CUDA Performance

Patrick Cozzi
University of Pennsylvania
CIS 565 - Fall 2016

Acknowledgements

m Some slides from Varun Sampath

http://vsampath.com/

" J
Agenda

Parallel Reduction Revisited

Warp Partitioning

Memory Coalescing

Bank Conflicts

Dynamic Partitioning of SM Resources
Data Prefetching

nstruction Mix

_oop Unrolling

Thread Granularity

Maximum
Performance

Parallel Reduction

m Recall Parallel Reduction (sum)

0 1 2 3 4 5 6

Parallel Reduction

0 1
o

2 3
o

4 5
e

Parallel Reduction

L L l/ L~

13

L —

6 22

Parallel Reduction

N

13

L —

22

" A
shared float partialSuml];

// ... load into shared memory
unsigned 1nt t = threadIldx.Xx;
for (unsigned 1nt stride = 1;

stride < blockDim.x;
stride *= 2)

~_syncthreads () ;
1f (t % (2 * stride) == 0)
partialSum[t] +=
partialSum[t + stride];

9
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

" A
shared float partialSuml];

// ... load into shared memory
unsigned int t = threadIdx.x;
for (unsigned 1nt stride = 1;

stride < blockDim.x;
stride *= 2)

Computing the sum for the
{ elements in shared memory

~_syncthreads () ;
1f (t % (2 * stride) == 0)
partialSum[t] +=
partialSum[t + stride];

10
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

" A
shared float partialSuml];

// ... load into shared memory
unsigned 1nt t = threadIldx.Xx;
for (unsigned 1nt stride = 1;
stride < blockDim.x; _ | Stride:
stride *= 2) n2l

~_syncthreads () ;
1f (£ %5 (2 * stride) == 0)
partialSum[t] +=

.

partialSum[t + stride];

11
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

" A
shared float partialSuml];

// ... load into shared memory
unsigned 1nt t = threadIldx.Xx;
for (unsigned 1nt stride = 1;

stride < blockDim.x;
stride *= 2)

- syncthreads () ;| Why?
if (t 5 (2 * stride) == 0)
partialSum[t] +=

partialSum[t + stride];

12
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

" A
shared float partialSuml];

// ... load into shared memory
unsigned 1nt t = threadIldx.Xx;
for (unsigned 1nt stride = 1;

stride < blockDim.x;
stride *= 2)

{ « Compute sum in same shared memory
* As stride increases, what do more threads do?

~_syncthreads () ;
1f (t %5 (2 * stride) == 0)
partialSum[t] +=

partialSum[t + stride];

13
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Parallel Reduction

Thread Thread Thread Thread Thread Thread Thread Thread
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
1 5 9 13
A/ / \/ /
6 22
—
o
Ye— — |
28

14

Parallel Reduction

Thread Thread Thread Thread Thread Thread Thread Thread

0 1 2 3 4 5 6 7

o ||| 1 2 3 4 5 6 7
BE L L Lt

1 5 9 13

V. ’// V. ’//

6 22

I
Ve H+— |
28

m 1St pass: threads 1, 3, 5, and 7 don't do anything
Really only need n/2 threads for n elements

Parallel Reduction

Thread Thread Thread Thread Thread Thread Thread Thread

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
L L Lt L+
1 5 9 13
V. ’// V. ’//
6 22
| —F
Ve H+— |
28

m 2" pass: threads 2 and 6 also don’t do anything

Parallel Reduction

Thread Thread Thread Thread Thread Thread Thread Thread

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 /]
Ly Lt L Lr

1 5 9 13

| | // | T
6 22

////,
Ve H+— |
28

m 39 pass: thread 4 also doesn’t do anything

Parallel Reduction

Thread Thread Thread Thread Thread Thread Thread Thread

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 /]
Ly Lt L Lr

1 5 9 13

| | // | T
6 22

////,
Ve H+— |
28

m In general, number of required threads cuts in half
after each pass

Parallel Reduction

m What if we tweaked the implementation?

19

Parallel Reduction

20

Parallel Reduction

0 1 2

‘/V?‘,
4 o 8 10

21

Parallel Reduction

22

Parallel Reduction

23

" A
~ shared float partialSum]]
// ... load into shared memory

unsigned 1nt t = threadIldx.Xx;

for (unsigned int stride = blockDim.x / 2;
stride > 0;

stride /= 2)

stride:..., 4,2, 1
syncthreads () ; 0

if (t < stride) oo

| Himnininln
partialSum|[t] += NooooooD

partialSum[t + stride];

24
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

"

~ shared float partialSum]]
// ... load into shared memory
unsigned 1nt t = threadIldx.Xx;

for (unsigned int stride = blockDim.x / 2;
stride > 0;

stride /= 2)

~_syncthreads () ;
1f (t < stride)
partialSum[t] +=

partialSum[t + stride];

25
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Parallel Reduction

Thread Thread Thread Thread Thread Thread Thread Thread
0 1 2 3 4 5 6 7

0 1 3 4 5 6 7

/
| | — | — /
|l —— | — L — -

6
///

6

\

L—
1

Parallel Reduction

Thread Thread Thread Thread Thread Thread Thread Thread
0 1 2 3 4 5 6 7

0 1 3 4 5 6 7

I

| |

2
T —17 —
I — [/’f—/
= V. Ve — ¥ —
8

6
12 16

\

m 1St pass: threads 4, 5, 6, and 7 don't do anything

Really only need n/2 threads for n elements

Parallel Reduction

Thread Thread Thread Thread Thread Thread Thread Thread

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6]
1 |
allll 6 8|l]l10
A/ ’/v/://
12 16
28

m 2" pass: threads 2 and 3 also don’t do anything

Parallel Reduction

Thread Thread Thread Thread Thread Thread Thread Thread

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 '/
e |
alll| 6 8|10
| //J V/: / -
12 16
28

m 39 pass: thread 1 also doesn’t do anything

Parallel Reduction

m \What Is the difference?

-
-

L

i

-

L —1"

EE

o |l | | |

Hﬁ’l {1 O

-

—

—/—

-

—

| o o |

o o

=4,2,1, ...

stride

=1,2,4, ...

stride

30

" A
Parallel Reduction

m \What Is the difference?

1if (t % (2 * stride) == 0) if (t < stride)
partialSum[t] += partialSum[t] +=
partialSum[t + stride]; partialSum[t + stride];

stride=1,2,4, ... stride=4,2,1, ...

31

" S
Warp Partitioning

m \Warp Partitioning: how threads from a
block are divided into warps

m Knowledge of warp partitioning can be
used to:

Minimize divergent branches
Retire warps early

32

Warp Partitioning

m Partition based on consecutive increasing
threadIdx

33

Warp Partitioning

m 1D Block
threadIdx.x between O and 512 (G80/GT200)
Warp n
m Starts with thread 32n
s Ends with thread 32 (n + 1) - 1
Last warp is padded if block size is not a multiple
of 32
Warp 0 Warp 1 Warp 2 Warp 3

0...31 32...63 64...95 96...127

34

" S
Warp Partitioning

m 2D Block

Increasing threadIdx means
m Increasing threadIdx.x
m Starting with row threadIdx.y ==

" S
Warp Partitioning

m 2D Block

Tﬂ,l T],l Tz,l Ta,l Tn,z. T]? Tzz T;, TDS T13 T"*S T‘H

= p= -5 ¥ ¥ t -5

linearized order

36
Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

"
Warp Partitioning

m 3D Block
Start with threadIdx.z ==

Partition as a 2D block
Increase threadIdx.z and repeat

37

" N
Warp Partitioning

Divergent branches are within a warp!

() 0 | S | | I O 1 B R

Time (clocks)

ALUT ALU2 ALUS

<unconditional
shader code>»

if (x > @) {

i

else
X = 0;

| refl = Ka;
¥

<resume unconditional

Not all ALUs do useful work! shader code>
Worst case: 1/8 peak performance

38
Image from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_ BPS_SIGGRAPH2010.pdf

" S
Warp Partitioning

m ForwarpSize == 32, does any warp
have a divergent branch with this code:

1f (threadIldx.x > 15)

{
/] ...

39

" S
Warp Partitioning

m Forany warpSize > 1, does any warp
have a divergent branch with this code:

1f (threadIdx.x > warpSize - 1)

{
/] ...

40

Warp Partitioning

m Given knowledge of warp partitioning,
which parallel reduction Is better?

if (t % (2 * stride) == 0) if (t < stride)
partialSum[t] += partialSum[t] +=
partialSum[t + stride]; partialSum[t + stride];

stride=1,2,4, ... stride=4,2,1, ...

41

Warp Partitioning

2

m Pretend warpSize

Warp
3

Warp
2

Warp
1

L

-

Warp
0

Warp
3

L —1"

EE

o |l | | |

Hﬁ’l {1 O

Warp
2

-

—

Warp
1

—/—

Warp
0

-

—

| o [

o o

stride=4,2,1, ...

=1,2,4, ...

stride

42

" S
Warp Partitioning

m 1St Pass

Warp Warp Warp Warp Warp Warp Warp Warp
0 1 2 3 0 1 2 3
| A
6) ~ 1 e :

divergent< I:I ’_‘ | ’ | e | | | | | | | |divergent
branches | Y&t V. Yo i Vot branches

I e e o I o o

oo .

L] () N O

stride=1,2,4, ... stride=4,2,1, ...

43

" S
Warp Partitioning

m 2"d Pass

Warp Warp Warp Warp Warp Warp Warp Warp
0 1 2 3 0 1 2 3
A N O A
[1 [d 1! -+ Sttt ||
F%WFLTWF%TW] e e e) o
| L : | \/ —/v/:/’

2 < ’% 0
e Al 1 o I o e
branches #"/— ’% branCheS

N I O O N O O
stride=1,2,4, ... stride=4,2,1, ...

44

" S
Warp Partitioning

m 2"d Pass

Warp Warp Warp Warp Warp Warp Warp Warp
0 1 2 3 0 1 2 3
A N O A
[1 [d 1! -+ Sttt ||
FLTWILTWH‘TW] | %% I | o
vl v t— | i
1 o o 1 o o
_/’/— I H
1 <‘L < 1
L ODODoDoDD 0 e e e
branch branch
stride=1,2,4, ... stride=4,2,1, ...

45

Warp Partitioning

m 2"d Pass
Warp Warp Warp Warp Warp Warp Warp Warp
0 1 2 3 0 1 2 3

= H‘T'D

|
\/ VYo L/ —/v//

I e e o I o
G190 (] 1
S { i [o) o o | C I) (T) [givergen
branch branch
stride=1,2,4, ... stride=4,2,1, ...

Still diverge when number of
elements left is <= warpSize 46

Warp Partitioning

m Good partitioning also allows warps to be

retired early.

Better hardware utilization

1f

(t $ (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

if

(t < stride)

partialSum[t] +=
partialSum[t + stride];

stride=1,2,4, ...

stride=4,2,1, ...

47

Warp Partitioning

m Parallel Reduction

Warp
3

Warp
2

Warp
1

L

-

Warp
0

Warp
3

L —1"

EE

o |l | | |

Hﬁ’l {1 O

Warp
2

Warp
1

—/—-

Warp
0

-

—

| o [

o o

stride=4,2,1, ...

=1,2,4, ...

stride

48

" S
Warp Partitioning

m 1St Pass

Warp Warp Warp Warp
0 1 2 3
AN O
4 L~ 91 1 2
W e o [warps
retired vei— || v tt—1] retired
F‘Tllllu__lllllll
v‘__/’/—
RN o
stride=1,2,4, ... stride=4,2,1, ...

49

Warp Partitioning

m 1St Pass

Warp

Warp

2

Warp

1

%EIII ||

-
-
-

L

[

-

Warp

Warp

L —1"

EE

Hﬁ’l T I

o e e

Warp
2

-

—

Warp
1

—/—

Warp

-

—

| o [

o o

stride=4,2,1, ...

=1,2,4, ...

stride

50

Warp Partitioning

m 2"d Pass
Warp Warp Warp Warp Warp
0 0 2 3
’_‘/’_‘ ’_‘ ’? u | |:4::J—‘ |
FLTW |"F‘%’ o
2 \/ —A’ \/ —/VA:/’ 1
waros LI r‘Tr‘T\|||| I | e
e
retired Y H— [retired
[ﬁmb o} o
stride=1,2,4, ... stride=4,2,1, ...

51

Warp Partitioning

m 2"d Pass

go 000
. OOOC
T N |__:| ——
gnoc

L\l
.. DAOMIC
=" [P PO
. O O0OLC
= IVW — =
- (O O\O T
* RO L
. OO0 C
- PO OC
o AL
=" [P

stride=4,2,1, ...

=1,2,4, ...

stride

52

Memory Coalescing

m Given a matrix stored row-major in global
memory, what is a thread’s desirable
access pattern?

|VIO,l |Vll,l |VIZ,l M3,1
MO,Z Ml,2 |\/|2,2 M3,2

|VIO,3 |Vll,3 M2,3 M3,3

, |VIO,l |vll,l |le,l MS,l MO,Z I\/|1,2 M2,2 M3,2 MO,S Ml,S M2,3 M3,3

53
Image from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_ BPS SIGGRAPH2010.pdf

Memory Coalescing

m Given a matrix stored row-major in global
memory, what is a thread’s desirable
access pattern?

Thread O

a) column after column? b) row after row?

Thread Thread
0 1

54
Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

Memory Coalescing

m Given a matrix stored row-major in global
memory, what is a thread’s desirable
access pattern?

a) column after column

O read increasing, consecutive
memory address

D) row after row

O read increasing, consecutive
memory addresses

55

Memory Coalescing

Access :':[:,[: -‘*‘*m :':1,[: -":m >

direction in My, My, My, My,

Kernel

code Mu,z Ml,-z Mz,z M_t,-z

Mg; M3 M, 3 My,
Load iteration 2

T, T, T, T,
I 3 & F I 3

Load iteration 1

T, T, T, T,

!

M[:,[: My Mz,[: M, Mﬂ,l M],] Mz.,l M3,1 I""'Iﬂ,z Ml,-z Mz,z Ms,-z MD,3 Ml,-s Mz,a MS,S

a) column after column

56
Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

Memory Coalescing

Access
direction in M,, M,, My, M,
Kernel
code M, M;; M,;, M,,

M;; M;; M,; M,;

Load iteration 1|| Load iteration 2

T, T, T, T,||T, T, T, T,

AREARERA

LRI

M, M, M, My, My, M, M, My, Mg M, ; M;; M,

b) row after row

57
Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

"
Memory Coalescing

m Global memory bandwidth (DRAM)
G80 — 86.4 GB/s
GT200 - 150 GB/s
m Achieve peak bandwidth by requesting
large, consecutive locations from DRAM

Accessing random location results in much
lower bandwidth

58

Memory Coalescing

m Memory coalescing — rearrange access
patterns to improve performance

m Useful today but will be less useful with
arge on-chip caches

59

Memory Coalescing

m The GPU coalesces consecutive reads In
a half-warp into a single read

O . read global memory in a
coalesce-able fashion into shared memory

Then access shared memory randomly at
maximum bandwidth

m Ignoring bank conflicts...

60
See Appendix G in the NVIDIA CUDA C Programming Guide for coalescing alignment requirements

Bank Conflicts

m Shared Memory

Sometimes called a parallel data cache

= Multiple threads can access shared
memory at the same time

Memory is divided into banks

61
Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Bank Conflicts

m Banks

Each bank can service one address per
two cycles

Per-bank bandwidth: 32-bits per two
(shader clock) cycles

Successive 32-bit words are assigned
to successive banks

62
Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

" A
Bank Conflicts

m Bank Conflict: Two simultaneous
accesses to the same bank, but not the
same address

Serialized

m G80-GT200: 16 banks, with 8 SPs
concurrently executing

m Fermi: 32 banks, with 16 SPs
concurrently executing

63
Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

" N

Bank Conflicts

m Bank Conflicts?
1 Linear addressing

m Bank Conflicts?

1 Random 1:1 Permutation

stride ==
Thread O Thread O
Thread 1 Thread 1
Thread 2 Thread 2
Thread 3 Thread 3
Thread 4 Thread 4
Thread 5 Thread 5
Thread 6 Thread 6
Thread 7 Thread 7
R,
o

Bank 15

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Thread 15 Thread 15 Bank 15

64

'_
Bank Conflicts

m Bank Conflicts? m Bank Conflicts?
1 Linear addressing 1 Linear addressing
stride == stride ==

Thread O
Thread 1
Thread 2
Thread 3

Thread O
Thread 1 ‘
Thread 2 ~

Thread 3 "4
Thread 4 "4

Thread 4 {
Thread 5

Thread 6 »

Thread 7

Thread 8
Thread 9

Thread 10
Thread 11 Bank 15

65

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Thread 15

'_
Bank Conflicts

m Fast Path 1 (G80)

1All threads in a half-warp

access different banks Thread 0

Thread 1
Thread 2
Thread 3

Thread 4
Thread 5
Thread 6
Thread 7

Thread 15 Bank 15

66 :
Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

'_
Bank Conflicts

m Fast Path 2 (G80)

1All threads in a half-warp

access the same address .

Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread 15

67 :
Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

'__
Bank Conflicts

a Slow Path (G80)

1 Multiple threads in a half-
warp access the same bank

1 Access Is serialized Thread 0

TWhat Is the cost? Thread 1
Thread 2

Thread 3
Thread 4

Thread 8
Thread 9
Thread 10
Thread 11

68
Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Bank Conflicts

shared float shared] |

/).
float £ = shared[index + s * threadIldx.x];

m For what values of s Is this conflict free?

69

'_
Bank Conflicts

shared

/]
float f

70

Thread O
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

float shared[256];

= shared[index + s * threadIdx.x];

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Bank Conflicts

m Without using a profiler, how can we tell what kind of
speedup we can expect by removing bank conflicts?

m What happens if more than one thread in a warp writes
to the same shared memory address (non-atomic
Instruction)?

71

SM Resource Partitioning

m Recall a SM dynamically partitions
resources:

Thread block slots

Thread slots

Registers

SM

72

" J
SM Resource Partitioning

m Recall a SM dynamically partitions

Ffresources.
G80 Limits
Thread block slots 8
Thread slots 768
Registers 8K registers / 32K memory

SM

SM Resource Partitioning

m \We can have
8 blocks of 96 threads
4 blocks of 192 threads
But not 8 blocks of 192 threads

G80 Limits
Thread block slots 8
Thread slots 768
Registers 8K registers / 32K memory
SM 74

SM Resource Partitioning

m \We can have (assuming 256 thread blocks)
768 threads (3 blocks) using 10 registers each
512 threads (2 blocks) using 11 registers each

G80 Limits

Thread block slots

Thread slots

Registers

SM

8
768
8K registers / 32K memory

16K

75

"
SM Resource Partitioning

m \We can have (assuming 256 thread blocks)
768 threads (3 blocks) using 10 registers each
512 threads (2 blocks) using 11 registers each

m More reqisters G80 Limits
decreases thread- || Thread block slots 8
level parallelism Thread slots 268
= Canitever Registers 8K registers / 32K memory

Increase

performance? _ 16K

SM 76

SM Resource Partitioning

m Performance CIiff: Increasing resource
usage leads to a dramatic reduction In
parallelism

For example, increasing the number of
registers, unless doing so hides latency of
global memory access

77

Data Prefetching

m Independent instructions between a global
memory read and its use can hide memory
latency

float m Md[1];
float £ = a * b + ¢ * d;
float £f2 = m * f;

78

Data Prefetching

m Independent instructions between a global
memory read and its use can hide memory

latency
float m = Md[i] : “—| Read global memory
flocat £ = a * b + c * d;
float £f2 = m * £;

79

Data Prefetching

m Independent instructions between a global
memory read and its use can hide memory
latency

float m = Md[1];
float £ = a * b + ¢ * d;
float f2 m * f;

Execute instructions
that are not dependent
on memory read

80

Data Prefetching

m Independent instructions between a global
memory read and its use can hide memory
latency

float m = Md[1];

float £ = a * b + ¢ * d;

float f2 = m * f; |Use global memory after
the above line from

enough warps hide the
memory latency

81

Data Prefetching

m Prefetching data from global memory can
effectively increase the number of
Independent instructions between global
memory read and use

82

Data Prefetching

m Recall tiled matrix multiply:

for (/* ... */)

{
// Load current tile into shared memory
__syncthreads () ;
// Accumulate dot product

__syncthreads();

83

Data Prefetching

m Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)
{
// Deposit registers into shared memory
__syncthreads () ;
// Load next tile into registers
// Accumulate dot product

__syncthreads () ;

}

84

Data Prefetching

m Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)
{
// Deposit registers into shared memory
__syncthreads () ;
// Load next tile into registers
// Accumulate dot product

__syncthreads () ;

}

85

Data Prefetching

m Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

}

// Deposit registers into shared memory

syncthreads () ;

// Load next tile into registers

// Accumulate dot product

__syncthreads () ;

A

Prefetch for next

iteration of the loop

86

Data Prefetching

m Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)
{

// Deposit registers into shared memory

__syncthreads () ;

// Load next tile into registers

// Accumulate dot product

A

__syncthreads () ;

These instructions
executed by enough
threads will hide the
memory latency of the
prefetch

Q7
O

'_
Instruction Mix

. Special Function
Units (SFUs)

Use to compute
sinf (), expf()

Only 4, each
can execute 1
Instruction per
clock

88 Image: NVIDIA Fermi Whitepaper Fermi Streaming Multiprocessor (SM)

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

Loop Unrolling

for (int k = 0; k < BLOCK SIZE; ++Kk)

{
Pvalue += Ms[ty][k] * Ns[k][tx];

}

m Instructions per iteration
One floating-point multiply
One floating-point add
What else?

89

Loop Unrolling

for (int k = 0; k < BLOCK_SIZE;<:::>

{
Pvalue += Ms[ty][k] * Ns[k][tx];

}

m Other instructions per iteration
Update loop counter

90

Loop Unrolling

for (int k = ;@LOCK_SE; ++k)
{

Pvalue += Ms[ty][k] * Ns[k][tx];
}

m Other instructions per iteration
Update loop counter
Branch

91

Loop Unrolling

for (int k = 0; k < BLOCK SIZE; ++Kk)

{

m Other instructions per iteration
Update loop counter
Branch
Address arithmetic

}

92

Loop Unrolling

for (int k = 0; k < BLOCK SIZE; ++Kk)

{
Pvalue += Ms[ty][k] * Ns[k][tx];
}

m [nstruction Mix
2 floating-point arithmetic instructions
1 loop branch instruction
2 address arithmetic instructions
1 loop counter increment instruction

93

" N
Loop Unrolling

- Only 1/3 are
floating-point
calculations

But | want my
full theoretical 1
TFLOP (Fermi)

Consider loop
unrolling

CUDA Core

94 Image: NVIDIA Fermi Whitepaper Fermi Streaming Multiprocessor (SM)

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

Loop Unrolling

Pvalue +=
Ms[ty]l[0O] * Ns[O][tx] +
Ms[ty]l[1l] * Ns[l][tx] +

Ms[ty][15] * Ns[o] [tx];: // BLOCK SIZE = 16

- No more loop
No loop count update
No branch

Constant indices — no address arithmetic
Instructions

95

Loop Unrolling

m Automatically:
#pragma unroll BLOCK SIZE
for (int k = 0; k < BLOCK SIZE; ++Kk)

{
Pvalue += Ms[ty][k] * Ns[k][tx];

}
m Disadvantages to unrolling?

96

Thread Granularity

m How much work should one thread do?
Parallel Reduction
m Reduce two elements?

Matrix multiply
s Compute one element of Pd?

Thread Granularity

tx
012 TILE_WIDTH-1

m Matrix Multiple e

ty %j 5 |
I R u B
s

TILE_WIDTH-1

© David Kirk/NVIDIA and Wen-mei W, Hwy ¥

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

Thread Granularity

tx
012 TILE_WIDTH-1

m Matrix Multiple e

Both elements of Pd
require the same
row of Md

, |
ty %j -
e

- do

© David Kirk/NVIDIA and Wen-mei W, Hwy ¥

TILE_WIDT

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

Thread Granularity

m Matrix Multiple

Compute both Pd elements in the same thread
» Reduces global memory access by Y4

m Increases number of independent instructions
What is the benefit?

= New kernel uses more registers and shared memory
What does that imply?

