forked from nanopony/pyradar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
182 lines (141 loc) · 6.09 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2012 - 2013
# Matías Herranz <[email protected]>
# Joaquín Tita <[email protected]>
#
# https://github.com/PyRadar/pyradar
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 3 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library. If not, see <http://www.gnu.org/licenses/>.
import os, shutil, zipfile, unittest
from pyradar.core.sar import create_dataset_from_path
from pyradar.core.sar import get_band_from_dataset
from pyradar.core.sar import get_geoinfo
from pyradar.core.sar import read_image_from_band
from pyradar.core.sar import save_image
from pyradar.core.equalizers import equalization_using_histogram
from pyradar.filters.frost import frost_filter
from pyradar.filters.kuan import kuan_filter
from pyradar.filters.lee import lee_filter
from pyradar.filters.lee_enhanced import lee_enhanced_filter
from pyradar.filters.median import median_filter
from pyradar.filters.mean import mean_filter
from pyradar.utils.timeutils import Timer
from pyradar.classifiers.kmeans import kmeans_classification
from pyradar.classifiers.isodata import isodata_classification
#===============================================================================
# CONSTANTS
#===============================================================================
try:
ROOT = os.path.dirname(os.path.abspath(__file__.decode('utf-8')))
except:
ROOT = "."
TEST_ZIPS = os.path.join(ROOT, 'testpkg')
IMAGES = os.path.join(ROOT, "_test_images")
IMG_DEST_DIR = os.path.join(ROOT, '_test_output')
TEMP_DIR_DISCLAIMER = os.path.join(IMG_DEST_DIR, "warning.txt")
#===============================================================================
# PREPARE DIRS
#===============================================================================
if os.path.exists(IMG_DEST_DIR):
shutil.rmtree(IMG_DEST_DIR)
os.mkdir(IMG_DEST_DIR)
with open(TEMP_DIR_DISCLAIMER, "w") as fp:
fp.write("WARNING:\n\t THIS FOLDER IS DETROYED IN EVERY TEST")
if not os.path.exists(IMAGES):
import sys
print("Extracting files to zips, It's only the first time")
print("please wait...")
for dname, _, fnames in os.walk(TEST_ZIPS):
for fname in fnames:
fpath = os.path.join(dname, fname)
with zipfile.ZipFile(fpath, "r") as z:
z.extractall(IMAGES)
#===============================================================================
# TESTS
#===============================================================================
class TestAll(unittest.TestCase):
def test_all(self):
image_path = os.path.join(IMAGES, "DAT_01.001")
print(image_path)
dataset = create_dataset_from_path(image_path)
band = get_band_from_dataset(dataset)
geoinfo = get_geoinfo(dataset, cast_to_int=True)
xoff = geoinfo['xoff'] + 2000
yoff = geoinfo['yoff'] + 2000
## Parameters:
win_xsize = 100 # window size in coord x
win_ysize = 100 # window size in coord y
k = 1 # parameter of frost filter, ex: k=1 or k=10 or k=100
win_size = 3 # size of the window for the filter function
damping_factor = 1 # parameter of frost filter, ex: 1 or 10 or 1000
image = read_image_from_band(band, xoff, yoff, win_xsize, win_ysize)
# Try K-Means
kmean_timer = Timer()
n_classes = 8
iterations = 1000
class_image = kmeans_classification(image, n_classes, iterations)
kmean_timer.stop_timer()
kmean_timer.calculate_time_elapsed(print_value=True)
# Try Isodata
isodata_timer = Timer()
parameters={"K": 8, "I":1000}
class_image = isodata_classification(image,parameters=parameters )
isodata_timer.stop_timer()
isodata_timer.calculate_time_elapsed(print_value=True)
numerito = parameters["K"]
# Try the filters
filter_timer = Timer()
numerito = 11
cucito = 0.30
image_filtered = mean_filter(image, win_size=numerito)
image_filtered = median_filter(image,win_size)
image_filtered = frost_filter(image, damping_factor=1.0, win_size=11)
image_filtered = kuan_filter(image, win_size=7, cu=1.0)
image_filtered = lee_filter(image, win_size=numerito, cu=cucito)
image_filtered = lee_enhanced_filter(image, win_size=numerito, cu=cucito)
filter_timer.stop_timer()
diff = filter_timer.calculate_time_elapsed(print_value=True)
# Frost y K-Means
ventana = 7
damp = 1.0
#
parameters={"K" : 5, "I" : 100}
#
_timer = Timer()
#
image_filtered = frost_filter(image, damping_factor=damp, win_size=ventana)
class_image = isodata_classification(image_filtered, parameters)
#
#
_timer.stop_timer()
_timer.calculate_time_elapsed(print_value=True)
#
image_corrected = equalization_using_histogram(class_image)
save_image(IMG_DEST_DIR, "image_" + str(ventana) + "frostisodata" +
str(damp) + "c" + str(parameters["K"]), image_corrected)
#
#
# Equalize and save the images to files
image_corrected = equalization_using_histogram(class_image)
save_image(IMG_DEST_DIR, "image_isodata8", image_corrected)
#
image_original = equalization_using_histogram(image)
save_image(IMG_DEST_DIR, "image_original", image_original)
print("\a\a\a")
#===============================================================================
# MAIN
#===============================================================================
if __name__ == "__main__":
unittest.main(verbosity=2)