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Outline Nvidia GPGPUs: G80 through Pascal

“The 5 Technological Breakthroughs of Pascal”

- Modules and Layout

- Floating Point

- 16 nm FinFET

- NVIDIA NVLink

- CoWoS with HBM2

- Unified Memory and Compute Preemption

- NUMA

GTX 1080 Summary
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Past NVIDIA 
Architectures

- Tesla

- 576 GFLOPS

- 681M transistors (90 nm)

- 768 MB Memory

- Fermi

- 1.5 TFLOPS

- 3B transistors (40 nm)

- 1.5 GB Memory

- Kepler

- 3.1  TFLOPS

- 3.5B transistors (28 nm)

- 2 GB Memory

- Maxwell

- 4.6 TFLOPS

- 5.2B transistors (28 nm)

- 4 GB Memory



New Architectures
Pascal

- 15 TFLOPS

- 15B transistors (16 nm)

- 16 GB Memory

Volta

- ??? (Pascal stole all its roadmapped features)

- Focus on DX12

- Better Async execution

- Think: How is AMD still winning?

Source: NVIDIA



Pascal
Architecture



Quick note on Title
- NVIDIA touts these features as “Pascal Architecture”, but really will only be 

included in Tesla P100.

- Uses GP100 GPU die (Focus of this presentation)

- P100 meant for compute acceleration (HPC), not gaming

- CRUNCH DATA

- First Pascal GPUs (GTX 10xx) have very few of these features

- Based on GP104 die

- 16 nm FinFET process!

- GDDR5X vs HBM2

- Different module organization (next slide)  

- Includes some additional graphics modules

- Huge focus on VR 

- Simultaneous multi projection, lossless compression engine

- MOVE FRAMES



Source: hardware.fr
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(Not Architecture)



Source: NVIDIA



Source: NVIDIA



Modules and Layout



Die Hierarchy
GPU 

Graphics Processing 

Cluster  (GPC)

Texture Processing 

Cluster (TPC)

Streaming 

Multiprocessor (SM)

Execution Cores 

(Floating Point, Special 

Function) Source: NVIDIA



Pascal Streaming Multiprocessor (SM)
- Each SM partitioned into 2 execution 

blocks. Each has:

- 32 32-bit FP units (64 total)

- 16 64- bit FP units (32 total)

- Instruction Buffer

- Warp scheduler (2 instructions per clock)

- Two dispatch units

- 128 KB Register File, or ~32,000 4 byte words

 2 SMs per TPC

5 TPCs per GPC

6 GPCs per GPU

Source: NVIDIA



Strategic Optimizations
- More than double SM count over Maxwell

- More threads, warps, and blocks in flight

- Higher ratio of shared memory, registers, and warps per SM

- More warps for scheduler to choose from

- Lower ratio of FP32 units to FP64 units

- Better workload balancing

- Better performance for FP64 workloads

- Simpler datapath

- Power,  area efficiency

- At the expense of bandwidth efficiency, probably

- “Aggregate bandwidth effectively more than doubled” - despite >> 2x SMs

- optimized scheduling and overlapped load/store instructions

- Better floating point utilization



32-bit Floating Point
- IEEE 754 Single Precision Binary Floating Point Format

- A.k.a. “Float” in c/c++

- As opposed to Double-precision (FP64) or half-precision (FP16)

- 32 bit wide float B

- B[31] (MSB) -  1 bit sign

- B[30 : 23] - 8 bit exponent

- B[22 : 0] - 23 bit fraction

Value = (-1) 

sign

 * 1.fraction * 2 

exponent - 127

Source: wikipedia



Floating Point Arithmetic

source : http://www.slideshare.net/azharsyed898/floating-point-alu-using-vhdl



Floating Point Arithmetic

source : http://www.slideshare.net/azharsyed898/floating-point-alu-using-vhdl



Floating Point Arithmetic

source : http://www.slideshare.net/azharsyed898/floating-point-alu-using-vhdl



Algorithm for Floating Point Division
1. Sign bit = S1 xor S2

2. Fraction = Fraction1 / Fraction2

3. Exponent = Exponent1 - Exponent2 + bias (in FP32, -127)

4. Normalize if required by left-shifting Fraction and decrementing Exponent



Floating Point Arithmetic

source : http://www.slideshare.net/azharsyed898/floating-point-alu-using-vhdl



Floating Point Hardware
- Involves complicated and computationally expensive operations

- Especially divides!

- Often Pipelined to allow higher throughput

- Latency same (or higher), but trade off computation per fast cycle rather

- Computation theoretically linear in operand length

- In practice, super-linear

- Caching

- Fewer limitations imposed by shared memory, registers and fast memory

- Don’t hit the bandwidth ceiling nearly as fast… 



Pipelined Arithmetic Architecture Example (MIPS)
Notice that there is only 

one divider for both 

floating point and integer, 

and it is not pipelined. This 

is likely because CPU 

division is considered 

uncommon and very 

area-expensive.

Pipelined hardware 

division algorithms do 

exist, typically based on 

Taylor Series Expansion.source : http://meseec.ce.rit.edu/eecc551-fall2002/551-9-12-2002.pdf



Operational Optimizations
FP16 Support

- Each FP32 unit is capable of a single FP32 operation or 2 FP16 operations

- ½ sized data -> half space & bandwidth required (or 2x bandwidth)

- Useful for machine learning applications, truncate precision to avoid overfitting

Expanded Hardware-supported Atomics

- Maxwell implemented hardware 32 bit int atomicAdd() in shared memory 

- Otherwise, synchronization only possible via locking and compare-and-swap instructions

- Pascal implements 32 & 64 bit int and float atomicAdd.



More Operational Optimizations
Caching

- 64 KB shared L1  & Texture Cache per SM

- Allocated depending on workload

- 4096 KB dedicated L2 cache shared across GPU

2x GPUDirect RDMA Bandwidth

- Available since Kepler

- More Multipurpose than NVLink

- Access GPU memory directly from other PCIe devices. Eliminate extraneous memory copies.. 



16nm FinFET Process



FinFET Transistors
Why is smaller better?

What was wrong with traditional MOSFET?

FinFET Transistors



Bigger isn’t always better
Smaller Transistors means more per transistors per unit area

Less power required to activate transistors

- Better performance for same energy cost

- Useful for modern GPUs

- Same performance for lower energy cost 

- Useful for modern CPUs, MOBILE

- Most likely a balance between the two

- Vs Maxell, ~ 2x transistors count, 20% energy boost



Why ditch 
MOSFETs?

Current issue- Leakage current

- Low Source/Drain and  Gate/Source voltage 

differentials- varies exponentially

- Quantum Effect- Electrons forget which side of 

the channel they are on

Future Issue- fabrication

- Smallest features are already same width as the 

wavelength used in Photolithography

- Current estimates say Moore’s Law really expires 

in 2030 (for real, this time).

Source: greenoptimistic.com



MOSFET vs FinFET
MOSFET

- Planar channel 

controlled by voltage 

from one side

FinFET

- Well-defined, wire like 

channel shut off from 3 

sides

- “Pinch closed”

Source:
http://www.nature.com/nature/journal/v512/n7513/fig_tab/nature
13570_F4.html



NVIDIA NVLink



High Speed Interconnect
Multiple-GPU systems becoming 

increasingly prevalent

Interconnect GPUs while  reducing load on 

PCIe bus

Execute directly on memory attached to 

another GPU

Uses NVIDIA High-Speed Signaling 

(NVHS)
Hybrid Mesh Cube Topology

DGX-1 

Source: NVIDIA



NVIDIA High-Speed Signaling (NVHS)
- Differential Pair @ 20 Gbps

- Eight differential pairs form uni-directional Sub-Link

- Two Sub-Links - one in each direction- form Link

- Link supports up to 20 GB/s in each direction for total 40 GB/s bidirectional bandwidth

- Multiple simultaneous Links called Gangs

- Flagship Pascal Tesla P100 supports Gangs of 4 per GPU for max bidirectional bandwidth of 160 

GB/s

- NRZ Signalling 

- Non return to zero: 0s and 1s represented by DC Voltages

- As opposed to Return to Zero (RZ) where between each bit voltage returns to “neutral” zero

- Variable length packets from 1 to 18 Filts

- Filts: 128 bit data words



NVHS Controller Layers
- Physical Layer (PL)

- Interfaces with the physical physical layer

- Responsible for deskew, framing, 

scrambling/descrambling, polarity inversion 

and lane reversal

- Data Link Layer (DL)

- Responsible for reliable transmission

- 25 bit CRC, replay buffering, ACK

- Also handles link bringup and maintenance 

- Transaction Layer (TL)

- Responsible for synchronization, link flow 

control, virtual channels, and link aggregation

Source: NVIDIA



PCIe Relief
- GPUs can share memory with remote nodes through DMA

- NVIDIA claims 5x bandwidth (160 GB/s over 32 GB/s) and ⅓ energy cost of PCIe 

3.0

- Free up PCIe for system memory and NIC access

- High demand in general for PCIe lanes...

- In IBM POWER8 CPUs, NVLink can circumvent PCIe entirely

- Partnership with IBM for Oakridge and Livermore National Laboratories exascale supercomputing 

projects



NVLink in P100
- Two 400 pin connectors: one for NVLink, one for everything else

- NVLink Controller communicates with GPU through High-Speed Hub (HSHUB)

- HSHUB connected to GPU wide crossbar, High Speed Copy Engines (HSCE), and other elements

http://www.mathcs.emory.edu/~cheung/Courses
/355/Syllabus.linux/90-parallel/CrossBar.htmlSource: NVIDIA



CoWoS with HBM2



CoWoS with HBM2
- Chip-on-wafer-on-substrate with High Bandwidth Memory 2

- Consists of one or more vertical stacks of memory dies 

- Linked with through-silicon vias and microbumps

- Contrast with GDDR5- discrete memory chips surrounding the GPU

- 3x greater bandwidth compared to GDDR5

Source: NVIDIA





Native ECC Support
- HBM2 supports native Error Correcting Code support.

- ECC detects and corrects memory bit corruption before error propagates to 

system

- ECC was a implemented in older GDDR5 based systems as a toggleable feature- 

but at huge performance costs

- 5%-10% storage space overhead

- 10%-15% memory bandwidth overhead

- Tesla P100 protected by Single Error Correct Double Error Detect (SECDED) 

ECC



Error Correcting Codes
Generally, memory corruptions are assumed to be independent of one-another, so 

multiple cospatial corruptions are considered very very rare. Thus, single correction is 

considered sufficient but multiple detection is still important.

Triple Modular Redundancy: Store three copies of each bit, majority vote

- Space-expensive

- Very fast (no computation required!)

Hamming Codes: Clever, limited redundancy based on parity

- Extended Hamming Codes are single error correcting, double error detecting 

- Sound familiar? 

- Any given bit is included in a unique set of parity bits, erroneous bits are sum of indicating indices



Extended Unified Memory
and Compute Preemption



Unified Memory Predecessors
- Single addressing scheme for both GPU and host memory

- Fermi (2009) - Unified GPU address space

- GPUs only, simpler compilation via single load/store insn for all GPUs, C pointers

- CUDA 4 (2011) - UVA: Contiguous virtual memory address space for CPU + 

GPUS

- Pinned CPU memory addressable from GPU over PCIe - no memcpy required

- This tends to be slow…

- CUDA 6 (2014) - Managed Memory

- Pool of data accessible to CPU and GPU with single pointer.

- Looks like GPU memory to GPU and CPU memory to CPU

- CUDA system software automatically migrate data between CPU and GPU

- Required synchronization before kernel launches and max managed memory limited to GPU 

memory size



Pascal Unified Memory
- 49 bit virtual addressing 

- Covers 48 bits of CPU memory + theoretical 48 bits of GPU memory

- Managed memory no longer limited to GPU memory capacity

- Memory page faulting - i.e. CPU style memory management

- Because how else do you implement virtual addressing > physical address space?

- Don’t need to synchronize memory with GPU before kernel calls

- Non resident memory page faults, swapped in OR mapped over PCIe / NVLink

- Global data coherency guaranteed 

- Still need to take proper precautions to avoid race conditions

- Memory allocated with default OS allocator accessible from both GPU and CPU



Pascal Unified Memory
- Simpler programming experience, lower barrier to entry

- Focus on parallel implementation, not memory management

- Developer device/host memory management is an optimization 

- Managed memory is sometimes optimal

- Structure of data more manageable

- Data structures and C++ classes, nested structures automatically copied to GPU

- Operate on larger than memory datasets, let system swap in as necessary

- Data always local

- Always access from HBM2 rather than going to system memory

- Doesn’t help if continuously swapping… 

- CUDA 8 contains explicit prefetch instruction cudaMemPrefetchAsync()



NUMA
Question: If GPU supports paging, where does distributed memory live at any given 

time? 

Answer: Follow Non-Uniform Memory Access (NUMA) Paradigm

- Likely the basis for NVIDIA distributed memory model 

- Idea: improve system performance by  bringing memory nearer to the cores

- Memory is classified into Nodes, have affinity for best performance device

- NUMA Placement: Process of assigning memory from NUMA Nodes

- Affects the performance, not the correctness

- Supported in many Unix-style OS



NUMA Coherency
- IPC between cache controllers 

- Leads to poor performance when accesses to same memory address on different controllers

- Cache miss might:

- Require going to main memory

- Request valued from multiple caches, get bombarded with responses

- Scalable Coherent Interface (SCI)

- Maintain list of nodes sharing cache line in associated cache with list status

- MESIF Protocol

- Extension of MESI (Modified, Exclusive, Shared, Invalid) protocol 

- Cache lines are designated one of these states

- Reads/writes  influenced by state

- MESIF adds Forward state 

- Special Shared State

- Designated responder to cache requests



Compute Preemption
- NVIDIA’s attempt to respond to AMD Async Compute

- DX12 benchmarking showed AMD Fiji best, Intel Skylake ok, and NVIDIA Maxwell dead last

- Poor performance apparently due to poor resource sharing on NVIDIA GPU



Compute Preemption
- Allows system to pre-empt ill behaved or 

long running tasks that monopolize the 

system

- Previously, careful coding for resource sharing 

required to execute display + compute jobs 

simultaneously

- Instruction Level Preemption rather than 

block level preemption

- Previously, all threads required to finish before 

context switch allowed

- Breakpoints prevented preemption… 

- Allows robust & lightweight debugging, 

less/no compile time instrumentation 

Finer grain control also used to 

implement dynamic load balancing.

(some fanbois object)

Source: NVIDIA



Quick 
GTX1080 
Roundup



Simultaneous Multi Projection
Engine can reproject geometry from 16 

viewports, each with arbitrary angle, tilt, 

rotation or viewpoint.

Use cases:

- Single Pass Stereo - cheaply render 2 eyes 

instead of running each eye through entire 

pipeline

- Lens Matched Shading - approximate lens 

shape and produce distortion

Source: NVIDIA



Misc. GTX 1080 Features
Enhanced SLI

- Faster, new bridging modes

Fast Sync - alternative to V-sync, high latency way of preventing tearing

- Traditional: game engine generates frames sent to DX

- Solution: decouple render pipeline from display hardware. Frames stored in frame 

buffer, GPU chooses which to scan to display

HEVC Encode / Decode Hardware

- 4k/5k video streaming
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