
CUDA Performance

Patrick Cozzi

University of Pennsylvania

CIS 565 - Fall 2016

Acknowledgements

 Some slides from Varun Sampath

2

http://vsampath.com/

Agenda

 Parallel Reduction Revisited

 Warp Partitioning

 Memory Coalescing

 Bank Conflicts

 Dynamic Partitioning of SM Resources

 Data Prefetching

 Instruction Mix

 Loop Unrolling

 Thread Granularity
3

Efficient data-

parallel algorithms

Optimizations based

on GPU Architecture

Maximum

Performance

+

=

4

Parallel Reduction

0 1 52 3 4 6 7

 Recall Parallel Reduction (sum)

5

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

7

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

8

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

stride < blockDim.x;

stride *= 2)

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

9

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

stride < blockDim.x;

stride *= 2)

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Computing the sum for the

elements in shared memory

10

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

stride < blockDim.x;

stride *= 2)

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Stride:

1, 2, 4, …

11

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

stride < blockDim.x;

stride *= 2)

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Why?

12

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

stride < blockDim.x;

stride *= 2)

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

• Compute sum in same shared memory

• As stride increases, what do more threads do?

13

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Thread

0

Thread

1

14

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Thread

0

Thread

1

 1st pass: threads 1, 3, 5, and 7 don’t do anything

 Really only need n/2 threads for n elements
15

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Thread

0

Thread

1

 2nd pass: threads 2 and 6 also don’t do anything

16

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Thread

0

Thread

1

 3rd pass: thread 4 also doesn’t do anything

17

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Thread

0

Thread

1

 In general, number of required threads cuts in half

after each pass
18

Parallel Reduction

 What if we tweaked the implementation?

19

Parallel Reduction

0 1 52 3 4 6 7

20

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

21

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

22

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

23

Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

stride: …, 4, 2, 1

__shared__ float partialSum[]

// ... load into shared memory

unsigned int t = threadIdx.x;

for(unsigned int stride = blockDim.x / 2;

stride > 0;

stride /= 2)

{

__syncthreads();

if (t < stride)

partialSum[t] +=

partialSum[t + stride];

}
24

Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

__shared__ float partialSum[]

// ... load into shared memory

unsigned int t = threadIdx.x;

for(unsigned int stride = blockDim.x / 2;

stride > 0;

stride /= 2)

{

__syncthreads();

if (t < stride)

partialSum[t] +=

partialSum[t + stride];

}
25

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Thread

0

Thread

1

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

26

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Thread

0

Thread

1

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

 1st pass: threads 4, 5, 6, and 7 don’t do anything

 Really only need n/2 threads for n elements
27

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Thread

0

Thread

1

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

 2nd pass: threads 2 and 3 also don’t do anything

28

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Thread

0

Thread

1

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

 3rd pass: thread 1 also doesn’t do anything

29

Parallel Reduction

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

 What is the difference?

stride = 1, 2, 4, … stride = 4, 2, 1, …

30

Parallel Reduction

 What is the difference?

if (t < stride)

partialSum[t] +=

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …

31

Warp Partitioning

 Warp Partitioning: how threads from a

block are divided into warps

 Knowledge of warp partitioning can be

used to:

Minimize divergent branches

Retire warps early

32

Warp Partitioning

 Partition based on consecutive increasing
threadIdx

33

Warp Partitioning

 1D Block

threadIdx.x between 0 and 512 (G80/GT200)

Warp n

 Starts with thread 32n

 Ends with thread 32(n + 1) – 1

Last warp is padded if block size is not a multiple

of 32

0…31 32...63 64...95 96...127

Warp 0 Warp 1 Warp 2 Warp 3

…
34

Warp Partitioning

 2D Block

 Increasing threadIdx means

 Increasing threadIdx.x

 Starting with row threadIdx.y == 0

35

Warp Partitioning

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

 2D Block

36

Warp Partitioning

 3D Block

Start with threadIdx.z == 0

Partition as a 2D block

 Increase threadIdx.z and repeat

37

Image from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

Warp Partitioning

Divergent branches are within a warp!

38

Warp Partitioning

 For warpSize == 32, does any warp

have a divergent branch with this code:

if (threadIdx.x > 15)

{

// ...

}

39

Warp Partitioning

 For any warpSize > 1, does any warp

have a divergent branch with this code:

if (threadIdx.x > warpSize - 1)

{

// ...

}

40

Warp Partitioning

 Given knowledge of warp partitioning,

which parallel reduction is better?

if (t < stride)

partialSum[t] +=

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …

41

Warp Partitioning

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

 Pretend warpSize == 2

42

Warp Partitioning

 1st Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

4

divergent

branches

0

divergent

branches

43

Warp Partitioning

 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

2

divergent

branches

0

divergent

branches

44

Warp Partitioning

 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

1

divergent

branch

1

divergent

branch

45

Warp Partitioning

 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

1

divergent

branch

1

divergent

branch

Still diverge when number of
elements left is <= warpSize 46

Warp Partitioning

 Good partitioning also allows warps to be

retired early.

Better hardware utilization

if (t < stride)

partialSum[t] +=

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …

47

Warp Partitioning

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

 Parallel Reduction

48

Warp Partitioning

 1st Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

0

warps

retired

2

warps

retired

49

Warp Partitioning

 1st Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

50

Warp Partitioning

 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

1

warp

retired

2

warps

retired

51

Warp Partitioning

 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

52

Memory Coalescing

 Given a matrix stored row-major in global

memory, what is a thread’s desirable

access pattern?

Image from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

53

Memory Coalescing

 Given a matrix stored row-major in global

memory, what is a thread’s desirable

access pattern?

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

Md Nd

W
ID

T
H

WIDTH

Thread 0

Thread 1

Thread

0

Thread

1

a) column after column? b) row after row?

54

Memory Coalescing

 Given a matrix stored row-major in global

memory, what is a thread’s desirable

access pattern?

a) column after column

 Individual threads read increasing, consecutive

memory address

b) row after row

 Adjacent threads read increasing, consecutive

memory addresses

55

Memory Coalescing

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

a) column after column

56

Memory Coalescing

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

b) row after row

57

Memory Coalescing

 Global memory bandwidth (DRAM)

G80 – 86.4 GB/s

GT200 – 150 GB/s

 Achieve peak bandwidth by requesting

large, consecutive locations from DRAM

Accessing random location results in much

lower bandwidth

58

Memory Coalescing

 Memory coalescing – rearrange access

patterns to improve performance

 Useful today but will be less useful with

large on-chip caches

59

Memory Coalescing

 The GPU coalesces consecutive reads in

a half-warp into a single read

 Strategy: read global memory in a

coalesce-able fashion into shared memory

Then access shared memory randomly at

maximum bandwidth

 Ignoring bank conflicts…

See Appendix G in the NVIDIA CUDA C Programming Guide for coalescing alignment requirements
60

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Shared Memory

Sometimes called a parallel data cache

 Multiple threads can access shared

memory at the same time

Memory is divided into banks

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

61

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Banks

Each bank can service one address per

two cycles

Per-bank bandwidth: 32-bits per two

(shader clock) cycles

Successive 32-bit words are assigned

to successive banks

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

62

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Bank Conflict: Two simultaneous
accesses to the same bank, but not the
same address

Serialized

 G80-GT200: 16 banks, with 8 SPs
concurrently executing

 Fermi: 32 banks, with 16 SPs
concurrently executing

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

63

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Bank Conflicts?

 Linear addressing

stride == 1

 Bank Conflicts?

 Random 1:1 Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

64

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Bank Conflicts?

 Linear addressing

stride == 2

 Bank Conflicts?

 Linear addressing

stride == 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

65

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Fast Path 1 (G80)

All threads in a half-warp

access different banks

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

66

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Fast Path 2 (G80)

All threads in a half-warp

access the same address

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Same

address

67

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Slow Path (G80)
Multiple threads in a half-

warp access the same bank

Access is serialized

What is the cost?

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

68

Bank Conflicts

__shared__ float shared[256];

// ...

float f = shared[index + s * threadIdx.x];

 For what values of s is this conflict free?

69

Bank Conflicts

__shared__ float shared[256];

// ...

float f = shared[index + s * threadIdx.x];

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

s=1

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

s=3

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html
70

Bank Conflicts

 Without using a profiler, how can we tell what kind of
speedup we can expect by removing bank conflicts?

 What happens if more than one thread in a warp writes
to the same shared memory address (non-atomic
instruction)?

71

SM Resource Partitioning

 Recall a SM dynamically partitions

resources:

Registers

Thread block slots

Thread slots

Shared memory

SM

72

SM Resource Partitioning

 Recall a SM dynamically partitions

resources:

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits

73

SM Resource Partitioning

 We can have

8 blocks of 96 threads

4 blocks of 192 threads

But not 8 blocks of 192 threads

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits

74

SM Resource Partitioning

 We can have (assuming 256 thread blocks)

768 threads (3 blocks) using 10 registers each

512 threads (2 blocks) using 11 registers each

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits

75

SM Resource Partitioning

 We can have (assuming 256 thread blocks)

768 threads (3 blocks) using 10 registers each

512 threads (2 blocks) using 11 registers each

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits
 More registers

decreases thread-

level parallelism

 Can it ever

increase

performance?
76

SM Resource Partitioning

 Performance Cliff: Increasing resource

usage leads to a dramatic reduction in

parallelism

For example, increasing the number of

registers, unless doing so hides latency of

global memory access

77

Data Prefetching

 Independent instructions between a global

memory read and its use can hide memory

latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;

78

Data Prefetching

 Independent instructions between a global

memory read and its use can hide memory

latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;

Read global memory

79

Data Prefetching

 Independent instructions between a global

memory read and its use can hide memory

latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;

Execute instructions

that are not dependent

on memory read
80

Data Prefetching

 Independent instructions between a global

memory read and its use can hide memory

latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f; Use global memory after

the above line from

enough warps hide the

memory latency

81

Data Prefetching

 Prefetching data from global memory can

effectively increase the number of

independent instructions between global

memory read and use

82

Data Prefetching

 Recall tiled matrix multiply:

for (/* ... */)

{

// Load current tile into shared memory

__syncthreads();

// Accumulate dot product

__syncthreads();

}

83

Data Prefetching

 Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads();

// Load next tile into registers

// Accumulate dot product

__syncthreads();

}
84

Data Prefetching

 Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads();

// Load next tile into registers

// Accumulate dot product

__syncthreads();

}
85

Data Prefetching

 Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads();

// Load next tile into registers

// Accumulate dot product

__syncthreads();

}

Prefetch for next

iteration of the loop

86

Data Prefetching

 Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads();

// Load next tile into registers

// Accumulate dot product

__syncthreads();

}

These instructions

executed by enough

threads will hide the

memory latency of the

prefetch
87

• Special Function

Units (SFUs)

• Use to compute
__sinf(), __expf()

• Only 4, each

can execute 1

instruction per

clock

Image: NVIDIA Fermi Whitepaper

Instruction Mix

88

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

Loop Unrolling

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

 Instructions per iteration

One floating-point multiply

One floating-point add

What else?

89

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

Loop Unrolling

 Other instructions per iteration

Update loop counter

90

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

Loop Unrolling

 Other instructions per iteration

Update loop counter

Branch

91

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

Loop Unrolling

 Other instructions per iteration

Update loop counter

Branch

Address arithmetic

92

Loop Unrolling

 Instruction Mix

2 floating-point arithmetic instructions

1 loop branch instruction

2 address arithmetic instructions

1 loop counter increment instruction

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

93

• Only 1/3 are

floating-point

calculations

• But I want my

full theoretical 1

TFLOP (Fermi)

• Consider loop

unrolling

Image: NVIDIA Fermi Whitepaper

Loop Unrolling

94

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

Loop Unrolling

Pvalue +=

Ms[ty][0] * Ns[0][tx] +

Ms[ty][1] * Ns[1][tx] +

...

Ms[ty][15] * Ns[15][tx]; // BLOCK_SIZE = 16

• No more loop

• No loop count update

• No branch

• Constant indices – no address arithmetic

instructions
95

Loop Unrolling

 Automatically:
#pragma unroll BLOCK_SIZE

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

 Disadvantages to unrolling?

96

Thread Granularity

 How much work should one thread do?

Parallel Reduction

 Reduce two elements?

Matrix multiply

 Compute one element of Pd?

Thread Granularity

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

 Matrix Multiple

Thread Granularity

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

 Matrix Multiple

Both elements of Pd

require the same

row of Md

Thread Granularity

 Matrix Multiple

Compute both Pd elements in the same thread

 Reduces global memory access by ¼

 Increases number of independent instructions

 What is the benefit?

 New kernel uses more registers and shared memory

 What does that imply?

