Skip to content

Latest commit

 

History

History
66 lines (43 loc) · 7.34 KB

README.md

File metadata and controls

66 lines (43 loc) · 7.34 KB

CoastalGrainSizeLit

Playground for examining functional relationships proposed in coastal sediments literature for grain size info predicted by beach slope, hydrodynamics, etc

Reviews / synthesis

  • Bujan, N., Cox, R. and Masselink, G., 2019. From fine sand to boulders: Examining the relationship between beach-face slope and sediment size. Marine Geology, 417, p.106012.
  • McFall, B.C., 2019. The relationship between beach grain size and intertidal beach face slope. Journal of Coastal Research, 35(5), pp.1080-1086.
  • Holland, K.T. and Elmore, P.A., 2008. A review of heterogeneous sediments in coastal environments. Earth-Science Reviews, 89(3-4), pp.116-134.
  • Buscombe, D. and Masselink, G., 2006. Concepts in gravel beach dynamics. Earth-Science Reviews, 79(1-2), pp.33-52.
  • Fellowes, T.E., Vila-Concejo, A. and Gallop, S.L., 2019. Morphometric classification of swell-dominated embayed beaches. Marine Geology, 411, pp.78-87.
  • Leonardi, N., Carnacina, I., Donatelli, C., Ganju, N.K., Plater, A.J., Schuerch, M. and Temmerman, S., 2018. Dynamic interactions between coastal storms and salt marshes: A review. Geomorphology, 301, pp.92-107.
  • https://www.nature.com/articles/s41598-018-25437-1
  • Sherwood, C.R., van Dongeren, A., Doyle, J., Hegermiller, C.A., Hsu, T.J., Kalra, T.S., Olabarrieta, M., Penko, A.M., Rafati, Y., Roelvink, D. and van der Lugt, M., 2021. Modeling the Morphodynamics of Coastal Responses to Extreme Events: What Shape Are We In?.
  • Owens, P.N., Blake, W.H., Gaspar, L., Gateuille, D., Koiter, A.J., Lobb, D.A., Petticrew, E.L., Reiffarth, D.G., Smith, H.G. and Woodward, J.C., 2016. Fingerprinting and tracing the sources of soils and sediments: Earth and ocean science, geoarchaeological, forensic, and human health applications. Earth-Science Reviews, 162, pp.1-23.
  • McLachlan, A., Defeo, O. and Short, A.D., 2018. Characterising sandy beaches into major types and states: Implications for ecologists and managers. Estuarine, Coastal and Shelf Science, 215, pp.152-160.
  • Degli, E.I., Defeo, O. and Scapini, F., 2021. Arthropodofauna richness and abundance across beach–dune systems with contrasting morphodynamics. Regional Studies in Marine Science, 44, p.101722.
  • de Schipper, M.A., Ludka, B.C., Raubenheimer, B., Luijendijk, A.P. and Schlacher, T.A., 2021. Beach nourishment has complex implications for the future of sandy shores. Nature Reviews Earth & Environment, 2(1), pp.70-84.
  • Gallagher, E., Wadman, H., McNinch, J., Reniers, A. and Koktas, M., 2016. A conceptual model for spatial grain size variability on the surface of and within beaches. Journal of Marine Science and Engineering, 4(2), p.38.

Sediment sorting modeling

  • Huisman, B.J.A., Ruessink, B.G., De Schipper, M.A., Luijendijk, A.P. and Stive, M.J.F., 2018. Modelling of bed sediment composition changes at the lower shoreface of the Sand Motor. Coastal Engineering, 132, pp.33-49.
  • Ward, S.L., Scourse, J.D., Yokoyama, Y. and Neill, S.P., 2020. The challenges of constraining shelf sea tidal models using seabed sediment grain size as a proxy for tidal currents. Continental Shelf Research, 205, p.104165.
  • Zhou, Z., Liu, Q., Fan, D., Coco, G., Gong, Z., Möller, I., Xu, F., Townend, I. and Zhang, C., Simulating the role of tides and sediment characteristics on tidal flat sorting and bedding dynamics. Earth Surface Processes and Landforms.

Temporal grain size variability

  • Castagno, K.A., Donnelly, J.P. and Woodruff, J.D., 2021. Grain-Size Analysis of Hurricane-Induced Event Beds in a New England Salt Marsh, Massachusetts, USA. Journal of Coastal Research, 37(2), pp.326-335.

  • Buscombe, D., Rubin, D.M., Lacy, J.R., Storlazzi, C.D., Hatcher, G., Chezar, H., Wyland, R. and Sherwood, C.R., 2014. Autonomous bed‐sediment imaging‐systems for revealing temporal variability of grain size. Limnology and Oceanography: Methods, 12(6), pp.390-406.

  • Prodger, S., Russell, P., Davidson, M., Miles, J. and Scott, T., 2016. Understanding and predicting the temporal variability of sediment grain size characteristics on high-energy beaches. Marine Geology, 376, pp.109-117.

Regional studies

  • Aubry, A., Lesourd, S., Gardel, A., Dubuisson, P. and Jeanson, M., 2009. Sediment textural variability and mud storage on a large accreting sand flat in a macrotidal, storm-wave setting: the North Sea coast of France. Journal of Coastal Research, pp.163-167.

  • Bádenas, B., Aurell, M. and Gasca, J.M., 2018. Facies model of a mixed clastic–carbonate, wave‐dominated open‐coast tidal flat (Tithonian–Berriasian, north‐east Spain). Sedimentology, 65(5), pp.1631-1666.

  • Wang, Y., Yu, Q. and Gao, S., 2014. Modeling interrelationships between morphological evolution and grain-size trends in back-barrier tidal basins of the East Frisian Wadden Sea. Geo-Marine Letters, 34(1), pp.37-49.

  • https://williammorrisdavis.uvanet.br/index.php/revistageomorfologia/article/view/5

  • Woodruff, J.D., Venti, N., Mabee, S., DiTroia, A. and Beach, D., 2021. Grain size and beach face slope on paraglacial beaches of New England, USA. Marine Geology, p.106527.

  • Kuai, Y., Tao, J., Zhou, Z., Aarninkhof, S. and Wang, Z.B., 2021. Sediment Characteristics and Intertidal Beach Slopes along the Jiangsu Coast, China. Journal of Marine Science and Engineering, 9(3), p.347.

  • Escobar, C.A., Mayerle, R. and Restrepo, D., 2019. Estimation of sediment grain sizes in a mesotidal area, Dithmarschen Bight, German North Sea. Marine Geology, 417, p.106006.

  • https://dalspace.library.dal.ca/handle/10222/78924

  • Yu, J., Ding, Y. and Cheng, H., 2021. Sediment textural characteristics and spatial variability of embayed sandy beaches in the west Guangdong. Regional Studies in Marine Science, 45, p.101801.

  • Matsumoto, H., Young, A.P. and Guza, R.T., 2020. Observations of surface cobbles at two southern California beaches. Marine Geology, 419, p.106049.

  • Atkinson, J. and Esteves, L.S., 2018. Alongshore variability in the response of a mixed sand and gravel beach to bimodal wave direction. Geosciences, 8(12), p.488.

  • Garlan, T., Almar, R., Gauduin, H., Gosselin, M., Morio, O. and Labarthe, C., 2020. 3D variability of Sediment Granulometry in Two Tropical Environments: Nha Trang (Vietnam) and Saint-Louis (Sénégal). Journal of Coastal Research, 95(SI), pp.495-499.

  • Benmoussa, T., Amrouni, O., Dezileau, L., Mahé, G. and Abdeljaouad, S., 2018. The sedimentological changes caused by human impact at the artificial channel of Medjerda-River (Coastal zone of Medjerda, Tunisia). Proceedings of the International Association of Hydrological Sciences, 377, pp.77-81.

  • Zhao, S., Qi, H., Cai, F., Zhu, J., Zhou, X. and Lei, G., 2020. Morphological and sedimentary features of sandy‐muddy transitional beaches in estuaries and bays along mesotidal to macrotidal coasts. Earth Surface Processes and Landforms, 45(7), pp.1660-1676.

  • Nugroho, S.H. and Putra, P.S., 2018. Spatial distribution of grain size and depositional process in tidal area along Waikelo Beach, Sumba. Marine Georesources & Geotechnology, 36(3), pp.299-307.

  • https://scholars.unh.edu/cgi/viewcontent.cgi?article=2411&context=ccom

  • Huisman, B.J.A., De Schipper, M.A. and Ruessink, B.G., 2016. Sediment sorting at the Sand Motor at storm and annual time scales. Marine Geology, 381, pp.209-226.

  • Gunaratna, T., Suzuki, T. and Yanagishima, S., 2019. Cross-shore grain size and sorting patterns for the bed profile variation at a dissipative beach: Hasaki Coast, Japan. Marine Geology, 407, pp.111-120.