-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.aux
838 lines (838 loc) · 67.6 KB
/
main.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\@writefile{@@@}{\chapterbegin }
\@writefile{@@@}{\chapterbegin }
\@writefile{@@@}{\chapterbegin }
\@writefile{toc}{\contentsline {chapter}{Contents}{xi}{chapter*.8}\protected@file@percent }
\citation{landau_physique_1990}
\citation{goldenfeld_lectures_2018}
\citation{gambassi_casimir_2009}
\citation{niss_history_2005}
\citation{abraham_transfer_1973}
\citation{gilmer_simulation_1972}
\citation{amit_field_2005}
\citation{matsubara_new_1955}
\citation{bray_interface_2001}
\@writefile{@@@}{\chapterbegin }
\@writefile{toc}{\contentsline {chapter}{Introduction}{xiii}{chapter*.9}\protected@file@percent }
\@writefile{brf}{\backcite{landau_physique_1990}{{xiii}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{goldenfeld_lectures_2018}{{xiii}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{gambassi_casimir_2009}{{xiii}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{niss_history_2005}{{xiii}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{abraham_transfer_1973}{{xiii}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{gilmer_simulation_1972}{{xiii}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{amit_field_2005}{{xiii}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{matsubara_new_1955}{{xiii}{(document)}{Doc-Start}}}
\citation{newman_monte_1999}
\citation{vasilyev_universal_2009}
\citation{lopes_cardozo_critical_2014}
\citation{milton_casimir_2001}
\citation{casimir_attraction_1948}
\citation{lifshitz_theory_1955}
\citation{privman_finite-size_1988-1}
\citation{lopes_cardozo_critical_2014}
\citation{privman_finite-size_1988-1}
\@writefile{brf}{\backcite{bray_interface_2001}{{xiv}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{newman_monte_1999}{{xiv}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{vasilyev_universal_2009}{{xiv}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{lopes_cardozo_critical_2014}{{xiv}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{milton_casimir_2001}{{xiv}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{casimir_attraction_1948}{{xiv}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{lifshitz_theory_1955}{{xiv}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{privman_finite-size_1988-1}{{xiv}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{lopes_cardozo_critical_2014}{{xiv}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{privman_finite-size_1988-1}{{xiv}{(document)}{Doc-Start}}}
\citation{dean_effect_2020}
\citation{hohenberg_theory_1977}
\citation{bray_interface_2001}
\citation{derks_suppression_2006}
\citation{noauthor_mesocentre_nodate}
\citation{gersberg_github_2020}
\@writefile{brf}{\backcite{dean_effect_2020}{{xv}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{hohenberg_theory_1977}{{xv}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{bray_interface_2001}{{xv}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{derks_suppression_2006}{{xv}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{noauthor_mesocentre_nodate}{{xv}{(document)}{Doc-Start}}}
\@writefile{brf}{\backcite{gersberg_github_2020}{{xv}{(document)}{Doc-Start}}}
\citation{hohenberg_theory_1977}
\citation{bray_theory_1994}
\citation{onsager_crystal_1944}
\citation{onsager_crystal_1944}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Equilibrium interface dynamics}{1}{chapter.1}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lof}{\contentsline {xchapter}{Equilibrium interface dynamics}{1}{chapter.1}\protected@file@percent }
\@writefile{lot}{\contentsline {xchapter}{Equilibrium interface dynamics}{1}{chapter.1}\protected@file@percent }
\newlabel{chap-int-dyn}{{1}{1}{Equilibrium interface dynamics}{chapter.1}{}}
\@writefile{brf}{\backcite{hohenberg_theory_1977}{{1}{1}{chapter.1}}}
\@writefile{brf}{\backcite{bray_theory_1994}{{1}{1}{chapter.1}}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces Numerical simulations of coarsening from a quench from a disordered state $T=\infty $ to an ordered state $T=T_{2D,C}$ \cite {onsager_crystal_1944} for different times, in Monte Carlo steps, for a $600 \times 600$ system with non-conserved Glauber dynamics.\relax }}{2}{figure.caption.10}\protected@file@percent }
\@writefile{brf}{\backcite{onsager_crystal_1944}{{2}{1.1}{figure.caption.10}}}
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{clusterization}{{1.1}{2}{Numerical simulations of coarsening from a quench from a disordered state $T=\infty $ to an ordered state $T=T_{2D,C}$ \cite {onsager_crystal_1944} for different times, in Monte Carlo steps, for a $600 \times 600$ system with non-conserved Glauber dynamics.\relax }{figure.caption.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.1}Models for equilibrium fields}{2}{section.1.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.1}Statics of systems with a finite number of degrees of freedom}{2}{subsection.1.1.1}\protected@file@percent }
\newlabel{renormalisation}{{1.1}{2}{Statics of systems with a finite number of degrees of freedom}{equation.1.1.1}{}}
\newlabel{eqdis}{{1.3}{3}{Statics of systems with a finite number of degrees of freedom}{equation.1.1.3}{}}
\newlabel{cfn}{{1.8}{3}{Statics of systems with a finite number of degrees of freedom}{equation.1.1.8}{}}
\citation{landau_physique_1990}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.2}Statistical field theory}{4}{subsection.1.1.2}\protected@file@percent }
\@writefile{brf}{\backcite{landau_physique_1990}{{4}{1.1.2}{equation.1.1.17}}}
\newlabel{landau-ginzburg-hamiltonian}{{1.18}{4}{Statistical field theory}{equation.1.1.18}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces Double-well potential \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {phi4}\unskip \@@italiccorr )}} for $\lambda =1$ in function of the temperature difference with respect to the critical temperature with $m^2 = T-T_C$. In the ordered phase, the minima are at $\phi _C =\pm \sqrt {- \frac {6 m^2}{\lambda } } $, while for the ordered phase it is at $\phi _C = 0$. In black, the addition of a uniform magnetic field $h({\bf x}) = 1$ makes the positive phase metastable.\relax }}{5}{figure.caption.11}\protected@file@percent }
\newlabel{double-puits-temperature}{{1.2}{5}{Double-well potential \eqref {phi4} for $\lambda =1$ in function of the temperature difference with respect to the critical temperature with $m^2 = T-T_C$. In the ordered phase, the minima are at $\phi _C =\pm \sqrt {- \frac {6 m^2}{\lambda } } $, while for the ordered phase it is at $\phi _C = 0$. In black, the addition of a uniform magnetic field $h(\bx ) = 1$ makes the positive phase metastable.\relax }{figure.caption.11}{}}
\newlabel{phi4}{{1.19}{5}{Statistical field theory}{equation.1.1.19}{}}
\newlabel{champ-externe}{{1.20}{5}{Statistical field theory}{equation.1.1.20}{}}
\newlabel{cm}{{1.21}{5}{Statistical field theory}{equation.1.1.21}{}}
\citation{hohenberg_theory_1977}
\citation{tuszynski_exact_1984}
\citation{cahn_free_1958}
\newlabel{gnoise}{{1.26}{6}{Statistical field theory}{equation.1.1.26}{}}
\newlabel{MA}{{1.27}{6}{Statistical field theory}{equation.1.1.27}{}}
\@writefile{brf}{\backcite{hohenberg_theory_1977}{{6}{1.1.2}{equation.1.1.29}}}
\newlabel{MB}{{1.31}{6}{Statistical field theory}{equation.1.1.31}{}}
\@writefile{brf}{\backcite{tuszynski_exact_1984}{{6}{1.1.2}{equation.1.1.35}}}
\@writefile{brf}{\backcite{cahn_free_1958}{{6}{1.1.2}{equation.1.1.35}}}
\citation{cahn_free_1958}
\citation{hennequin_drop_2006}
\citation{atencia_controlled_2005}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.3}Surface tension}{7}{subsection.1.1.3}\protected@file@percent }
\newlabel{kk0}{{1.37}{7}{Surface tension}{equation.1.1.37}{}}
\newlabel{kk1}{{1.38}{7}{Surface tension}{equation.1.1.38}{}}
\@writefile{brf}{\backcite{cahn_free_1958}{{7}{1.1.3}{equation.1.1.40}}}
\newlabel{CHST}{{1.41}{7}{Surface tension}{equation.1.1.41}{}}
\newlabel{eq-interface-glauber}{{1.42}{7}{Surface tension}{equation.1.1.42}{}}
\newlabel{profil-interface-glauber}{{1.43}{7}{Surface tension}{equation.1.1.43}{}}
\@writefile{brf}{\backcite{hennequin_drop_2006}{{7}{1.1.3}{equation.1.1.43}}}
\@writefile{brf}{\backcite{atencia_controlled_2005}{{7}{1.1.3}{equation.1.1.43}}}
\citation{diehl_interface_1980}
\@writefile{lof}{\contentsline {figure}{\numberline {1.3}{\ignorespaces Surface tension \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {CHST}\unskip \@@italiccorr )}} versus $\xi $ for the $\phi ^4$ solution \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {profil-interface-glauber}\unskip \@@italiccorr )}}.\relax }}{8}{figure.caption.12}\protected@file@percent }
\newlabel{tension-xi}{{1.3}{8}{Surface tension \eqref {CHST} versus $\xi $ for the $\phi ^4$ solution \eqref {profil-interface-glauber}.\relax }{figure.caption.12}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.2}Models for equilibrium interfaces}{8}{section.1.2}\protected@file@percent }
\newlabel{sec-continuous}{{1.2}{8}{Models for equilibrium interfaces}{section.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.1}Basic continuous model}{8}{subsection.1.2.1}\protected@file@percent }
\newlabel{heff}{{1.47}{8}{Basic continuous model}{equation.1.2.47}{}}
\@writefile{brf}{\backcite{diehl_interface_1980}{{8}{1.2.1}{equation.1.2.48}}}
\citation{bray_interface_2001,bray_interface_2001-1}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.2}Effective dynamics of interface heights}{9}{subsection.1.2.2}\protected@file@percent }
\newlabel{sec-heightd}{{1.2.2}{9}{Effective dynamics of interface heights}{subsection.1.2.2}{}}
\@writefile{brf}{\backcite{bray_interface_2001}{{9}{1.2.2}{subsection.1.2.2}}}
\@writefile{brf}{\backcite{bray_interface_2001-1}{{9}{1.2.2}{subsection.1.2.2}}}
\newlabel{hans}{{1.54}{9}{Effective dynamics of interface heights}{equation.1.2.54}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.2.2.1}Model A dynamics}{9}{subsubsection.1.2.2.1}\protected@file@percent }
\newlabel{triple-interface}{{1.57}{9}{Model A dynamics}{equation.1.2.57}{}}
\citation{edwards_surface_1982,halpin-healy_kinetic_1995}
\newlabel{fdhdt}{{1.59}{10}{Model A dynamics}{equation.1.2.59}{}}
\newlabel{ew}{{1.67}{10}{Model A dynamics}{equation.1.2.67}{}}
\citation{paul_domain_2005}
\@writefile{brf}{\backcite{edwards_surface_1982}{{11}{1.2.2.1}{equation.1.2.68}}}
\@writefile{brf}{\backcite{halpin-healy_kinetic_1995}{{11}{1.2.2.1}{equation.1.2.68}}}
\@writefile{brf}{\backcite{paul_domain_2005}{{11}{1.2.2.1}{equation.1.2.77}}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.2.2.2}Model B dynamics}{11}{subsubsection.1.2.2.2}\protected@file@percent }
\newlabel{bstep}{{1.87}{12}{Model B dynamics}{equation.1.2.87}{}}
\newlabel{sharp}{{1.90}{12}{Model B dynamics}{equation.1.2.90}{}}
\citation{huse_corrections_1986}
\newlabel{bstep2}{{1.96}{13}{Model B dynamics}{equation.1.2.96}{}}
\newlabel{modBFT}{{1.99}{13}{Model B dynamics}{equation.1.2.99}{}}
\@writefile{brf}{\backcite{huse_corrections_1986}{{13}{1.2.2.2}{equation.1.2.101}}}
\citation{niss_history_2005,niss_history_2009}
\citation{gupta_phase_1988}
\citation{le_bellac_equilibrium_2004}
\citation{aizenman_proof_1981}
\citation{de_jongh_experiments_1974,wold_ising_2000,ikeda_neutron_1973}
\citation{onsager_crystal_1944}
\newlabel{bstep2}{{1.102}{14}{Model B dynamics}{equation.1.2.102}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.3}Lattice models}{14}{section.1.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3.1}The Ising model}{14}{subsection.1.3.1}\protected@file@percent }
\newlabel{hamil-ising}{{1.107}{14}{The Ising model}{equation.1.3.107}{}}
\@writefile{brf}{\backcite{niss_history_2005}{{14}{1.3.1}{equation.1.3.107}}}
\@writefile{brf}{\backcite{niss_history_2009}{{14}{1.3.1}{equation.1.3.107}}}
\@writefile{brf}{\backcite{gupta_phase_1988}{{14}{1.3.1}{equation.1.3.107}}}
\@writefile{brf}{\backcite{le_bellac_equilibrium_2004}{{14}{1.3.1}{figure.caption.13}}}
\@writefile{brf}{\backcite{aizenman_proof_1981}{{14}{1.3.1}{figure.caption.13}}}
\newlabel{discretisation-landau}{{1.108}{14}{The Ising model}{equation.1.3.108}{}}
\citation{frohlich_triviality_1981,goldenfeld_lectures_2018}
\citation{talapov_magnetization_1996,preis_gpu_2009}
\citation{goldenfeld_lectures_2018}
\@writefile{lof}{\contentsline {figure}{\numberline {1.4}{\ignorespaces Snapshot of Monte Carlo simulations of the Ising model for two different temperatures in two dimensions($T=0.7 T_C$ (left) and $T=0.95 T_C$ (right)) with periodic boundary conditions in $x$ and fixed ones in$y$.\relax }}{15}{figure.caption.13}\protected@file@percent }
\newlabel{amas-fixe}{{1.4}{15}{Snapshot of Monte Carlo simulations of the Ising model for two different temperatures in two dimensions($T=0.7 T_C$ (left) and $T=0.95 T_C$ (right)) with periodic boundary conditions in $x$ and fixed ones in$y$.\relax }{figure.caption.13}{}}
\@writefile{brf}{\backcite{de_jongh_experiments_1974}{{15}{1.3.1}{equation.1.3.108}}}
\@writefile{brf}{\backcite{wold_ising_2000}{{15}{1.3.1}{equation.1.3.108}}}
\@writefile{brf}{\backcite{ikeda_neutron_1973}{{15}{1.3.1}{equation.1.3.108}}}
\@writefile{brf}{\backcite{onsager_crystal_1944}{{15}{1.3.1}{equation.1.3.108}}}
\@writefile{brf}{\backcite{frohlich_triviality_1981}{{15}{1.3.1}{equation.1.3.109}}}
\@writefile{brf}{\backcite{goldenfeld_lectures_2018}{{15}{1.3.1}{equation.1.3.109}}}
\@writefile{brf}{\backcite{talapov_magnetization_1996}{{15}{1.3.1}{equation.1.3.109}}}
\@writefile{brf}{\backcite{preis_gpu_2009}{{15}{1.3.1}{equation.1.3.109}}}
\@writefile{brf}{\backcite{goldenfeld_lectures_2018}{{15}{1.3.1}{equation.1.3.110}}}
\citation{stecki_magnetization_1994}
\citation{richards_numerical_1993}
\citation{abraham_interface_1976}
\citation{abraham_transfer_1973}
\@writefile{brf}{\backcite{stecki_magnetization_1994}{{16}{1.3.1}{equation.1.3.116}}}
\@writefile{brf}{\backcite{richards_numerical_1993}{{16}{1.3.1}{equation.1.3.117}}}
\@writefile{brf}{\backcite{abraham_interface_1976}{{16}{1.3.1}{equation.1.3.117}}}
\@writefile{brf}{\backcite{abraham_transfer_1973}{{16}{1.3.1}{equation.1.3.118}}}
\citation{swendsen_roughening_1977}
\citation{van_leeuwen_pinning_1981}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3.2}The Solid-On-Solid Model}{17}{subsection.1.3.2}\protected@file@percent }
\newlabel{sec-sos}{{1.3.2}{17}{The Solid-On-Solid Model}{subsection.1.3.2}{}}
\newlabel{approx-sos}{{1.121}{17}{The Solid-On-Solid Model}{equation.1.3.121}{}}
\@writefile{brf}{\backcite{swendsen_roughening_1977}{{17}{1.3.2}{equation.1.3.121}}}
\@writefile{brf}{\backcite{van_leeuwen_pinning_1981}{{17}{1.3.2}{equation.1.3.121}}}
\newlabel{energie-sos-ising}{{1.125}{17}{The Solid-On-Solid Model}{equation.1.3.125}{}}
\citation{gilmer_simulation_1972}
\citation{elwenspoek_kinetic_1987}
\citation{wilby_scaling_1992}
\citation{boal_mechanics_2012,gompper_steric_1989}
\citation{fisher_walks_1983}
\citation{privman_transfer-matrix_1989}
\citation{kim_conserved_1994,vaysburd_critical_1995}
\citation{knops_exact_1977}
\citation{schehr_universal_2006}
\citation{swendsen_monte_1977}
\citation{owczarek_exact_1993}
\citation{majumdar_airy_2005,schehr_universal_2006}
\@writefile{lof}{\contentsline {figure}{\numberline {1.5}{\ignorespaces Possible configuration of the SOS model for a semi-infinite geometry (left) and infinite geometry (right). The red line shows the origin $z=0$. In the $i$-th column the interface is at height $h_i$. Particles under the interface are from the Ising $-$ phase, while particles over it are from the $+$ phase.\relax }}{18}{figure.caption.14}\protected@file@percent }
\newlabel{figure-sos}{{1.5}{18}{Possible configuration of the SOS model for a semi-infinite geometry (left) and infinite geometry (right). The red line shows the origin $z=0$. In the $i$-th column the interface is at height $h_i$. Particles under the interface are from the Ising $-$ phase, while particles over it are from the $+$ phase.\relax }{figure.caption.14}{}}
\newlabel{hamil-sos}{{1.129}{18}{The Solid-On-Solid Model}{equation.1.3.129}{}}
\@writefile{brf}{\backcite{gilmer_simulation_1972}{{18}{1.3.2}{equation.1.3.129}}}
\@writefile{brf}{\backcite{elwenspoek_kinetic_1987}{{18}{1.3.2}{equation.1.3.129}}}
\@writefile{brf}{\backcite{wilby_scaling_1992}{{18}{1.3.2}{equation.1.3.129}}}
\@writefile{brf}{\backcite{boal_mechanics_2012}{{18}{1.3.2}{equation.1.3.129}}}
\@writefile{brf}{\backcite{gompper_steric_1989}{{18}{1.3.2}{equation.1.3.129}}}
\@writefile{brf}{\backcite{fisher_walks_1983}{{18}{1.3.2}{equation.1.3.129}}}
\@writefile{brf}{\backcite{privman_transfer-matrix_1989}{{18}{1.3.2}{equation.1.3.129}}}
\@writefile{brf}{\backcite{kim_conserved_1994}{{18}{1.3.2}{equation.1.3.129}}}
\@writefile{brf}{\backcite{vaysburd_critical_1995}{{18}{1.3.2}{equation.1.3.129}}}
\newlabel{hamil-gsos}{{1.130}{18}{The Solid-On-Solid Model}{equation.1.3.130}{}}
\@writefile{brf}{\backcite{knops_exact_1977}{{18}{1.3.2}{equation.1.3.130}}}
\@writefile{brf}{\backcite{schehr_universal_2006}{{18}{1.3.2}{equation.1.3.130}}}
\@writefile{brf}{\backcite{swendsen_monte_1977}{{18}{1.3.2}{equation.1.3.130}}}
\@writefile{brf}{\backcite{owczarek_exact_1993}{{18}{1.3.2}{equation.1.3.130}}}
\@writefile{brf}{\backcite{majumdar_airy_2005}{{18}{1.3.2}{equation.1.3.130}}}
\@writefile{brf}{\backcite{schehr_universal_2006}{{18}{1.3.2}{equation.1.3.130}}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.6}{\ignorespaces Mean height of the SOS interface \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {hamilk-sos-gce}\unskip \@@italiccorr )}} with respect to $- \mu $ through diagonalization of the transfer matrix for $\beta =1$, in the limit $L'\to \infty $. \relax }}{19}{figure.caption.15}\protected@file@percent }
\newlabel{hauteur-mu}{{1.6}{19}{Mean height of the SOS interface \eqref {hamilk-sos-gce} with respect to $- \mu $ through diagonalization of the transfer matrix for $\beta =1$, in the limit $L'\to \infty $. \relax }{figure.caption.15}{}}
\newlabel{hamil-sos-cano}{{1.131}{19}{The Solid-On-Solid Model}{equation.1.3.131}{}}
\newlabel{hamilk-sos-gce}{{1.132}{19}{The Solid-On-Solid Model}{equation.1.3.132}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3.3}Transfer matrix}{19}{subsection.1.3.3}\protected@file@percent }
\citation{siegert_scaling_1993}
\citation{pearce_exact_1989}
\citation{abraham_transfer_1973}
\@writefile{lof}{\contentsline {figure}{\numberline {1.7}{\ignorespaces Infinite and symmetrical transfer matrix \ref {matric-transfert}.\relax }}{20}{figure.caption.16}\protected@file@percent }
\newlabel{mat-inf}{{1.7}{20}{Infinite and symmetrical transfer matrix \ref {matric-transfert}.\relax }{figure.caption.16}{}}
\newlabel{matric-transfert}{{1.135}{20}{Transfer matrix}{equation.1.3.135}{}}
\@writefile{brf}{\backcite{siegert_scaling_1993}{{20}{1.3.3}{equation.1.3.135}}}
\@writefile{brf}{\backcite{pearce_exact_1989}{{20}{1.3.3}{equation.1.3.135}}}
\@writefile{brf}{\backcite{abraham_transfer_1973}{{20}{1.3.3}{equation.1.3.137}}}
\newlabel{partition-trace-lambda}{{1.138}{20}{Transfer matrix}{equation.1.3.138}{}}
\newlabel{energie-libre-site}{{1.141}{20}{Transfer matrix}{equation.1.3.141}{}}
\citation{derks_suppression_2006}
\citation{derks_suppression_2006}
\@writefile{lof}{\contentsline {figure}{\numberline {1.8}{\ignorespaces Free energy per site $\Omega (L')$ with respect to the number of sites $L'$ compared to the thermodynamic value $\Omega (\infty )$, for a system of maximum height $L=100$, $\beta =1$, $J=1$ and $V(h_i)=0$.\relax }}{21}{figure.caption.17}\protected@file@percent }
\newlabel{fig-thermo-libre}{{1.8}{21}{Free energy per site $\Omega (L')$ with respect to the number of sites $L'$ compared to the thermodynamic value $\Omega (\infty )$, for a system of maximum height $L=100$, $\beta =1$, $J=1$ and $V(h_i)=0$.\relax }{figure.caption.17}{}}
\newlabel{tm-magnetisation}{{1.143}{21}{Transfer matrix}{equation.1.3.143}{}}
\newlabel{longueur-correl-thermo}{{1.148}{21}{Transfer matrix}{equation.1.3.148}{}}
\citation{girot_conical_2019}
\citation{derks_confocal_2004,derks_suppression_2006}
\citation{berthier_nonequilibrium_2002,berthier_shearing_2002}
\citation{leung_field_1986,bray_coarsening_2000}
\citation{derks_suppression_2006,thiebaud_nonequilibrium_2010}
\citation{bray_interface_2001,bray_interface_2001-1}
\citation{derks_confocal_2004,derks_suppression_2006}
\citation{smith_driven_2010,smith_interfaces_2008-1,smith_interfaces_2008}
\@writefile{toc}{\contentsline {section}{\numberline {1.4}Systems driven by imposed hydrodynamic flows}{22}{section.1.4}\protected@file@percent }
\@writefile{brf}{\backcite{girot_conical_2019}{{22}{1.4}{figure.caption.18}}}
\@writefile{brf}{\backcite{derks_confocal_2004}{{22}{1.4}{figure.caption.18}}}
\@writefile{brf}{\backcite{derks_suppression_2006}{{22}{1.4}{figure.caption.18}}}
\@writefile{brf}{\backcite{berthier_nonequilibrium_2002}{{22}{1.4}{figure.caption.18}}}
\@writefile{brf}{\backcite{berthier_shearing_2002}{{22}{1.4}{figure.caption.18}}}
\newlabel{drive}{{1.149}{22}{Systems driven by imposed hydrodynamic flows}{equation.1.4.149}{}}
\@writefile{brf}{\backcite{leung_field_1986}{{22}{1.4}{equation.1.4.149}}}
\@writefile{brf}{\backcite{bray_coarsening_2000}{{22}{1.4}{equation.1.4.149}}}
\@writefile{brf}{\backcite{derks_suppression_2006}{{22}{1.4}{equation.1.4.150}}}
\@writefile{brf}{\backcite{thiebaud_nonequilibrium_2010}{{22}{1.4}{equation.1.4.150}}}
\@writefile{brf}{\backcite{bray_interface_2001}{{22}{1.4}{equation.1.4.150}}}
\@writefile{brf}{\backcite{bray_interface_2001-1}{{22}{1.4}{equation.1.4.150}}}
\newlabel{eq-cisaillement}{{1.151}{22}{Systems driven by imposed hydrodynamic flows}{equation.1.4.151}{}}
\@writefile{brf}{\backcite{derks_confocal_2004}{{22}{1.4}{equation.1.4.151}}}
\@writefile{brf}{\backcite{derks_suppression_2006}{{22}{1.4}{equation.1.4.151}}}
\@writefile{brf}{\backcite{smith_driven_2010}{{22}{1.4}{equation.1.4.151}}}
\@writefile{brf}{\backcite{smith_interfaces_2008-1}{{22}{1.4}{equation.1.4.151}}}
\@writefile{brf}{\backcite{smith_interfaces_2008}{{22}{1.4}{equation.1.4.151}}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.9}{\ignorespaces Snapshot of the interface a sample of fluorescently labeled poly(methyl methacry-late) (PMMA) colloidal spheres in polystyrene close to the critical point, for different shear rates. The bottom panel schematically shows the flow geometry with the plane of zero velocity located at the interface. From \cite {derks_suppression_2006}. \relax }}{23}{figure.caption.18}\protected@file@percent }
\@writefile{brf}{\backcite{derks_suppression_2006}{{23}{1.9}{figure.caption.18}}}
\newlabel{snap-derks-shear}{{1.9}{23}{Snapshot of the interface a sample of fluorescently labeled poly(methyl methacry-late) (PMMA) colloidal spheres in polystyrene close to the critical point, for different shear rates. The bottom panel schematically shows the flow geometry with the plane of zero velocity located at the interface. From \cite {derks_suppression_2006}. \relax }{figure.caption.18}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.10}{\ignorespaces Snapshot of a 2D Ising model with respect to the shear \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {eq-cisaillement}\unskip \@@italiccorr )}} with Kawasaki dynamics at $T=0.9 T_{2D,C}$.\relax }}{23}{figure.caption.18}\protected@file@percent }
\newlabel{snap-ising-shear}{{1.10}{23}{Snapshot of a 2D Ising model with respect to the shear \eqref {eq-cisaillement} with Kawasaki dynamics at $T=0.9 T_{2D,C}$.\relax }{figure.caption.18}{}}
\citation{bray_theory_1994}
\citation{le_bellac_equilibrium_2004}
\citation{cahn_free_1958,abraham_transfer_1973}
\citation{hohenberg_theory_1977}
\citation{edwards_surface_1982}
\citation{niss_history_2005,niss_history_2009}
\citation{newman_monte_1999}
\citation{gilmer_simulation_1972}
\citation{privman_asymptotic_1989}
\citation{derks_suppression_2006}
\citation{smith_interfaces_2008-1}
\@writefile{toc}{\contentsline {section}{\numberline {1.5}Conclusion}{24}{section.1.5}\protected@file@percent }
\@writefile{brf}{\backcite{bray_theory_1994}{{24}{1.5}{section.1.5}}}
\@writefile{brf}{\backcite{le_bellac_equilibrium_2004}{{24}{1.5}{section.1.5}}}
\@writefile{brf}{\backcite{cahn_free_1958}{{24}{1.5}{section.1.5}}}
\@writefile{brf}{\backcite{abraham_transfer_1973}{{24}{1.5}{section.1.5}}}
\@writefile{brf}{\backcite{hohenberg_theory_1977}{{24}{1.5}{section.1.5}}}
\@writefile{brf}{\backcite{edwards_surface_1982}{{24}{1.5}{section.1.5}}}
\@writefile{brf}{\backcite{niss_history_2005}{{24}{1.5}{section.1.5}}}
\@writefile{brf}{\backcite{niss_history_2009}{{24}{1.5}{section.1.5}}}
\@writefile{brf}{\backcite{newman_monte_1999}{{24}{1.5}{section.1.5}}}
\@writefile{brf}{\backcite{gilmer_simulation_1972}{{24}{1.5}{section.1.5}}}
\@writefile{brf}{\backcite{privman_asymptotic_1989}{{24}{1.5}{section.1.5}}}
\@writefile{brf}{\backcite{derks_suppression_2006}{{24}{1.5}{section.1.5}}}
\@writefile{brf}{\backcite{smith_interfaces_2008-1}{{24}{1.5}{section.1.5}}}
\citation{metropolis_monte_1949}
\citation{noauthor_mesocentre_nodate}
\citation{gersberg_github_2020}
\citation{newman_monte_1999}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Numerical methods}{25}{chapter.2}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lof}{\contentsline {xchapter}{Numerical methods}{25}{chapter.2}\protected@file@percent }
\@writefile{lot}{\contentsline {xchapter}{Numerical methods}{25}{chapter.2}\protected@file@percent }
\newlabel{chap-sim}{{2}{25}{Numerical methods}{chapter.2}{}}
\@writefile{brf}{\backcite{metropolis_monte_1949}{{25}{2}{chapter.2}}}
\@writefile{brf}{\backcite{noauthor_mesocentre_nodate}{{25}{2}{equation.2.0.1}}}
\@writefile{brf}{\backcite{gersberg_github_2020}{{25}{2}{equation.2.0.1}}}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Estimator}{25}{section.2.1}\protected@file@percent }
\@writefile{brf}{\backcite{newman_monte_1999}{{25}{2.1}{section.2.1}}}
\citation{wansleben_monte_1991}
\@writefile{brf}{\backcite{wansleben_monte_1991}{{26}{2.1}{equation.2.1.5}}}
\newlabel{tau_cor}{{2.6}{26}{Estimator}{equation.2.1.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Monte Carlo Metropolis algorithm}{26}{section.2.2}\protected@file@percent }
\newlabel{norm}{{2.9}{26}{Monte Carlo Metropolis algorithm}{equation.2.2.9}{}}
\citation{newman_monte_1999}
\citation{glauber_timedependent_1963}
\newlabel{p-eq-mc}{{2.11}{27}{Monte Carlo Metropolis algorithm}{equation.2.2.11}{}}
\@writefile{brf}{\backcite{newman_monte_1999}{{27}{2.2}{equation.2.2.12}}}
\newlabel{acceptance-mc}{{2.14}{27}{Monte Carlo Metropolis algorithm}{equation.2.2.14}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}Glauber dynamics}{27}{subsection.2.2.1}\protected@file@percent }
\@writefile{brf}{\backcite{glauber_timedependent_1963}{{27}{2.2.1}{subsection.2.2.1}}}
\newlabel{taux-transition-metropolis}{{2.17}{27}{Glauber dynamics}{equation.2.2.17}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Plot of the energy per site (top) and the autocorrelation function (bottom) with Glauber dynamics from an initial state where $h_i=0$, for different temperatures.\relax }}{28}{figure.caption.19}\protected@file@percent }
\newlabel{eq-glau}{{2.1}{28}{Plot of the energy per site (top) and the autocorrelation function (bottom) with Glauber dynamics from an initial state where $h_i=0$, for different temperatures.\relax }{figure.caption.19}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Mean height value per site with respect to $\mu $ different system size $L$ both by Glauber dynamics and diagonalization of the transfer matrix (which has already been shown in Fig \ref {hauteur-mu}) for $\beta =1$ and $L' = 256$.\relax }}{28}{figure.caption.19}\protected@file@percent }
\newlabel{tm-mc-equalt}{{2.2}{28}{Mean height value per site with respect to $\mu $ different system size $L$ both by Glauber dynamics and diagonalization of the transfer matrix (which has already been shown in Fig \ref {hauteur-mu}) for $\beta =1$ and $L' = 256$.\relax }{figure.caption.19}{}}
\citation{kawasaki_diffusion_1966}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.2}Kawasaki dynamics}{29}{subsection.2.2.2}\protected@file@percent }
\newlabel{algo-kawasaki}{{2.2.2}{29}{Kawasaki dynamics}{subsection.2.2.2}{}}
\@writefile{brf}{\backcite{kawasaki_diffusion_1966}{{29}{2.2.2}{subsection.2.2.2}}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces Plot of the energy per site (top) and the autocorrelation function (bottom) with Kawasaki dynamics from an initial state where $h_i=0$, for different temperatures.\relax }}{30}{figure.caption.20}\protected@file@percent }
\newlabel{eq-kaw}{{2.3}{30}{Plot of the energy per site (top) and the autocorrelation function (bottom) with Kawasaki dynamics from an initial state where $h_i=0$, for different temperatures.\relax }{figure.caption.20}{}}
\citation{vasilyev_universal_2009}
\citation{vasilyev_universal_2009}
\citation{vasilyev_universal_2009}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}Computing size dependent free energy}{31}{section.2.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}The Layer method}{31}{subsection.2.3.1}\protected@file@percent }
\newlabel{dec-free-ene}{{2.22}{31}{The Layer method}{equation.2.3.22}{}}
\newlabel{casmir-mc}{{2.23}{31}{The Layer method}{equation.2.3.23}{}}
\newlabel{cas-diff}{{2.25}{31}{The Layer method}{equation.2.3.25}{}}
\@writefile{brf}{\backcite{vasilyev_universal_2009}{{31}{2.3.1}{equation.2.3.25}}}
\newlabel{hamil-trans}{{2.26}{31}{The Layer method}{equation.2.3.26}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces Progessive decoupling of the $k$-th layer of the system in order to compute the freen energy through the Crossover Hamiltonian. Blue bonds have an energy of $\beta J$, red ones an energy of $\lambda \beta J $ and the green ones an energy of$ (1-\lambda ) \beta J$. Reproduction 2D of \cite { vasilyev_universal_2009}.\relax }}{31}{figure.caption.21}\protected@file@percent }
\@writefile{brf}{\backcite{vasilyev_universal_2009}{{31}{2.4}{figure.caption.21}}}
\newlabel{decouplage}{{2.4}{31}{Progessive decoupling of the $k$-th layer of the system in order to compute the freen energy through the Crossover Hamiltonian. Blue bonds have an energy of $\beta J$, red ones an energy of $\lambda \beta J $ and the green ones an energy of$ (1-\lambda ) \beta J$. Reproduction 2D of \cite { vasilyev_universal_2009}.\relax }{figure.caption.21}{}}
\citation{lopes_cardozo_critical_2014}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}The Lopes-Jacquin-Holdsworth method}{32}{subsection.2.3.2}\protected@file@percent }
\newlabel{sec-lopes}{{2.3.2}{32}{The Lopes-Jacquin-Holdsworth method}{subsection.2.3.2}{}}
\@writefile{brf}{\backcite{lopes_cardozo_critical_2014}{{32}{2.3.2}{subsection.2.3.2}}}
\newlabel{integration-cardozo}{{2.33}{32}{The Lopes-Jacquin-Holdsworth method}{equation.2.3.33}{}}
\citation{lopes_cardozo_critical_2014}
\citation{ankerl_fast_nodate}
\citation{newman_monte_1999}
\citation{metropolis_monte_1949}
\citation{glauber_timedependent_1963}
\citation{kawasaki_diffusion_1966}
\newlabel{cas-lopes}{{2.34}{33}{The Lopes-Jacquin-Holdsworth method}{equation.2.3.34}{}}
\@writefile{brf}{\backcite{lopes_cardozo_critical_2014}{{33}{2.3.2}{equation.2.3.34}}}
\newlabel{function-d}{{2.35}{33}{The Lopes-Jacquin-Holdsworth method}{equation.2.3.35}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.4}Tips and tricks}{33}{section.2.4}\protected@file@percent }
\@writefile{brf}{\backcite{ankerl_fast_nodate}{{33}{2.4}{section.2.4}}}
\citation{vasilyev_universal_2009}
\citation{lopes_cardozo_critical_2014}
\@writefile{toc}{\contentsline {section}{\numberline {2.5}Conclusion}{34}{section.2.5}\protected@file@percent }
\@writefile{brf}{\backcite{newman_monte_1999}{{34}{2.5}{section.2.5}}}
\@writefile{brf}{\backcite{metropolis_monte_1949}{{34}{2.5}{section.2.5}}}
\@writefile{brf}{\backcite{glauber_timedependent_1963}{{34}{2.5}{section.2.5}}}
\@writefile{brf}{\backcite{kawasaki_diffusion_1966}{{34}{2.5}{section.2.5}}}
\@writefile{brf}{\backcite{vasilyev_universal_2009}{{34}{2.5}{section.2.5}}}
\@writefile{brf}{\backcite{lopes_cardozo_critical_2014}{{34}{2.5}{section.2.5}}}
\citation{casimir_attraction_1948}
\citation{feynman_feynman_1963}
\citation{casimir_attraction_1948}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Equilibrium Interface models and their finite size effects}{35}{chapter.3}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lof}{\contentsline {xchapter}{Equilibrium Interface models and their finite size effects}{35}{chapter.3}\protected@file@percent }
\@writefile{lot}{\contentsline {xchapter}{Equilibrium Interface models and their finite size effects}{35}{chapter.3}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {3.1}The Casimir effect}{35}{section.3.1}\protected@file@percent }
\newlabel{sec-casimir}{{3.1}{35}{The Casimir effect}{section.3.1}{}}
\@writefile{brf}{\backcite{casimir_attraction_1948}{{35}{3.1}{section.3.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}Quantum Casimir effect}{35}{subsection.3.1.1}\protected@file@percent }
\@writefile{brf}{\backcite{feynman_feynman_1963}{{35}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{casimir_attraction_1948}{{35}{3.1.1}{equation.3.1.3}}}
\citation{stubenrauch_disjoining_2003}
\@writefile{brf}{\backcite{stubenrauch_disjoining_2003}{{36}{3.1.1}{equation.3.1.12}}}
\citation{casimir_attraction_1948,carazza_casimir_1986}
\citation{boyer_quantum_1968,milton_casimir_1978,bowers_casimir_1998}
\citation{milton_casimir_1978}
\citation{schwinger_casimir_1978,schwinger_casimir_1992}
\citation{rytov_principles_1989}
\citation{lifshitz_theory_1955}
\citation{van_kampen_macroscopic_1968,ninham_van_1970}
\@writefile{brf}{\backcite{casimir_attraction_1948}{{37}{3.1.1}{equation.3.1.22}}}
\@writefile{brf}{\backcite{carazza_casimir_1986}{{37}{3.1.1}{equation.3.1.22}}}
\@writefile{brf}{\backcite{boyer_quantum_1968}{{37}{3.1.1}{equation.3.1.25}}}
\@writefile{brf}{\backcite{milton_casimir_1978}{{37}{3.1.1}{equation.3.1.25}}}
\@writefile{brf}{\backcite{bowers_casimir_1998}{{37}{3.1.1}{equation.3.1.25}}}
\@writefile{brf}{\backcite{milton_casimir_1978}{{37}{3.1.1}{equation.3.1.25}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}Lifshitz Theory}{38}{subsection.3.1.2}\protected@file@percent }
\@writefile{brf}{\backcite{schwinger_casimir_1978}{{38}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{schwinger_casimir_1992}{{38}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{rytov_principles_1989}{{38}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{lifshitz_theory_1955}{{38}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{van_kampen_macroscopic_1968}{{38}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{ninham_van_1970}{{38}{3.1.2}{subsection.3.1.2}}}
\citation{matsubara_new_1955}
\citation{gambassi_casimir_2009}
\citation{amit_field_2005}
\@writefile{brf}{\backcite{matsubara_new_1955}{{39}{3.1.2}{equation.3.1.40}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.3}Critical Casimir effect}{39}{subsection.3.1.3}\protected@file@percent }
\@writefile{brf}{\backcite{gambassi_casimir_2009}{{39}{3.1.3}{subsection.3.1.3}}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.1.3.1}Bulk scaling for near critical systems}{39}{subsubsection.3.1.3.1}\protected@file@percent }
\@writefile{brf}{\backcite{amit_field_2005}{{40}{3.1.3.1}{equation.3.1.42}}}
\newlabel{rg}{{3.44}{40}{Bulk scaling for near critical systems}{equation.3.1.44}{}}
\citation{gambassi_casimir_2009,gambassi_critical_2009}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.1.3.2}Finite size scaling}{41}{subsubsection.3.1.3.2}\protected@file@percent }
\newlabel{ffs}{{3.54}{41}{Finite size scaling}{equation.3.1.54}{}}
\newlabel{ffs}{{3.58}{41}{Finite size scaling}{equation.3.1.58}{}}
\citation{privman_finite-size_1988-1}
\citation{matsubara_new_1955}
\citation{kleinert_path_2009}
\@writefile{brf}{\backcite{gambassi_casimir_2009}{{42}{3.1.3.2}{equation.3.1.61}}}
\@writefile{brf}{\backcite{gambassi_critical_2009}{{42}{3.1.3.2}{equation.3.1.61}}}
\newlabel{casfreeenergy}{{3.63}{42}{Finite size scaling}{equation.3.1.63}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Finite size scaling in one dimensional interface models}{42}{section.3.2}\protected@file@percent }
\newlabel{sec-continuous-interface}{{3.2}{42}{Finite size scaling in one dimensional interface models}{section.3.2}{}}
\@writefile{brf}{\backcite{privman_finite-size_1988-1}{{42}{3.2}{section.3.2}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}Continuous models in one dimension}{42}{subsection.3.2.1}\protected@file@percent }
\@writefile{brf}{\backcite{matsubara_new_1955}{{42}{3.2.1}{equation.3.2.64}}}
\newlabel{prog}{{3.65}{42}{Continuous models in one dimension}{equation.3.2.65}{}}
\@writefile{brf}{\backcite{kleinert_path_2009}{{42}{3.2.1}{equation.3.2.65}}}
\citation{cohen-tannoudji_mecanique_2018}
\citation{privman_finite-size_1988-1}
\citation{privman_finite-size_1988-1}
\newlabel{eqp2}{{3.78}{44}{Continuous models in one dimension}{equation.3.2.77}{}}
\newlabel{clq}{{3.80}{44}{Continuous models in one dimension}{equation.3.2.80}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}The confined elastic line}{44}{subsection.3.2.2}\protected@file@percent }
\@writefile{brf}{\backcite{cohen-tannoudji_mecanique_2018}{{44}{3.2.2}{subsection.3.2.2}}}
\newlabel{pfree}{{3.84}{44}{The confined elastic line}{equation.3.2.84}{}}
\@writefile{brf}{\backcite{privman_finite-size_1988-1}{{45}{3.2.2}{equation.3.2.84}}}
\@writefile{brf}{\backcite{privman_finite-size_1988-1}{{45}{3.2.2}{equation.3.2.84}}}
\newlabel{corel}{{3.88}{45}{The confined elastic line}{equation.3.2.88}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}The Airy line}{47}{subsection.3.2.3}\protected@file@percent }
\citation{albright_integrals_1977}
\@writefile{brf}{\backcite{albright_integrals_1977}{{48}{3.2.3}{equation.3.2.114}}}
\newlabel{h1}{{3.120}{48}{The Airy line}{equation.3.2.120}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces The scaled probability density function $p(z)$ for the distribution of the height at a single point for the Airy line given in Eq. (\ref {airyprob})\relax }}{49}{figure.caption.22}\protected@file@percent }
\newlabel{1dpot}{{3.1}{49}{The scaled probability density function $p(z)$ for the distribution of the height at a single point for the Airy line given in Eq. (\ref {airyprob})\relax }{figure.caption.22}{}}
\newlabel{airyprob}{{3.124}{49}{The Airy line}{equation.3.2.124}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}The generalized Lopes-Jacquin-Holdsworth Method}{50}{section.3.3}\protected@file@percent }
\newlabel{gen-lopes}{{3.3}{50}{The generalized Lopes-Jacquin-Holdsworth Method}{section.3.3}{}}
\newlabel{lopes-gen}{{3.134}{50}{The generalized Lopes-Jacquin-Holdsworth Method}{equation.3.3.134}{}}
\newlabel{lopes-gen}{{3.135}{50}{The generalized Lopes-Jacquin-Holdsworth Method}{equation.3.3.135}{}}
\newlabel{diff-gene}{{3.139}{51}{The generalized Lopes-Jacquin-Holdsworth Method}{equation.3.3.139}{}}
\newlabel{neggstaged}{{3.141}{51}{The generalized Lopes-Jacquin-Holdsworth Method}{equation.3.3.141}{}}
\citation{bissacot_phase_2010}
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Difference in free energy directly computed from transfer matrix, compared to numerical integration over the generalized height, for different upper limit $B_2$. The parameters are $L' = 256$, $L=200$ and $\beta =1$ for $5e7$ Monte Carlo steps.\relax }}{52}{figure.caption.23}\protected@file@percent }
\newlabel{integration-free-ene}{{3.2}{52}{Difference in free energy directly computed from transfer matrix, compared to numerical integration over the generalized height, for different upper limit $B_2$. The parameters are $L' = 256$, $L=200$ and $\beta =1$ for $5e7$ Monte Carlo steps.\relax }{figure.caption.23}{}}
\@writefile{brf}{\backcite{bissacot_phase_2010}{{52}{3.3}{equation.3.3.143}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Snapshots of systems for the potential \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {neggstaged}\unskip \@@italiccorr )}} and the chemical potential for $\beta =1$ and $B=2$ with $L=40$ and $L'=256$\relax }}{53}{figure.caption.24}\protected@file@percent }
\newlabel{fig-negstagged}{{3.3}{53}{Snapshots of systems for the potential \eqref {neggstaged} and the chemical potential for $\beta =1$ and $B=2$ with $L=40$ and $L'=256$\relax }{figure.caption.24}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Difference in free energy directly computed from transfer matrix with the potential \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {neggstaged}\unskip \@@italiccorr )}}, compared to numerical integration over the generalized height. The parameters are $L' = 256$, $L=20$ and $\beta =1$, $B_2 = 1$for $10^7$ Monte Carlo steps. \relax }}{53}{figure.caption.24}\protected@file@percent }
\newlabel{fig-int-negstagged}{{3.4}{53}{Difference in free energy directly computed from transfer matrix with the potential \eqref {neggstaged}, compared to numerical integration over the generalized height. The parameters are $L' = 256$, $L=20$ and $\beta =1$, $B_2 = 1$for $10^7$ Monte Carlo steps. \relax }{figure.caption.24}{}}
\citation{guyer_sine-gordon_1979}
\citation{svrakic_finite-size_1988,privman_finite-size_1988}
\@writefile{toc}{\contentsline {section}{\numberline {3.4}The confined solid on solid model}{54}{section.3.4}\protected@file@percent }
\@writefile{brf}{\backcite{guyer_sine-gordon_1979}{{54}{3.4}{section.3.4}}}
\@writefile{brf}{\backcite{svrakic_finite-size_1988}{{54}{3.4}{section.3.4}}}
\@writefile{brf}{\backcite{privman_finite-size_1988}{{54}{3.4}{section.3.4}}}
\newlabel{elam}{{3.150}{54}{The confined solid on solid model}{equation.3.4.150}{}}
\newlabel{aeq}{{3.162}{55}{Ground state eigenvector}{equation.3.4.162}{}}
\citation{guyer_sine-gordon_1979}
\newlabel{def-theta}{{3.172}{56}{Ground state eigenvector}{equation.3.4.172}{}}
\newlabel{thetamas}{{3.173}{56}{Ground state eigenvector}{equation.3.4.173}{}}
\newlabel{ground-sos}{{3.178}{56}{Ground state eigenvector}{equation.3.4.178}{}}
\@writefile{brf}{\backcite{guyer_sine-gordon_1979}{{56}{3.4}{equation.3.4.178}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces $\lambda _0$ and $\lambda _1$ as a function of $L$ computed by numerical diagonalisation of the transfer matrix, compared to the analytical approximations for large $L$: Eq. \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {ground-sos}\unskip \@@italiccorr )}} and Eq. \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {excited-sos}\unskip \@@italiccorr )}}. Here we have chosen for $J=1$ and $\beta =1$.\relax }}{57}{figure.caption.27}\protected@file@percent }
\newlabel{large-l-limit}{{3.5}{57}{$\lambda _0$ and $\lambda _1$ as a function of $L$ computed by numerical diagonalisation of the transfer matrix, compared to the analytical approximations for large $L$: Eq. \eqref {ground-sos} and Eq. \eqref {excited-sos}. Here we have chosen for $J=1$ and $\beta =1$.\relax }{figure.caption.27}{}}
\newlabel{theta}{{3.179}{57}{First excited state eigenvector}{equation.3.4.179}{}}
\newlabel{excited-sos}{{3.181}{57}{First excited state eigenvector}{equation.3.4.181}{}}
\citation{svrakic_finite-size_1988}
\newlabel{mde}{{3.191}{58}{High temperature limit}{equation.3.4.191}{}}
\@writefile{brf}{\backcite{svrakic_finite-size_1988}{{58}{3.4}{equation.3.4.191}}}
\newlabel{high-temperature}{{3.200}{59}{High temperature limit}{equation.3.4.200}{}}
\citation{casimir_attraction_1948,rytov_principles_1989,lifshitz_theory_1955}
\citation{gambassi_casimir_2009}
\citation{matsubara_new_1955}
\citation{privman_finite-size_1988-1}
\citation{lopes_cardozo_critical_2014}
\citation{svrakic_finite-size_1988}
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Free energy with respect to $\beta $ for $L=100$ and $J=1$ in the high-temperature limit, by direct diagonalization of the transfer matrix and by Eq \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {high-temperature}\unskip \@@italiccorr )}}.\relax }}{60}{figure.caption.29}\protected@file@percent }
\newlabel{fig-high-temp}{{3.6}{60}{Free energy with respect to $\beta $ for $L=100$ and $J=1$ in the high-temperature limit, by direct diagonalization of the transfer matrix and by Eq \eqref {high-temperature}.\relax }{figure.caption.29}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.5}Conclusion}{60}{section.3.5}\protected@file@percent }
\@writefile{brf}{\backcite{casimir_attraction_1948}{{60}{3.5}{section.3.5}}}
\@writefile{brf}{\backcite{rytov_principles_1989}{{60}{3.5}{section.3.5}}}
\@writefile{brf}{\backcite{lifshitz_theory_1955}{{60}{3.5}{section.3.5}}}
\@writefile{brf}{\backcite{gambassi_casimir_2009}{{60}{3.5}{section.3.5}}}
\@writefile{brf}{\backcite{matsubara_new_1955}{{60}{3.5}{section.3.5}}}
\@writefile{brf}{\backcite{privman_finite-size_1988-1}{{60}{3.5}{section.3.5}}}
\@writefile{brf}{\backcite{lopes_cardozo_critical_2014}{{60}{3.5}{section.3.5}}}
\@writefile{brf}{\backcite{svrakic_finite-size_1988}{{60}{3.5}{section.3.5}}}
\citation{niss_history_2005,niss_history_2009}
\citation{abraham_interface_1976}
\citation{gilmer_computer_1972,gilmer_simulation_1972}
\citation{edwards_surface_1982,halpin-healy_kinetic_1995}
\citation{swendsen_roughening_1977,guyer_sine-gordon_1979}
\citation{muller-krumbhaar_kinetic_1976,baillie_solid_1993}
\citation{metropolis_monte_1949,newman_monte_1999}
\citation{schmittmann_driven_1998,muller_profile_2005,smith_interfaces_2008-1,smith_lateral_2010}
\citation{wilby_scaling_1992,siegert_scaling_1993}
\citation{temperley_statistical_1952}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Beyond Solid-On-Solid : the Particles-Over-Particles model}{61}{chapter.4}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lof}{\contentsline {xchapter}{Beyond Solid-On-Solid : the Particles-Over-Particles model}{61}{chapter.4}\protected@file@percent }
\@writefile{lot}{\contentsline {xchapter}{Beyond Solid-On-Solid : the Particles-Over-Particles model}{61}{chapter.4}\protected@file@percent }
\newlabel{chap-pop}{{4}{61}{Beyond Solid-On-Solid : the Particles-Over-Particles model}{chapter.4}{}}
\@writefile{brf}{\backcite{niss_history_2005}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{niss_history_2009}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{abraham_interface_1976}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{gilmer_computer_1972}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{gilmer_simulation_1972}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{edwards_surface_1982}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{halpin-healy_kinetic_1995}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{swendsen_roughening_1977}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{guyer_sine-gordon_1979}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{muller-krumbhaar_kinetic_1976}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{baillie_solid_1993}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{metropolis_monte_1949}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{newman_monte_1999}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{schmittmann_driven_1998}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{muller_profile_2005}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{smith_interfaces_2008-1}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{smith_lateral_2010}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{wilby_scaling_1992}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{siegert_scaling_1993}{{61}{4}{chapter.4}}}
\@writefile{brf}{\backcite{temperley_statistical_1952}{{61}{4}{chapter.4}}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}The model}{61}{section.4.1}\protected@file@percent }
\citation{burkhardt_localisation-delocalisation_1981,chui_pinning_1981}
\newlabel{heff-pop}{{4.6}{62}{The model}{equation.4.1.6}{}}
\@writefile{brf}{\backcite{burkhardt_localisation-delocalisation_1981}{{62}{4.1}{equation.4.1.7}}}
\@writefile{brf}{\backcite{chui_pinning_1981}{{62}{4.1}{equation.4.1.7}}}
\newlabel{stirling-pop}{{4.10}{62}{The model}{equation.4.1.10}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Mean height of the SOS (for reference) and POP model with respect the chemical potential $\mu $ through transfer matrix with different maximal heights in the thermodynamic limit $L'\to \infty $, compared to the Striling's approximation Eq \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {stirling-pop}\unskip \@@italiccorr )}},at $\beta =1$. \relax }}{63}{figure.caption.30}\protected@file@percent }
\newlabel{haut-tm-pop}{{4.1}{63}{Mean height of the SOS (for reference) and POP model with respect the chemical potential $\mu $ through transfer matrix with different maximal heights in the thermodynamic limit $L'\to \infty $, compared to the Striling's approximation Eq \eqref {stirling-pop},at $\beta =1$. \relax }{figure.caption.30}{}}
\citation{metropolis_monte_1949}
\citation{goldenfeld_lectures_2018}
\citation{wang_instability_1978,bonizzi_simulation_2003}
\@writefile{brf}{\backcite{metropolis_monte_1949}{{64}{4.1}{equation.4.1.13}}}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}$M$-particles POP system}{64}{section.4.2}\protected@file@percent }
\@writefile{brf}{\backcite{goldenfeld_lectures_2018}{{64}{4.2}{figure.caption.31}}}
\@writefile{brf}{\backcite{wang_instability_1978}{{64}{4.2}{figure.caption.31}}}
\@writefile{brf}{\backcite{bonizzi_simulation_2003}{{64}{4.2}{figure.caption.31}}}
\newlabel{ham-pop-c}{{4.14}{64}{$M$-particles POP system}{equation.4.2.14}{}}
\citation{hohenberg_theory_1977}
\citation{crisanti_dynamics_1992}
\citation{dieterich_theoretical_1980,katz_nonequilibrium_1984}
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Possible POP configuration with two types of particles $p_1$ and $p_2$. The red line shows the origin $z=0$. In the $i$-th column the interface is at height $h_i$, with $n_{1,i}$ particles of type $p_1$ at site $i$, and same for particles $p_2$. Over the interface, there are no particles. \relax }}{65}{figure.caption.31}\protected@file@percent }
\newlabel{fig-pop}{{4.2}{65}{Possible POP configuration with two types of particles $p_1$ and $p_2$. The red line shows the origin $z=0$. In the $i$-th column the interface is at height $h_i$, with $n_{1,i}$ particles of type $p_1$ at site $i$, and same for particles $p_2$. Over the interface, there are no particles. \relax }{figure.caption.31}{}}
\citation{grosberg_nonequilibrium_2015}
\@writefile{brf}{\backcite{hohenberg_theory_1977}{{66}{4.2}{equation.4.2.17}}}
\@writefile{brf}{\backcite{crisanti_dynamics_1992}{{66}{4.2}{equation.4.2.17}}}
\@writefile{brf}{\backcite{dieterich_theoretical_1980}{{66}{4.2}{equation.4.2.17}}}
\@writefile{brf}{\backcite{katz_nonequilibrium_1984}{{66}{4.2}{equation.4.2.17}}}
\@writefile{brf}{\backcite{grosberg_nonequilibrium_2015}{{66}{4.2}{equation.4.2.19}}}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Continuum Theory}{66}{section.4.3}\protected@file@percent }
\citation{gilmer_computer_1972,gilmer_simulation_1972}
\citation{temperley_statistical_1952}
\citation{chui_pinning_1981}
\citation{metropolis_monte_1949,newman_monte_1999}
\newlabel{stat}{{4.25}{67}{Continuum Theory}{equation.4.3.25}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Conclusion}{67}{section.4.4}\protected@file@percent }
\@writefile{brf}{\backcite{gilmer_computer_1972}{{67}{4.4}{section.4.4}}}
\@writefile{brf}{\backcite{gilmer_simulation_1972}{{67}{4.4}{section.4.4}}}
\@writefile{brf}{\backcite{temperley_statistical_1952}{{67}{4.4}{section.4.4}}}
\@writefile{brf}{\backcite{chui_pinning_1981}{{67}{4.4}{section.4.4}}}
\@writefile{brf}{\backcite{metropolis_monte_1949}{{67}{4.4}{section.4.4}}}
\@writefile{brf}{\backcite{newman_monte_1999}{{67}{4.4}{section.4.4}}}
\citation{derks_suppression_2006}
\citation{smith_interfaces_2008,smith_lateral_2010}
\citation{dean_effect_2020}
\citation{onsager_collected_1996}
\citation{dzubiella_lane_2002,chakrabarti_dynamical_2003,chakrabarti_reentrance_2004,sutterlin_dynamics_2009,glanz_nature_2012,klymko_microscopic_2016}
\citation{demery_conductivity_2016,poncet_universal_2017}
\citation{dean_renormalization_1996}
\citation{katz_nonequilibrium_1984,zia_interfacial_1991,leung_anomalous_1993,schmittmann_driven_1998}
\citation{katz_nonequilibrium_1984,leung_anomalous_1993,smith_interfaces_2008,smith_lateral_2010}
\citation{leung_anomalous_1993}
\citation{zia_interfacial_1991}
\@writefile{toc}{\contentsline {chapter}{\numberline {5}Driven interfaces}{69}{chapter.5}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lof}{\contentsline {xchapter}{Driven interfaces}{69}{chapter.5}\protected@file@percent }
\@writefile{lot}{\contentsline {xchapter}{Driven interfaces}{69}{chapter.5}\protected@file@percent }
\newlabel{chap-driven}{{5}{69}{Driven interfaces}{chapter.5}{}}
\@writefile{brf}{\backcite{derks_suppression_2006}{{69}{5}{chapter.5}}}
\@writefile{brf}{\backcite{smith_interfaces_2008}{{69}{5}{chapter.5}}}
\@writefile{brf}{\backcite{smith_lateral_2010}{{69}{5}{chapter.5}}}
\@writefile{brf}{\backcite{dean_effect_2020}{{69}{5}{chapter.5}}}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}The effect of driving on model C interfaces}{69}{section.5.1}\protected@file@percent }
\@writefile{brf}{\backcite{onsager_collected_1996}{{69}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{dzubiella_lane_2002}{{69}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{chakrabarti_dynamical_2003}{{69}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{chakrabarti_reentrance_2004}{{69}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{sutterlin_dynamics_2009}{{69}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{glanz_nature_2012}{{69}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{klymko_microscopic_2016}{{69}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{demery_conductivity_2016}{{69}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{poncet_universal_2017}{{69}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{dean_renormalization_1996}{{69}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{katz_nonequilibrium_1984}{{69}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{zia_interfacial_1991}{{69}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{leung_anomalous_1993}{{69}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{schmittmann_driven_1998}{{69}{5.1}{section.5.1}}}
\citation{bray_interface_2001,bray_interface_2001-1,smith_interfaces_2008,smith_lateral_2010,thiebaud_nonequilibrium_2010,thiebaud_nonlinear_2014}
\citation{hohenberg_theory_1977}
\citation{bray_interface_2001,bray_interface_2001-1}
\citation{derks_suppression_2006}
\@writefile{brf}{\backcite{katz_nonequilibrium_1984}{{70}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{leung_anomalous_1993}{{70}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{smith_interfaces_2008}{{70}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{smith_lateral_2010}{{70}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{leung_anomalous_1993}{{70}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{zia_interfacial_1991}{{70}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{bray_interface_2001}{{70}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{bray_interface_2001-1}{{70}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{smith_interfaces_2008}{{70}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{smith_lateral_2010}{{70}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{thiebaud_nonequilibrium_2010}{{70}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{thiebaud_nonlinear_2014}{{70}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{hohenberg_theory_1977}{{70}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{bray_interface_2001}{{70}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{bray_interface_2001-1}{{70}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{derks_suppression_2006}{{70}{5.1}{section.5.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.1}The underling two field model}{70}{subsection.5.1.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces Schematics of the advection term ${\bf v}\cdot { \nabla }\psi ({\bf x},t)$ for a field under the interface approximation \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {dynamical-interface}\unskip \@@italiccorr )}}. The red and blue phase respectively correspond to $\phi _2$ and $\psi _1$, with $\phi _2 \greater \psi _1$, and the solid line the interface between phases.\relax }}{71}{figure.caption.32}\protected@file@percent }
\newlabel{fig-driven}{{5.1}{71}{Schematics of the advection term ${\bf v}\cdot { \nabla }\psi (\bx ,t)$ for a field under the interface approximation \eqref {dynamical-interface}. The red and blue phase respectively correspond to $\phi _2$ and $\psi _1$, with $\phi _2 \greater \psi _1$, and the solid line the interface between phases.\relax }{figure.caption.32}{}}
\newlabel{dyn1}{{5.17}{72}{The underling two field model}{equation.5.1.17}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.2}Effective interface dynamics}{73}{subsection.5.1.2}\protected@file@percent }
\newlabel{dynamical-interface}{{5.18}{73}{Effective interface dynamics}{equation.5.1.18}{}}
\newlabel{eqdelta}{{5.19}{73}{Effective interface dynamics}{equation.5.1.19}{}}
\newlabel{eqpsi}{{5.20}{73}{Effective interface dynamics}{equation.5.1.20}{}}
\newlabel{em}{{5.24}{73}{Effective interface dynamics}{equation.5.1.24}{}}
\newlabel{dyn}{{5.30}{74}{Effective interface dynamics}{equation.5.1.30}{}}
\newlabel{fourier-steady-state}{{5.32}{74}{Effective interface dynamics}{equation.5.1.32}{}}
\citation{onsager_collected_1996}
\citation{demery_conductivity_2016}
\citation{dean_nonequilibrium_2016}
\newlabel{key}{{5.36}{75}{Effective interface dynamics}{equation.5.1.36}{}}
\newlabel{eqmaind}{{5.42}{75}{Effective interface dynamics}{equation.5.1.42}{}}
\newlabel{direction-surface-tension}{{5.46}{75}{Effective interface dynamics}{equation.5.1.46}{}}
\citation{leung_anomalous_1993}
\citation{grosberg_nonequilibrium_2015}
\@writefile{brf}{\backcite{onsager_collected_1996}{{76}{5.1.2}{equation.5.1.46}}}
\@writefile{brf}{\backcite{demery_conductivity_2016}{{76}{5.1.2}{equation.5.1.46}}}
\@writefile{brf}{\backcite{dean_nonequilibrium_2016}{{76}{5.1.2}{equation.5.1.46}}}
\@writefile{brf}{\backcite{leung_anomalous_1993}{{76}{5.1.2}{equation.5.1.50}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.3}A model of active interfaces}{76}{subsection.5.1.3}\protected@file@percent }
\@writefile{brf}{\backcite{grosberg_nonequilibrium_2015}{{76}{5.1.3}{subsection.5.1.3}}}
\citation{lu_out--equilibrium_2015}
\citation{zia_interfacial_1991}
\citation{derks_suppression_2006}
\citation{smith_interfaces_2008-1,smith_lateral_2010}
\@writefile{brf}{\backcite{lu_out--equilibrium_2015}{{77}{5.1.3}{equation.5.1.54}}}
\@writefile{brf}{\backcite{zia_interfacial_1991}{{77}{5.1.3}{equation.5.1.59}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.4}Conclusion}{78}{subsection.5.1.4}\protected@file@percent }
\@writefile{brf}{\backcite{derks_suppression_2006}{{78}{5.1.4}{subsection.5.1.4}}}
\@writefile{brf}{\backcite{smith_interfaces_2008-1}{{78}{5.1.4}{subsection.5.1.4}}}
\@writefile{brf}{\backcite{smith_lateral_2010}{{78}{5.1.4}{subsection.5.1.4}}}
\@writefile{toc}{\contentsline {section}{\numberline {5.2}Driven SOS model}{78}{section.5.2}\protected@file@percent }
\citation{maat_roughness_1991}
\citation{smith_interfaces_2008-1,smith_lateral_2010}
\newlabel{int-sigma}{{5.65}{79}{Driven SOS model}{equation.5.2.65}{}}
\@writefile{brf}{\backcite{maat_roughness_1991}{{79}{5.2}{equation.5.2.65}}}
\@writefile{brf}{\backcite{smith_interfaces_2008-1}{{79}{5.2}{equation.5.2.65}}}
\@writefile{brf}{\backcite{smith_lateral_2010}{{79}{5.2}{equation.5.2.65}}}
\citation{bray_interface_2001,bray_interface_2001-1}
\citation{dean_effect_2020}
\citation{smith_interfaces_2008-1}
\citation{maat_roughness_1991}
\bibstyle{unsrt}
\bibdata{biblio}
\@writefile{lof}{\contentsline {figure}{\numberline {5.2}{\ignorespaces Interface width $w=\sqrt {<h^2>-<h>^2}$ and surface tension $\sigma $ computed from the integral \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {int-sigma}\unskip \@@italiccorr )}} with respect to the drive $v$, with $L'=256$, $L=200$, $<h> = 4.5$, and $\beta = J = 1$ for $5 \cdot 10^7$ MC steps.\relax }}{80}{figure.caption.33}\protected@file@percent }
\newlabel{fig-correl-drive}{{5.2}{80}{Interface width $w=\sqrt {<h^2>-<h>^2}$ and surface tension $\sigma $ computed from the integral \eqref {int-sigma} with respect to the drive $v$, with $L'=256$, $L=200$, $<h> = 4.5$, and $\beta = J = 1$ for $5 \cdot 10^7$ MC steps.\relax }{figure.caption.33}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.3}Conclusions}{80}{section.5.3}\protected@file@percent }
\@writefile{brf}{\backcite{bray_interface_2001}{{80}{5.3}{section.5.3}}}
\@writefile{brf}{\backcite{bray_interface_2001-1}{{80}{5.3}{section.5.3}}}
\@writefile{brf}{\backcite{dean_effect_2020}{{80}{5.3}{section.5.3}}}
\@writefile{brf}{\backcite{smith_interfaces_2008-1}{{80}{5.3}{section.5.3}}}
\@writefile{brf}{\backcite{maat_roughness_1991}{{80}{5.3}{section.5.3}}}
\bibcite{landau_physique_1990}{{1}{}{{}}{{}}}
\bibcite{goldenfeld_lectures_2018}{{2}{}{{}}{{}}}
\bibcite{gambassi_casimir_2009}{{3}{}{{}}{{}}}
\bibcite{niss_history_2005}{{4}{}{{}}{{}}}
\bibcite{abraham_transfer_1973}{{5}{}{{}}{{}}}
\bibcite{gilmer_simulation_1972}{{6}{}{{}}{{}}}
\bibcite{amit_field_2005}{{7}{}{{}}{{}}}
\bibcite{matsubara_new_1955}{{8}{}{{}}{{}}}
\bibcite{bray_interface_2001}{{9}{}{{}}{{}}}
\bibcite{newman_monte_1999}{{10}{}{{}}{{}}}
\bibcite{vasilyev_universal_2009}{{11}{}{{}}{{}}}
\bibcite{lopes_cardozo_critical_2014}{{12}{}{{}}{{}}}
\bibcite{milton_casimir_2001}{{13}{}{{}}{{}}}
\bibcite{casimir_attraction_1948}{{14}{}{{}}{{}}}
\bibcite{lifshitz_theory_1955}{{15}{}{{}}{{}}}
\bibcite{privman_finite-size_1988-1}{{16}{}{{}}{{}}}
\@writefile{@@@}{\chapterbegin }
\bibcite{dean_effect_2020}{{17}{}{{}}{{}}}
\bibcite{hohenberg_theory_1977}{{18}{}{{}}{{}}}
\bibcite{derks_suppression_2006}{{19}{}{{}}{{}}}
\bibcite{noauthor_mesocentre_nodate}{{20}{}{{}}{{}}}
\bibcite{gersberg_github_2020}{{21}{}{{}}{{}}}
\bibcite{bray_theory_1994}{{22}{}{{}}{{}}}
\bibcite{onsager_crystal_1944}{{23}{}{{}}{{}}}
\bibcite{tuszynski_exact_1984}{{24}{}{{}}{{}}}
\bibcite{cahn_free_1958}{{25}{}{{}}{{}}}
\bibcite{hennequin_drop_2006}{{26}{}{{}}{{}}}
\bibcite{atencia_controlled_2005}{{27}{}{{}}{{}}}
\bibcite{diehl_interface_1980}{{28}{}{{}}{{}}}
\bibcite{bray_interface_2001-1}{{29}{}{{}}{{}}}
\bibcite{edwards_surface_1982}{{30}{}{{}}{{}}}
\bibcite{halpin-healy_kinetic_1995}{{31}{}{{}}{{}}}
\bibcite{paul_domain_2005}{{32}{}{{}}{{}}}
\bibcite{huse_corrections_1986}{{33}{}{{}}{{}}}
\bibcite{niss_history_2009}{{34}{}{{}}{{}}}
\bibcite{gupta_phase_1988}{{35}{}{{}}{{}}}
\bibcite{le_bellac_equilibrium_2004}{{36}{}{{}}{{}}}
\bibcite{aizenman_proof_1981}{{37}{}{{}}{{}}}
\bibcite{de_jongh_experiments_1974}{{38}{}{{}}{{}}}
\bibcite{wold_ising_2000}{{39}{}{{}}{{}}}
\bibcite{ikeda_neutron_1973}{{40}{}{{}}{{}}}
\bibcite{frohlich_triviality_1981}{{41}{}{{}}{{}}}
\bibcite{talapov_magnetization_1996}{{42}{}{{}}{{}}}
\bibcite{preis_gpu_2009}{{43}{}{{}}{{}}}
\bibcite{stecki_magnetization_1994}{{44}{}{{}}{{}}}
\bibcite{richards_numerical_1993}{{45}{}{{}}{{}}}
\bibcite{abraham_interface_1976}{{46}{}{{}}{{}}}
\bibcite{swendsen_roughening_1977}{{47}{}{{}}{{}}}
\bibcite{van_leeuwen_pinning_1981}{{48}{}{{}}{{}}}
\bibcite{elwenspoek_kinetic_1987}{{49}{}{{}}{{}}}
\bibcite{wilby_scaling_1992}{{50}{}{{}}{{}}}
\bibcite{boal_mechanics_2012}{{51}{}{{}}{{}}}
\bibcite{gompper_steric_1989}{{52}{}{{}}{{}}}
\bibcite{fisher_walks_1983}{{53}{}{{}}{{}}}
\bibcite{privman_transfer-matrix_1989}{{54}{}{{}}{{}}}
\bibcite{kim_conserved_1994}{{55}{}{{}}{{}}}
\bibcite{vaysburd_critical_1995}{{56}{}{{}}{{}}}
\bibcite{knops_exact_1977}{{57}{}{{}}{{}}}
\bibcite{schehr_universal_2006}{{58}{}{{}}{{}}}
\bibcite{swendsen_monte_1977}{{59}{}{{}}{{}}}
\bibcite{owczarek_exact_1993}{{60}{}{{}}{{}}}
\bibcite{majumdar_airy_2005}{{61}{}{{}}{{}}}
\bibcite{siegert_scaling_1993}{{62}{}{{}}{{}}}
\bibcite{pearce_exact_1989}{{63}{}{{}}{{}}}
\bibcite{girot_conical_2019}{{64}{}{{}}{{}}}
\bibcite{derks_confocal_2004}{{65}{}{{}}{{}}}
\bibcite{berthier_nonequilibrium_2002}{{66}{}{{}}{{}}}
\bibcite{berthier_shearing_2002}{{67}{}{{}}{{}}}
\bibcite{leung_field_1986}{{68}{}{{}}{{}}}
\bibcite{bray_coarsening_2000}{{69}{}{{}}{{}}}
\bibcite{thiebaud_nonequilibrium_2010}{{70}{}{{}}{{}}}
\bibcite{smith_driven_2010}{{71}{}{{}}{{}}}
\bibcite{smith_interfaces_2008-1}{{72}{}{{}}{{}}}
\bibcite{smith_interfaces_2008}{{73}{}{{}}{{}}}
\bibcite{privman_asymptotic_1989}{{74}{}{{}}{{}}}
\bibcite{metropolis_monte_1949}{{75}{}{{}}{{}}}
\bibcite{wansleben_monte_1991}{{76}{}{{}}{{}}}
\bibcite{glauber_timedependent_1963}{{77}{}{{}}{{}}}
\bibcite{kawasaki_diffusion_1966}{{78}{}{{}}{{}}}
\bibcite{ankerl_fast_nodate}{{79}{}{{}}{{}}}
\bibcite{feynman_feynman_1963}{{80}{}{{}}{{}}}
\bibcite{stubenrauch_disjoining_2003}{{81}{}{{}}{{}}}
\bibcite{carazza_casimir_1986}{{82}{}{{}}{{}}}
\bibcite{boyer_quantum_1968}{{83}{}{{}}{{}}}
\bibcite{milton_casimir_1978}{{84}{}{{}}{{}}}
\bibcite{bowers_casimir_1998}{{85}{}{{}}{{}}}
\bibcite{schwinger_casimir_1978}{{86}{}{{}}{{}}}
\bibcite{schwinger_casimir_1992}{{87}{}{{}}{{}}}
\bibcite{rytov_principles_1989}{{88}{}{{}}{{}}}
\bibcite{van_kampen_macroscopic_1968}{{89}{}{{}}{{}}}
\bibcite{ninham_van_1970}{{90}{}{{}}{{}}}
\bibcite{gambassi_critical_2009}{{91}{}{{}}{{}}}
\bibcite{kleinert_path_2009}{{92}{}{{}}{{}}}
\bibcite{cohen-tannoudji_mecanique_2018}{{93}{}{{}}{{}}}
\bibcite{albright_integrals_1977}{{94}{}{{}}{{}}}
\bibcite{bissacot_phase_2010}{{95}{}{{}}{{}}}
\bibcite{guyer_sine-gordon_1979}{{96}{}{{}}{{}}}
\bibcite{svrakic_finite-size_1988}{{97}{}{{}}{{}}}
\bibcite{privman_finite-size_1988}{{98}{}{{}}{{}}}
\bibcite{gilmer_computer_1972}{{99}{}{{}}{{}}}
\bibcite{muller-krumbhaar_kinetic_1976}{{100}{}{{}}{{}}}
\bibcite{baillie_solid_1993}{{101}{}{{}}{{}}}
\bibcite{schmittmann_driven_1998}{{102}{}{{}}{{}}}
\bibcite{muller_profile_2005}{{103}{}{{}}{{}}}
\bibcite{smith_lateral_2010}{{104}{}{{}}{{}}}
\bibcite{temperley_statistical_1952}{{105}{}{{}}{{}}}
\bibcite{burkhardt_localisation-delocalisation_1981}{{106}{}{{}}{{}}}
\bibcite{chui_pinning_1981}{{107}{}{{}}{{}}}
\bibcite{wang_instability_1978}{{108}{}{{}}{{}}}
\bibcite{bonizzi_simulation_2003}{{109}{}{{}}{{}}}
\bibcite{crisanti_dynamics_1992}{{110}{}{{}}{{}}}
\bibcite{dieterich_theoretical_1980}{{111}{}{{}}{{}}}
\bibcite{katz_nonequilibrium_1984}{{112}{}{{}}{{}}}
\bibcite{grosberg_nonequilibrium_2015}{{113}{}{{}}{{}}}
\bibcite{onsager_collected_1996}{{114}{}{{}}{{}}}
\bibcite{dzubiella_lane_2002}{{115}{}{{}}{{}}}
\bibcite{chakrabarti_dynamical_2003}{{116}{}{{}}{{}}}
\bibcite{chakrabarti_reentrance_2004}{{117}{}{{}}{{}}}
\bibcite{sutterlin_dynamics_2009}{{118}{}{{}}{{}}}
\bibcite{glanz_nature_2012}{{119}{}{{}}{{}}}
\bibcite{klymko_microscopic_2016}{{120}{}{{}}{{}}}
\bibcite{demery_conductivity_2016}{{121}{}{{}}{{}}}
\bibcite{poncet_universal_2017}{{122}{}{{}}{{}}}
\bibcite{dean_renormalization_1996}{{123}{}{{}}{{}}}
\bibcite{zia_interfacial_1991}{{124}{}{{}}{{}}}
\bibcite{leung_anomalous_1993}{{125}{}{{}}{{}}}
\bibcite{thiebaud_nonlinear_2014}{{126}{}{{}}{{}}}
\bibcite{dean_nonequilibrium_2016}{{127}{}{{}}{{}}}
\bibcite{lu_out--equilibrium_2015}{{128}{}{{}}{{}}}
\bibcite{maat_roughness_1991}{{129}{}{{}}{{}}}
\providecommand\NAT@force@numbers{}\NAT@force@numbers
\global\mtcsecondpartfalse