forked from qdrant/bm42_eval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index_bm42.py
68 lines (51 loc) · 1.76 KB
/
index_bm42.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import json
import tqdm
from fastembed import SparseTextEmbedding
from qdrant_client import QdrantClient, models
from typing import Iterable
from ipdb import launch_ipdb_on_exception
DATASET = os.getenv("DATASET", "quora")
def read_file(file_name: str) -> Iterable[str]:
with open(file_name, "r") as file:
for line in file:
row = json.loads(line)
yield row["_id"], row["text"]
def read_embedded(file_name: str) -> Iterable[models.PointStruct]:
model = SparseTextEmbedding(
model_name="Qdrant/bm42-all-minilm-l6-v2-attentions"
)
def read_texts():
n = 0
for _, text in read_file(file_name):
n += 1
yield text
for ((idx, text), embedding) in zip(read_file(file_name), model.embed(tqdm.tqdm(read_texts()), batch_size=32)):
doc = models.PointStruct(
id=int(idx),
vector={
"bm42": models.SparseVector(
values=embedding.values.tolist(),
indices=embedding.indices.tolist()
)
}
)
yield doc
def main():
file_name = f"data/{DATASET}/corpus.jsonl" # MS MARCO collection
client = QdrantClient(url="http://localhost:6333", prefer_grpc=True)
client.delete_collection(collection_name=DATASET)
client.create_collection(
collection_name=DATASET,
vectors_config={},
sparse_vectors_config={
"bm42": models.SparseVectorParams(
modifier=models.Modifier.IDF
)
}
)
with launch_ipdb_on_exception():
for point in tqdm.tqdm(read_embedded(file_name)):
client.upsert(collection_name=DATASET, points=[point], wait=False)
if __name__ == "__main__":
main()