT UNIQUE. USING FIRST INSTANCE OF EACH GENE")
}
#now get the unique gene row names
geneRowNames = as.character(all_fpkm_exprs[uniqueRows,1])
#now we need to remove any NAs
geneRowNames[which(is.na(geneRowNames))] <- 'GENE_NA'
#now subset the initial expression table
all_fpkm_exprs = all_fpkm_exprs[uniqueRows,2:ncol(all_fpkm_exprs)]
rownames(all_fpkm_exprs)= geneRowNames
#set a sane lower limit on expression
all_fpkm_exprs = apply(all_fpkm_exprs,c(1,2),function(x){x[intersect(which(x < 0.01),which(x >0))] = 0.01;x})
#write probe level expression raw
filename_raw = paste(outputFolder,name,'_all_fpkm_exprs_raw.txt',sep='')
write.table(all_fpkm_exprs,file=filename_raw,quote=FALSE,sep='\t')
if(useERCC == TRUE){
subset=grep("ERCC-",rownames(all_fpkm_exprs))
#epsilon adjustment to allow loess normalization to work
#all_fpkm_exprs[subset,] = all_fpkm_exprs[subset,] +.1
all_fpkm_exprs = all_fpkm_exprs+.1
all_fpkm_exprs_norm <- loess.normalize(all_fpkm_exprs,subset=grep("ERCC-",rownames(all_fpkm_exprs)),log.it=TRUE,family.loess='gaussian')
all_fpkm_exprs_norm[is.na(all_fpkm_exprs_norm)] <- 0
#get rid of any negative values and set to 0
all_fpkm_exprs_norm = apply(all_fpkm_exprs_norm,c(1,2),function(x){x[x<0] = 0;x})
#set a postive expression floor of 0.01
all_fpkm_exprs_norm = apply(all_fpkm_exprs_norm,c(1,2),function(x){x[intersect(which(x < 0.01),which(x >0))] = 0.01;x})
#write probe level expression spikey normy
filename_norm = paste(outputFolder,name,'_all_fpkm_exprs_norm.txt',sep='')
write.table(all_fpkm_exprs_norm,file=filename_norm,quote=FALSE,sep='\t')
}
#
#========================================================================
#====================BASIC ANALYSIS WITH ERCC============================
#========================================================================
if(useERCC == TRUE){
#plotting spike-ins raw
filename_spike = paste(outputFolder,name,'_spike_raw.pdf',sep='')
pdf(file=filename_spike,width = 8,height =8)
plot_ercc(erccTable,all_fpkm_exprs,'Raw')
dev.off()
#plotting spike-ins raw
filename_spike = paste(outputFolder,name,'_spike_norm.pdf',sep='')
pdf(file=filename_spike,width = 8,height =8)
plot_ercc(erccTable,all_fpkm_exprs_norm,'Normalized')
dev.off()
#require an fpkm of at least 1 in at least 1 sample
expressedProbesNorm = which(apply(all_fpkm_exprs_norm,1,max)>1)
expressedProbesRaw = which(apply(all_fpkm_exprs,1,max)>1)
png_size = 200 * ncol(all_fpkm_exprs_norm)
#now do a pairwise scatter plot either raw or norm
axisMinRaw = 0
axisMaxRaw = max(log2(all_fpkm_exprs[expressedProbesRaw,]))
filename_raw = paste(outputFolder,name,'_all_fpkm_exprs_raw_scatter.png',sep='')
png(filename=filename_raw,width =png_size,height =png_size,pointsize=24)
sampleRows = sample(expressedProbesRaw,1000)
pairs(log2(all_fpkm_exprs[sampleRows,]),lower.panel=panel.awesome,upper.panel=panel.cor,cex.labels=0.8,xlim =c(axisMinRaw,axisMaxRaw),ylim = c(axisMinRaw,axisMaxRaw),pch=19,col=rgb(0.5,0.5,0.5,0.4),cex=1,main='Unnormalized log2 expression (fpkm)')
dev.off()
axisMinNorm = 0
axisMaxNorm = max(log2(all_fpkm_exprs_norm[expressedProbesNorm,]))
filename_norm = paste(outputFolder,name,'_all_fpkm_exprs_norm_scatter.png',sep='')
png(filename=filename_norm,width =png_size,height =png_size,pointsize=24)
sampleRows = sample(expressedProbesNorm,1000)
pairs(log2(all_fpkm_exprs_norm[sampleRows,]),lower.panel=panel.awesome,upper.panel=panel.cor,cex.labels=0.8,xlim =c(axisMinNorm,axisMaxNorm),ylim = c(axisMinRaw,axisMaxRaw),pch=19,col=rgb(0.5,0.5,0.5,0.4),cex=1,main='Spike-in normalized log2 expression (fpkm)')
dev.off()
#now make some boxplots
filename_box = paste(outputFolder,name,'_exprs_boxplot.pdf',sep='')
pdf(file=filename_box,width = 10,height = 8)
par(mfrow=c(1,2))
par(mar=c(12,6,3,1))
axisMinBox = -4
axisMaxBox = max(axisMaxRaw,axisMaxNorm)
boxplot(log2(all_fpkm_exprs[expressedProbesRaw[1:1000],]),cex=0,main='Unnormalized expression',ylab='log2 expression (fpkm)',las=3,ylim = c(axisMinBox,axisMaxBox))
boxplot(log2(all_fpkm_exprs_norm[expressedProbesNorm[1:1000],]),cex=0,main='Spike-in normalized expression',ylab='log2 expression (fpkm)',las=3,ylim = c(axisMinBox,axisMaxBox))
dev.off()
}
#========================================================================
#=====================BASIC ANALYSIS WITHOUT ERCC========================
#========================================================================
if(useERCC == FALSE){
#identify expressed probes
#at least 1 probe above 1 fpkm
expressedProbesRaw = which(apply(all_fpkm_exprs,1,max)>1)
#provide a size scaling factor for the pngs
png_size = 200 * ncol(all_fpkm_exprs)
#now do a pairwise scatter plot either raw or norm
axisMinRaw = 0
axisMaxRaw = max(log2(all_fpkm_exprs[expressedProbesRaw,]))
filename_raw = paste(outputFolder,name,'_all_fpkm_exprs_raw_scatter.png',sep='')
png(filename=filename_raw,width =png_size,height =png_size,pointsize=24)
pairs(log2(all_fpkm_exprs[expressedProbesRaw[1:1000],]),lower.panel=panel.awesome,upper.panel=panel.cor,cex.labels=0.8,xlim =c(axisMinRaw,axisMaxRaw),ylim = c(axisMinRaw,axisMaxRaw),pch=19,col=rgb(0.5,0.5,0.5,0.4),cex=1,main='Unnormalized log2 expression (fpkm)')
dev.off()
#now make some boxplots
filename_box = paste(outputFolder,name,'_exprs_boxplot.pdf',sep='')
pdf(file=filename_box,width = 10,height = 8)
par(mar=c(12,6,3,1))
axisMinBox = 0
axisMaxBox = max(axisMaxRaw,axisMaxRaw)
boxplot(log2(all_fpkm_exprs[expressedProbesRaw[1:1000],]),cex=0,main='Unnormalized expression',ylab='log2 expression (fpkm)',las=3,ylim = c(axisMinBox,axisMaxBox))
dev.off()
}
#========================================================================
#=================PICK A DATASET FOR DOWNSTREAM ANALYSIS=================
#========================================================================
if(useERCC){
expressionTable = all_fpkm_exprs_norm
}else{
expressionTable = all_fpkm_exprs
}
#focus only on expressed genes
#genes with an fpkm of at least 1 in 1 sample
#and genes with detectable expression in all samples
expressedGeneRows = intersect(which(apply(expressionTable,1,max)>1),which(apply(expressionTable,1,min)>0))
#setting axis limits for future plots to cover 99% of the data
axisMax=quantile(expressionTable[expressedGeneRows,1],0.995)
#set a floor of 0.5 fpkm for anything we want to use
axisMin=max(quantile(expressionTable[expressedGeneRows,1],0.005),0.5)
#get the sample names
sampleNames = colnames(expressionTable)
#========================================================================
#============================REPLICATE ANALYSIS==========================
#========================================================================
#make a multipage pdf with pairiwise scatters for replicates
#put the average correlation in the title
filename_replicates = paste(outputFolder,name,'_replicate_correlations.pdf',sep='')
pdf(file=filename_replicates,width =8,height =9)
for(group in groupVector){
groupColumns = grep(group,sampleNames)
groupColumns = sort(groupColumns)
corVector = c()
if(length(groupColumns) > 1){
for(i in 1:length(groupColumns)){
j=i+1
while(j <= length(groupColumns)){
corVector = c(corVector,cor(expressionTable[expressedGeneRows,groupColumns[i]],expressionTable[expressedGeneRows,groupColumns[j]],use='complete',method='spearman'))
j=j+1
}
}
avgCor=round(mean(corVector),4)
figureTitle = paste('Replicates for ',group,' Avg. pairwise correlation of ',avgCor,sep='')
par(mar=c(5.1,4.1,8.1,2.1))
sampleRows = sample(expressedGeneRows,1000)#to keep scatter plots from bogging down
pairs(log2(expressionTable[sampleRows,groupColumns]),lower.panel=panel.awesome,upper.panel=panel.cor,cex.labels=0.8,xlim =c(log2(axisMin),log2(axisMax)),ylim = c(log2(axisMin),log2(axisMax)),pch=19,col=rgb(0.5,0.5,0.5,0.4),cex=1,main=figureTitle)
}
}
dev.off()
#========================================================================
#==========================MAKING MEAN MATRIX============================
#========================================================================
meanMatrixAll= matrix(nrow =nrow(expressionTable),ncol=length(groupVector))
for(i in 1:length(groupVector)){
group = groupVector[i]
groupColumns = grep(group,sampleNames)
if(length(groupColumns) == 1){
meanMatrixAll[,i] = expressionTable[,groupColumns]
}else{
meanMatrixAll[,i] = apply(expressionTable[,groupColumns],1,mean)
}
}
rownames(meanMatrixAll) = rownames(expressionTable)
colnames(meanMatrixAll) = groupVector
filename_means = paste(outputFolder,name,'_all_fpkm_means.txt',sep='')
write.table(meanMatrixAll,file=filename_means,quote=FALSE,sep='\t')
meanMatrix= matrix(nrow =length(expressedGeneRows),ncol=length(groupVector))
for(i in 1:length(groupVector)){
group = groupVector[i]
groupColumns = grep(group,sampleNames)
if(length(groupColumns) == 1){
meanMatrix[,i] = expressionTable[expressedGeneRows,groupColumns]
}else{
meanMatrix[,i] = apply(expressionTable[expressedGeneRows,groupColumns],1,mean)
}
}
rownames(meanMatrix) = rownames(expressionTable)[expressedGeneRows]
colnames(meanMatrix) = groupVector
filename_means = paste(outputFolder,name,'_exprs_fpkm_means.txt',sep='')
write.table(meanMatrix,file=filename_means,quote=FALSE,sep='\t')
#========================================================================
#=================CROSS COMPAIRSONS BETWEEN GROUPS=======================
#========================================================================
#for each group versus group
#make several kinds of figures
#1. volcano plot (w/ outliers highlighted)
#2 scatter w/ outliers annotated
#2. pairwise amplifier plots, genes ranked by expression in A with expression in B plotted and vice versa
#if a group has only 1 member, skip volcano plot and put NA in p-value column
#then spit out a GSEA style ranked table
#with all genes ranked by log2 change in expression w/ p-value annotated
#loop through pairwise comparisons
for(i in 1:length(groupVector)){
j=i+1
while(j <= length(groupVector)){
group1 = groupVector[i]
group2 = groupVector[j]
print(paste("Running analysis on ",group1," vs ",group2))
print(paste("Running analysis on ",i," vs ",j))
group1Columns = grep(group1,sampleNames)
group2Columns = grep(group2,sampleNames)
#set up the report pdf
filename_pair = paste(outputFolder,name,'_',group1,'_vs_',group2,'.pdf',sep='')
pdf(file = filename_pair,width = 11,height = 8.5)
expMatrix = matrix(nrow=length(expressedGeneRows),ncol=4)
rownames(expMatrix) = rownames(expressionTable)[expressedGeneRows]
colnames(expMatrix) = c(group1,group2,'LOG2_FOLD_CHANGE','P_VALUE')
if(length(group1Columns)==1){
expMatrix[,1] = expressionTable[expressedGeneRows,group1Columns]
}else{
expMatrix[,1] = apply(expressionTable[expressedGeneRows,group1Columns],1,mean)
}
if(length(group2Columns)==1){
expMatrix[,2] = expressionTable[expressedGeneRows,group2Columns]
}else{
expMatrix[,2] = apply(expressionTable[expressedGeneRows,group2Columns],1,mean)
}
expMatrix[,3] = log2(expMatrix[,2]/expMatrix[,1])
#check to see if we have enough data to caluclate p-values
#if so make the volcano plot
if(min(length(group1Columns),length(group2Columns)) >1){
pValueVector = c()
for(n in expressedGeneRows){
expVector = c(expressionTable[n,group1Columns],expressionTable[n,group2Columns])
if(min(expVector) == max(expVector)){
pValue = 1
}else{
pValue = t.test(expressionTable[n,group1Columns],expressionTable[n,group2Columns])$p.value
}
pValueVector = c(pValueVector,pValue)
}
expMatrix[,4] = pValueVector
#make volcano plot only w/ pvalue vector
#find the min
minPvalue = log10(expMatrix[which.min(log10(expMatrix[,4])),4])
if(is.infinite(minPvalue)){
minPvalue = -10
}
xTitle = paste('Log2 fold change ',group2,' vs. ',group1,sep='')
xMin = quantile(expMatrix[,3],0.005) -2
xMax = quantile(expMatrix[,3],0.995) +2
plot(expMatrix[,3],log10(expMatrix[,4]),xlim = c(xMin,xMax),ylim =c(0,minPvalue),cex=0.5,pch=19,col=rgb(0.5,0.5,0.5,0.2),xlab=xTitle,ylab='Log10 p-value')
abline(h=log10(0.05),lty=2)
abline(v=1,lty=2)
abline(v=-1,lty=2)
downRows = intersect(which(expMatrix[,3] < -1),which(log10(expMatrix[,4]) < log10(0.05)))
upRows = intersect(which(expMatrix[,3] > 1),which(log10(expMatrix[,4]) < log10(0.05)))
points(expMatrix[downRows,3],log10(expMatrix[downRows,4]),pch=19,col=rgb(0,0,1,.2),cex=0.8)
points(expMatrix[upRows,3],log10(expMatrix[upRows,4]),pch=19,col=rgb(1,0,0,.2),cex=0.8)
#plot top 10 genes w/ max divergence
#circle
downMagnitudeMatrix = makeMagnitudeMatrix(expMatrix[downRows,])
upMagnitudeMatrix = makeMagnitudeMatrix(expMatrix[upRows,])
if(nrow(downMagnitudeMatrix) > 10){
points(downMagnitudeMatrix[1:10,3],log10(downMagnitudeMatrix[1:10,4]),pch=19,col=rgb(0,0,1),cex=1)
for(n in 1:10){
text(downMagnitudeMatrix[n,3],log10(downMagnitudeMatrix[n,4]),rownames(downMagnitudeMatrix)[n],pos=2,col='blue')
}
}
if(nrow(upMagnitudeMatrix) > 10){
points(upMagnitudeMatrix[1:10,3],log10(upMagnitudeMatrix[1:10,4]),pch=19,col=rgb(1,0,0),cex=1)
for(n in 1:10){
text(upMagnitudeMatrix[n,3],log10(upMagnitudeMatrix[n,4]),rownames(upMagnitudeMatrix)[n],pos=4,col='red')
}
}
#label w/ text top5 of each
}
axisLimits = c(log2(axisMin),log2(axisMax))
#next is the scatter
plot(log2(expMatrix[,1]),log2(expMatrix[,2]),xlim=axisLimits,ylim=axisLimits,xlab=paste(group1,'log2 fpkm'),ylab=paste(group2,'log2 fpkm'),pch=19,cex=0.5,col=rgb(0.5,0.5,0.5,0.2))
abline(a=0,b=1,lty=2)
abline(a=1,b=1,col='red')
abline(a=-1,b=1,col='blue')
#if we have pvalues
if(min(length(group1Columns),length(group2Columns)) >1){
upSig = intersect(which(expMatrix[,3]>1),which(expMatrix[,4]<0.05))
points(log2(expMatrix[upSig,1]),log2(expMatrix[upSig,2]),pch=19,cex=0.8,col=rgb(1,0,0,.2))
downSig = intersect(which(expMatrix[,3]< -1),which(expMatrix[,4]<0.05))
points(log2(expMatrix[downSig,1]),log2(expMatrix[downSig,2]),pch=19,cex=0.8,col=rgb(0,0,1,.2))
}
#next is the waterfall
changeOrder = order(expMatrix[,3])
yTitle = paste('Log2 fold change ',group2,' vs. ',group1,sep='')
xTitle = paste('Genes ranked by increasing Log2 fold change ',group2,' vs. ',group1,sep='')
yLimits=c(min(quantile(expMatrix[,3],c(0.0005)),-1),max(quantile(expMatrix[,3],c(0.9995)),1))
plot(1:length(changeOrder),expMatrix[changeOrder,3],ylim= yLimits,type='l',ylab=yTitle,xlab=xTitle)
abline(h=0)
colorVector = makeColorVector(expMatrix[changeOrder,3])
lines(1:length(changeOrder),expMatrix[changeOrder,3],type='h',lwd=3,col=colorVector)
upCount =length(which(expMatrix[,3] > 1))
downCount =length(which(expMatrix[,3]< -1))
abline(v = length(changeOrder)-upCount,col='red')
abline(v = downCount,col='blue')
text(length(changeOrder)-upCount,-0.5,col='red',paste(upCount,'\nup'),pos=4)
text(downCount,0.5,col='blue',paste(downCount,'\ndown'),pos=2)
#last is amplifier plot
par(mfrow=c(1,2))
#do linear and log?
group1RankOrder = order(expMatrix[,1])
group2RankOrder = order(expMatrix[,2])
binSize = length(group1RankOrder)/50
logString=''
#ranked by group1
plot(1:length(group1RankOrder),log2(expMatrix[group1RankOrder,1]),ylim =c(log2(axisMin),log2(max(expMatrix,na.rm=TRUE))),xlab=paste('Genes ranked by expression in',group1),ylab='Log2 expression (fpkm)',lwd=2,log=logString,type='l',col = 'grey',xlim = c(1,length(group1RankOrder)))
points(1:length(group1RankOrder), log2(expMatrix[group1RankOrder,2]),col=add.alpha('red',.1),pch=16,cex=0.5)
legend(0,.7*log2(max(expMatrix,na.rm=TRUE)),c(group1,group2),lwd=2,col=c('grey','red'))
x= ma(1:length(group1RankOrder),n=binSize)
x = x[is.finite(x)]
y= ma(log2(expMatrix[group1RankOrder,2]),n=binSize)
y = y[is.finite(y)]
lines(x,y,col='red',lwd=2)
#ranked by group2
plot(1:length(group2RankOrder),log2(expMatrix[group2RankOrder,2]),ylim =c(log2(axisMin),log2(max(expMatrix,na.rm=TRUE))),xlab=paste('Genes ranked by expression in',group2),ylab='Log2 expression (fpkm)',lwd=2,log=logString,type='l',col = 'grey')
points(1:length(group2RankOrder),log2(expMatrix[group2RankOrder,1]),col=add.alpha('red',.1),pch=16,cex=0.5)
legend(0,.7*log2(max(expMatrix,na.rm=TRUE)),c(group2,group1),lwd=2,col=c('grey','red'))
x= ma(1:length(group2RankOrder),n=binSize)
x = x[is.finite(x)]
y= ma(log2(expMatrix[group2RankOrder,1]),n=binSize)
y = y[is.finite(y)]
lines(x,y,col='red',lwd=2)
#close the plot
dev.off()
#now write out the exp table
filename_exp= paste(outputFolder,name,'_',group1,'_vs_',group2,'_exprs_matrix.txt',sep='')
write.table(expMatrix,file=filename_exp,quote=FALSE,sep='\t')
#making the gct
filename_gct= paste(outputFolder,name,'_',group1,'_vs_',group2,'.gct',sep='')
gctMatrix =matrix(ncol=4,nrow=nrow(expMatrix))
colnames(gctMatrix) = c('NAME','DESCRIPTION',group1,group2)
gctMatrix[,1]= rownames(expMatrix)
gctMatrix[,3]= expMatrix[,1]
gctMatrix[,4]=expMatrix[,2]
gctHeader = matrix(data='',ncol=4,nrow=3)
gctHeader[1,1]='#1.2'
gctHeader[2,1]=nrow(expMatrix)
gctHeader[2,2]='2'
gctHeader[3,]=c('NAME','DESCRIPTION',group1,group2)
gctCombined = rbind(gctHeader,gctMatrix)
write.table(gctCombined,file=filename_gct,quote=FALSE,sep='\t',row.names=FALSE,col.names=FALSE)
#making the cls
filename_cls= paste(outputFolder,name,'_',group1,'_vs_',group2,'.cls',sep='')
clsTable = matrix(data='',ncol=3,nrow=3)
clsTable[1,] =c(2,2,1)
clsTable[2,1]=paste('#',group1,sep='')
clsTable[2,2]=group2
clsTable[3,1]=group1
clsTable[3,2]=group2
write.table(clsTable,file=filename_cls,quote=FALSE,sep='\t',row.names=FALSE,col.names=FALSE)
j=j+1
}
}