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Agenda

 Parallel Reduction Revisited

 Warp Partitioning

 Memory Coalescing

 Bank Conflicts

 Dynamic Partitioning of SM Resources

 Data Prefetching

 Instruction Mix

 Loop Unrolling

 Thread Granularity
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Parallel Reduction

0 1 52 3 4 6 7

 Recall Parallel Reduction (sum)
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Parallel Reduction
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Parallel Reduction
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Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28
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__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1; 

stride < blockDim.x;

stride *= 2) 

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html
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__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1; 

stride < blockDim.x;

stride *= 2) 

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Computing the sum for the 

elements in shared memory
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__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1; 

stride < blockDim.x;

stride *= 2) 

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Stride:

1, 2, 4, …
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__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1; 

stride < blockDim.x;

stride *= 2) 

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Why?
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__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1; 

stride < blockDim.x;

stride *= 2) 

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

• Compute sum in same shared memory

• As stride increases, what do more threads do?
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Thread

7

Thread
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Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Thread

0

Thread
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 1st pass: threads 1, 3, 5, and 7 don’t do anything

 Really only need n/2 threads for n elements
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Thread
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 2nd pass: threads 2 and 6 also don’t do anything
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 3rd pass: thread 4 also doesn’t do anything
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Thread

7
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Parallel Reduction
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 In general, number of required threads cuts in half 

after each pass
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Parallel Reduction

 What if we tweaked the implementation?
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Parallel Reduction

0 1 52 3 4 6 7
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Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10
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Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

22



Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28
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Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

stride: …, 4, 2, 1

__shared__ float partialSum[]

// ... load into shared memory

unsigned int t = threadIdx.x;

for(unsigned int stride = blockDim.x / 2; 

stride > 0;

stride /= 2) 

{

__syncthreads();

if (t < stride)

partialSum[t] += 

partialSum[t + stride];

}
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Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

__shared__ float partialSum[]

// ... load into shared memory

unsigned int t = threadIdx.x;

for(unsigned int stride = blockDim.x / 2; 

stride > 0;

stride /= 2) 

{

__syncthreads();

if (t < stride)

partialSum[t] += 

partialSum[t + stride];

}
25



Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Thread

0

Thread

1

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

26



Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Thread

0

Thread

1

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

 1st pass: threads 4, 5, 6, and 7 don’t do anything

 Really only need n/2 threads for n elements
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 2nd pass: threads 2 and 3 also don’t do anything
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Thread

7
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 3rd pass: thread 1 also doesn’t do anything
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Parallel Reduction

0        1        2        3       4        5        6        7 0        1        2        3       4        5        6        7

 What is the difference?

stride = 1, 2, 4, … stride = 4, 2, 1, …
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Parallel Reduction

 What is the difference?

if (t < stride)

partialSum[t] += 

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …
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Warp Partitioning

 Warp Partitioning:  how threads from a 

block are divided into warps

 Knowledge of warp partitioning can be 

used to:

Minimize divergent branches

Retire warps early
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Warp Partitioning

 Partition based on consecutive increasing
threadIdx
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Warp Partitioning

 1D Block

threadIdx.x between 0 and 512 (G80/GT200)

Warp n

 Starts with thread 32n

 Ends with thread 32(n + 1) – 1

Last warp is padded if block size is not a multiple 

of 32

0…31 32...63 64...95 96...127

Warp 0 Warp 1 Warp 2 Warp 3

…
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Warp Partitioning

 2D Block

 Increasing threadIdx means

 Increasing threadIdx.x

 Starting with row threadIdx.y == 0
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Warp Partitioning

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

 2D Block
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Warp Partitioning

 3D Block

Start with threadIdx.z == 0

Partition as a 2D block

 Increase threadIdx.z and repeat
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Image from:  http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf 

Warp Partitioning

Divergent branches are within a warp!
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Warp Partitioning

 For warpSize == 32, does any warp 

have a divergent branch with this code:

if (threadIdx.x > 15)

{

// ...

}
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Warp Partitioning

 For any warpSize > 1, does any warp 

have a divergent branch with this code:

if (threadIdx.x > warpSize - 1)

{

// ...

}
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Warp Partitioning

 Given knowledge of warp partitioning, 

which parallel reduction is better?

if (t < stride)

partialSum[t] += 

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …
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Warp Partitioning

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp
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 Pretend warpSize == 2
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Warp Partitioning

 1st Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …
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Warp Partitioning

 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …
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Warp Partitioning

 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …
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Warp Partitioning

 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp
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Still diverge when number of 
elements left is <= warpSize 46



Warp Partitioning

 Good partitioning also allows warps to be 

retired early.

Better hardware utilization

if (t < stride)

partialSum[t] += 

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …
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Warp Partitioning

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp
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 Parallel Reduction
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Warp Partitioning

 1st Pass
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Warp Partitioning

 1st Pass
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Warp Partitioning

 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …
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Warp Partitioning

 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …
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Memory Coalescing

 Given a matrix stored row-major in global 

memory, what is a thread’s desirable 

access pattern?

Image from:  http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf 
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M1,0M0,0
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M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M
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Memory Coalescing

 Given a matrix stored row-major in global 

memory, what is a thread’s desirable 

access pattern?

Image from:  http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf 

Md Nd

W
ID

T
H

WIDTH

Thread 0

Thread 1

Thread

0

Thread

1

a) column after column? b) row after row?
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Memory Coalescing

 Given a matrix stored row-major in global 

memory, what is a thread’s desirable 

access pattern?

a) column after column

 Individual threads read increasing, consecutive 

memory address

b) row after row

 Adjacent threads read increasing, consecutive 

memory addresses
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Memory Coalescing

Image from:  http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf 

a) column after column
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Memory Coalescing

Image from:  http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf 

b) row after row
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Memory Coalescing

 Global memory bandwidth (DRAM)

G80 – 86.4 GB/s

GT200 – 150 GB/s

 Achieve peak bandwidth by requesting 

large, consecutive locations from DRAM

Accessing random location results in much 

lower bandwidth

58



Memory Coalescing

 Memory coalescing – rearrange access 

patterns to improve performance

 Useful today but will be less useful with 

large on-chip caches
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Memory Coalescing

 The GPU coalesces consecutive reads in 

a half-warp into a single read

 Strategy:  read global memory in a 

coalesce-able fashion into shared memory

Then access shared memory randomly at 

maximum bandwidth

 Ignoring bank conflicts…

See Appendix G in the NVIDIA CUDA C Programming Guide for coalescing alignment requirements
60



Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 

 Shared Memory

Sometimes called a parallel data cache

 Multiple threads can access shared 

memory at the same time

Memory is divided into banks

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0
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Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 

 Banks

Each bank can service one address per 

two cycles

Per-bank bandwidth: 32-bits per two 

(shader clock) cycles

Successive 32-bit words are assigned 

to successive banks

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0
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Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 

 Bank Conflict:  Two simultaneous 
accesses to the same bank, but not the 
same address

Serialized

 G80-GT200: 16 banks, with 8 SPs 
concurrently executing

 Fermi: 32 banks, with 16 SPs 
concurrently executing 

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0
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Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 

 Bank Conflicts?

 Linear addressing 

stride == 1

 Bank Conflicts?

 Random 1:1 Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0
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Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 

 Bank Conflicts?

 Linear addressing 

stride == 2

 Bank Conflicts?

 Linear addressing 

stride == 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8
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Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 

 Fast Path 1 (G80)

All threads in a half-warp 

access different banks

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0
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Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 

 Fast Path 2 (G80)

All threads in a half-warp 

access the same address

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Same

address
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Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 

 Slow Path (G80)
Multiple threads in a half-

warp access the same bank

Access is serialized

What is the cost?

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0
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Bank Conflicts

__shared__ float shared[256];

// ...

float f = shared[index + s * threadIdx.x];

 For what values of s is this conflict free?
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Bank Conflicts

__shared__ float shared[256];

// ...

float f = shared[index + s * threadIdx.x];

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

s=1

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

s=3

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 
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Bank Conflicts

 Without using a profiler, how can we tell what kind of 
speedup we can expect by removing bank conflicts?

 What happens if more than one thread in a warp writes 
to the same shared memory address (non-atomic 
instruction)?
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SM Resource Partitioning

 Recall a SM dynamically partitions 

resources:

Registers

Thread block slots

Thread slots

Shared memory

SM
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SM Resource Partitioning

 Recall a SM dynamically partitions 

resources:

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits   
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SM Resource Partitioning

 We can have

8 blocks of 96 threads

4 blocks of 192 threads

But not 8 blocks of 192 threads

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits   
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SM Resource Partitioning

 We can have (assuming 256 thread blocks)

768 threads (3 blocks) using 10 registers each

512 threads (2 blocks) using 11 registers each

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits   
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SM Resource Partitioning

 We can have (assuming 256 thread blocks)

768 threads (3 blocks) using 10 registers each

512 threads (2 blocks) using 11 registers each

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits   
 More registers 

decreases thread-

level parallelism

 Can it ever 

increase 

performance?
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SM Resource Partitioning

 Performance Cliff:  Increasing resource 

usage leads to a dramatic reduction in 

parallelism

For example, increasing the number of 

registers, unless doing so hides latency of 

global memory access
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Data Prefetching

 Independent instructions between a global 

memory read and its use can hide memory 

latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;
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Data Prefetching

 Independent instructions between a global 

memory read and its use can hide memory 

latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;

Read global memory
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Data Prefetching

 Independent instructions between a global 

memory read and its use can hide memory 

latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;

Execute instructions 

that are not dependent 

on memory read
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Data Prefetching

 Independent instructions between a global 

memory read and its use can hide memory 

latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f; Use global memory after 

the above line from 

enough warps hide the 

memory latency
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Data Prefetching

 Prefetching data from global memory can 

effectively increase the number of 

independent instructions between global 

memory read and use
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Data Prefetching

 Recall tiled matrix multiply:

for (/* ... */)

{

// Load current tile into shared memory

__syncthreads();

// Accumulate dot product

__syncthreads();

}
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Data Prefetching

 Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads();

// Load next tile into registers

// Accumulate dot product

__syncthreads();

}
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Data Prefetching

 Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads();

// Load next tile into registers

// Accumulate dot product

__syncthreads();

}
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Data Prefetching

 Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads();

// Load next tile into registers

// Accumulate dot product

__syncthreads();

}

Prefetch for next 

iteration of the loop
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Data Prefetching

 Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads();

// Load next tile into registers

// Accumulate dot product

__syncthreads();

}

These instructions 

executed by enough 

threads will hide the 

memory latency of the 

prefetch
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• Special Function 

Units (SFUs)

• Use to compute 
__sinf(), __expf()

• Only 4, each 

can execute 1 

instruction per 

clock

Image: NVIDIA Fermi Whitepaper

Instruction Mix

88

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf


Loop Unrolling

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

 Instructions per iteration

One floating-point multiply

One floating-point add

What else?
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for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

Loop Unrolling

 Other instructions per iteration

Update loop counter

90



for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

Loop Unrolling

 Other instructions per iteration

Update loop counter

Branch
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for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

Loop Unrolling

 Other instructions per iteration

Update loop counter

Branch

Address arithmetic
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Loop Unrolling

 Instruction Mix

2 floating-point arithmetic instructions

1 loop branch instruction

2 address arithmetic instructions

1 loop counter increment instruction

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}
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• Only 1/3 are 

floating-point 

calculations

• But I want my 

full theoretical 1 

TFLOP (Fermi)

• Consider  loop 

unrolling

Image: NVIDIA Fermi Whitepaper

Loop Unrolling
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Loop Unrolling

Pvalue +=

Ms[ty][0] * Ns[0][tx] +

Ms[ty][1] * Ns[1][tx] +

...

Ms[ty][15] * Ns[15][tx]; // BLOCK_SIZE = 16

• No more loop

• No loop count update

• No branch

• Constant indices – no address arithmetic 

instructions
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Loop Unrolling

 Automatically:
#pragma unroll BLOCK_SIZE

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

 Disadvantages to unrolling?
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Thread Granularity

 How much work should one thread do?

Parallel Reduction

 Reduce two elements?

Matrix multiply

 Compute one element of Pd?



Thread Granularity

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf 

 Matrix Multiple



Thread Granularity

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf 

 Matrix Multiple

Both elements of Pd

require the same 

row of Md



Thread Granularity

 Matrix Multiple

Compute both Pd elements in the same thread

 Reduces global memory access by ¼

 Increases number of independent instructions

 What is the benefit?

 New kernel uses more registers and shared memory

 What does that imply?


