-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
191 lines (132 loc) · 5.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 9 17:32:08 2022
@author: Busra Bulut
"""
import Functions
import matplotlib.pyplot as plt
import pandas as pd
##MAIN##
""" _______________________Description__________________________________
To plot with options, run this part before
"""
option_plot=['bo','r.','g*','m.','yo','ko','b*','r*','g*','m*','y*','k*']
option_plot_2=['o--','o:','o-','o','yo','ko','b*','r*','g*','m*','y*','k*']
""" ___________________________Description_____________________________
To plot the number of scenarios over the number of divisions for different values of z_smallest and
to save it as Sce(Div)
"""
r_vois=1.5
list_experiment=[1,2,5,8,10,11,14,15,17,18,19,21,22,24,27,28,29,30,31,32,33,34,35,36,37,39]
values_z_smallest=[0,1,2,3]
#Importance for the length, orientation, proximity for the cost function of without division
lambdaa=[0.05,0.03,0.92]
#coeff of the cost function with division
gammaa=[0.3,0.1,0.1,0.2,0.2,0.1,0.3]
fig=plt.figure()
for z in range(len(values_z_smallest)):
##we already have X and Y as excel
df=pd.read_excel('C:/Users/Busra Bulut/Documents/EPFL/Cell_lineage/05_labelled_images-20220530T153642Z-001/update190722/05_labelled_images/Sce_Div'+str(values_z_smallest[z])+'.xlsx')
#plt.plot(df['X'],df['Y'],option_plot[z],label='z_smallest :'+str(z))
df_zoom=df.loc[df['Y']<5000]
plt.plot(df_zoom['X'],df_zoom['Y'],option_plot[z],label='z_smallest :'+str(z))
##we don't have
X,Y= Functions.Plot_Sce_Div(list_experiment,values_z_smallest[z],r_vois,lambdaa,gammaa,False,legend=str(values_z_smallest[z]))
plt.plot(X,Y,option_plot[z],label='z_smallest :'+str(z))
plt.legend()
plt.xlabel('Number of Divisions')
plt.ylabel('Number of Scenarios')
#fig.savefig('Sce(Div)_5.jpg')
plt.show()
""" ___________________________Description_____________________________
To plot the number of scenarios over the number of divisions for different values of r_vois and
to save it as Sce(Div)
"""
X,Y=Functions.Plot_Sce_Div(list_experiment,2,3,False,legend='r_vois_3')
df1_2=pd.read_excel('C:/Users/Busra Bulut/Documents/EPFL/Cell_lineage/05_labelled_images-20220530T153642Z-001/update190722/05_labelled_images/Sce_Div_r_1_2.xlsx')
df1_5=pd.read_excel('C:/Users/Busra Bulut/Documents/EPFL/Cell_lineage/05_labelled_images-20220530T153642Z-001/update190722/05_labelled_images/Sce_Divr_vois_1_5.xlsx')
df0_9=pd.read_excel('C:/Users/Busra Bulut/Documents/EPFL/Cell_lineage/05_labelled_images-20220530T153642Z-001/update190722/05_labelled_images/Sce_Divr_vois_0_9.xlsx')
plt.figure()
plt.plot(df0_9['X'],df0_9['Y'],option_plot[0],label='r_vois : 0.9')
plt.plot(df1_2['X'],df1_2['Y'],option_plot[2],label='r_vois : 1.2')
plt.plot(df1_5['X'],df1_5['Y'],option_plot[1],label='r_vois : 1.5')
plt.legend()
plt.xlabel('Number of Divisions')
plt.ylabel('Number of Scenarios')
#fig.savefig('Sce(Div)_5.jpg')
plt.show()
""" ___________________________Description_____________________________
To plot the min of the difference of orientation between cells picked by the best path
"""
##select the experiment ##
Name_experiment="2021_08_29_SD_TS66_SHU1_FOS800_01_10_R3D_labelled.tif"
#To save the experiment and plot the frames
#Functions.Save_frames(Name_experiment, 10, True)
##create the graph of scenarios
#Parameters
z_smallest=3
r_vois=1.5
#Importance for the length, orientation, proximity for the cost function of without division
lambdaa=[0.05,0.03,0.92]
#coeff of the cost function with division
gammaa=[0.3,0.1,0.1,0.2,0.2,0.1,0.3]
#To construct the Graph
dict_layers, G,lab,Frames=Functions.Create_Graph(Name_experiment,z_smallest,False,True,r_vois,lambdaa,gammaa)
##To find the best path
a,b,c,cout_chem=Functions.best_path(G, dict_layers)
#Here we have to test if c is a dict or a list, ie if several nodes for the last layer
#if several nodes, then we print cout_chem and pick the best one
#c.insert(0,'28_29-1')
#Let's choose the best final node
best_final_node = '28_29-9'
Functions.Print_results_best(lab,dict_layers,c[best_final_node],best_final_node,Frames,Name_experiment)
#Functions.Print_results_best(lab,dict_layers,cells_from_frame,c,sce.name)
#afficher le meilleur chemin
#ici c doit etre une liste
dictfinal=Functions.Extract_best_path(dict_layers,c,'28_29-1')
G_lineage=Functions.Create_lineage(dictfinal, lab, True)
dict_orientation=Functions.get_orientation(dictfinal)
#HELLO
#To plot the evolution of the diff of orientation over time (Frame)
plt.figure()
for mere in range(len(dict_orientation)):
x=[i for i in range(1,len(dict_orientation[mere])+1)]
plt.plot(x,dict_orientation[mere],option_plot_2[mere],label="cell"+str(mere))
plt.xlabel('Frames')
plt.ylabel('|Difference of orientation|')
plt.legend()
plt.show()
""" ___________________________Description_____________________________
Create an illustration to show the cell lineage selected by the algorithm
"""
new_image=Functions.define_color(dictfinal,lab,'Image_exp_10_z_3')
for t in range(new_image.shape[0]):
plt.imshow(new_image[t])
plt.title('frame : %s' %t)
plt.show()
import tifffile
import numpy as np
labb = tifffile.imread("Jet11.tif")
Fr=Functions.Save_frames("2021_08_29_SD_TS66_SHU1_FOS800_01_11_R3D_labelled.tif",False)
t=27
i_mam=4
frame_6=Functions.cells_from_frame(Fr[t])
Ll=Functions.average_length(frame_6)
plt.imshow(labb[t],interpolation='none')
theta = np.linspace( 0 , 2 * np.pi , 20)
radius = 2*Ll
a =frame_6[i_mam].x+ radius * np.cos( theta )
b = frame_6[i_mam].y + radius * np.sin( theta )
plt.plot(a,b,"r-")
plt.plot(frame_6[i_mam].x,frame_6[i_mam].y ,'bx')
plt.title('frame : %s' %t)
plt.show()
for t in range(labb.shape[0]): #on parcours tous les frames
plt.imshow(labb[t],interpolation='none')
plt.title('frame : %s' %t)
plt.show()
from itertools import combinations
A = [3,6,8,9,11]
temp = combinations(A, 4)
for i in list(temp):
print (i)