-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
407 lines (358 loc) · 17.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import argparse
import ast
import collections.abc
import json
import logging
import os
import torch
import yaml
from pytorch_memlab import MemReporter
import configs
import constants
from scripts import train_general
from utils.logger import setup_logging
from utils.misc import dot_dict
def update(d, u):
for k, v in u.items():
if isinstance(v, collections.abc.Mapping):
d[k] = update(d.get(k, {}), v)
else:
d[k] = v
return d
def get_loss_param_v2(loss_name, multiclass, nbit, device, loss_params_str: str):
yaml_loss_param.update({
'multiclass': multiclass,
'nbit': nbit,
'device': device
})
if loss_params_str:
# parse and update/override
loss_params = loss_params_str.replace(' ', '').split(';')
for loss_param_str in loss_params:
splits = loss_param_str.split(':')
assert len(splits) == 2, 'Parsing Error for loss params'
param, value = splits
if param in yaml_loss_param:
# The string or node provided may only consist of the following Python literal structures:
# strings, bytes, numbers, tuples, lists, dicts, sets, booleans, and None.
try:
value_type = type(ast.literal_eval(value))
except ValueError:
value_type = str
except SyntaxError:
value_type = str
yaml_loss_param[param] = value_type(value)
else:
yaml_loss_param[param] = value
return yaml_loss_param
def get_hash_layer(loss_name):
if loss_name in ['greedyhash-unsupervised', 'greedyhash', 'cibhash']:
return 'signhash'
elif loss_name in ['jmlh', 'tbh']:
return 'stochasticbin'
elif loss_name in ['ssdh']:
return 'tanh'
else:
return 'identity'
def get_arch(loss_name, arch_arg):
if loss_name not in constants.supported_model:
raise NotImplementedError(f'no implementation for {loss_name}')
if arch_arg == '':
model = constants.supported_model[loss_name][0] # return default case
elif arch_arg in constants.supported_model[loss_name]:
model = arch_arg
else:
raise NotImplementedError(f'no implementation of {arch_arg} for {loss_name}.'
f' Supported arch are: {constants.supported_model[loss_name]}')
logging.info(f'Using architecture {arch_arg} for {loss_name} loss')
return model
if __name__ == "__main__":
torch.backends.cudnn.benchmark = True
try:
configs.default_workers = os.cpu_count() // torch.cuda.device_count() # follow PyTorch recommendation
except:
# when running with no gpu, torch.cuda.device_count() = 0
configs.default_workers = os.cpu_count()
parser = argparse.ArgumentParser()
parser.add_argument('--config', help="configuration file *.yml", type=str, required=False, default='configs/templates/orthocos.yaml')
parser.add_argument('--backbone', default='alexnet', type=str, help='the backbone feature extractor')
parser.add_argument('--ds', default='imagenet100', choices=[dataset for key in constants.datasets
for dataset in constants.datasets[key]], help='dataset')
parser.add_argument('--dfolder', default='', help='data folder')
parser.add_argument('--c10-ep', default=1, type=int, choices=[1, 2], help='cifar10 evaluation protocol')
parser.add_argument('--ds-reset', default=False, action='store_true', help='whether to reset cifar10 txt')
parser.add_argument('--usedb', default=False, action='store_true', help='make all database images as training data')
parser.add_argument('--train-ratio', default=1, type=float, help='training ratio (useful when usedb is activated)')
parser.add_argument('--nbit', default=64, type=int, help='number of bits for hash codes')
parser.add_argument('--bs', default=64, type=int, help='batch size')
parser.add_argument('--maxbs', default=256, type=int, help='maximum batch size for testing, by default it is max(bs * 4, maxbs)')
parser.add_argument('--epochs', default=100, type=int, help='training epochs')
parser.add_argument('--arch', default='', type=str, help='architecture for the hash function')
parser.add_argument('--gpu-transform', default=False, action='store_true')
parser.add_argument('--gpu-mean-transform', default=False, action='store_true')
parser.add_argument('--no-aug', default=False, action='store_true', help='whether to skip augmentation')
parser.add_argument('--resize-size', default=-1, type=int, help='Image Resize size before crop')
parser.add_argument('--crop-size', default=-1, type=int, help='Image Crop size. Final image size.')
parser.add_argument('--R', default=0, type=int, help='if 0, using default R for specific dataset; -1 for mAP@All')
parser.add_argument('--distance-func', default='hamming', choices=['hamming', 'cosine', 'euclidean'])
parser.add_argument('--zero-mean-eval', default=False, action='store_true')
parser.add_argument('--num-worker', default=-1, type=int, help='number of worker for dataloader')
parser.add_argument('--rand-aug', default=False, action='store_true', help='use random augmentation')
# change: only define at losses
parser.add_argument('--loss', default='dpn', choices=[name for loss in constants.losses
for name in constants.losses[loss]])
parser.add_argument('--tag', default='test')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--optim', default='adam', choices=['sgd', 'adam', 'rmsprop', 'adan'])
parser.add_argument('--loss-params', default='', type=str)
parser.add_argument('--device', default='cuda:0', type=str, help='torch.device(\'?\') cpu, cuda:x')
parser.add_argument('--eval', default=10, type=int, help='total evaluations throughout the training')
# lr related
parser.add_argument('--lr', default=0.0001, type=float, help='learning rate')
parser.add_argument('--wd', default=0.0005, type=float, help='weight decay')
parser.add_argument('--step-size', default=0.8, type=float, help='relative step size (0~1)')
parser.add_argument('--lr-decay-rate', default=0.1, type=float, help='decay rate for lr')
parser.add_argument('--scheduler', default='step', type=str, help='LR Scheduler')
parser.add_argument('--backbone-lr-scale', default=0.1, type=float, help='Scale the learning rate of CNN backbone')
"""Resume Training
``` --resume --resume-dir <logdir to resume> ```
"""
parser.add_argument('--resume', default=False, action='store_true')
parser.add_argument('--resume-dir', default='', type=str, help='resume dir')
parser.add_argument('--enable-checkpoint', default=False, action='store_true')
parser.add_argument('--save-model', default=False, action='store_true')
parser.add_argument('--save-best-model-only', default=False, action='store_true')
parser.add_argument('--discard-hash-outputs', default=False, action='store_true')
parser.add_argument('--load-from', default='', type=str, help='whether to load from a model')
parser.add_argument('--benchmark', default=False, action='store_true',
help='Benchmark mode, determinitic, and no loss')
parser.add_argument('--disable-tqdm', default=False, action='store_true', help='disable tqdm for less verbose stderr')
parser.add_argument('--hash-bias', default=False, action='store_true', help='add bias to hash_fc')
# evaluation
parser.add_argument('--shuffle-database', default=False, action='store_true',
help='shuffle database during mAP evaluation')
parser.add_argument('--workers', default=-1, type=int, help='number of workers')
parser.add_argument('--train-skip-preprocess', default=False, action='store_true')
parser.add_argument('--db-skip-preprocess', default=False, action='store_true')
parser.add_argument('--test-skip-preprocess', default=False, action='store_true')
parser.add_argument('--dataset-name-suffix', default='')
# image backend
parser.add_argument('--accimage', default=False, action='store_true', help='use accimage as backend')
parser.add_argument('--pin-memory', default=False, action='store_true', help='pin memory')
# wandb settings
parser.add_argument('--wandb', action='store_true', default=False, help='enable wandb logging')
args = parser.parse_args()
yaml_loss_param = {}
custom_param = {}
if args.config:
print("Using yaml, args have higher priority, loading")
# args priority is higher than yaml
aux_parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS)
types = {}
opt = vars(args)
for arg in opt:
if type(opt[arg]) is bool:
aux_parser.add_argument('--' + arg.replace('_', '-'), action='store_true')
else:
aux_parser.add_argument('--' + arg.replace('_', '-'))
types[arg] = type(opt[arg])
cli_args, _ = aux_parser.parse_known_args()
data = yaml.load(open(args.config), Loader=yaml.FullLoader)
if 'loss_param' in data:
yaml_loss_param = data['loss_param']
if 'custom_param' in data:
custom_param = data['custom_param']
opt.update(data)
for arg in cli_args.__dict__:
try:
opt[arg] = types[arg](cli_args.__dict__[arg])
except TypeError:
logging.error(f"Argument {arg} incorrectly parsed.")
args = dot_dict(opt)
else:
print("Using only args.")
if args.workers != -1:
configs.default_workers = min(args.workers, configs.default_workers)
if args.accimage:
logging.info('Using accimage as backend!')
configs.use_accimage_backend()
if args.pin_memory:
configs.pin_memory = True
if args.ds == 'descriptor':
assert args.dfolder != '', 'please input --dfolder'
ds = '_'.join(args.dfolder.split('_')[:-1])
else:
ds = args.ds
arch = get_arch(args.loss, args.arch)
nbit = args.nbit
nclass = configs.nclass(ds) # just a dummy one, will be reset below
lr = args.lr
epochs = args.epochs
tag = args.tag
if args.seed == -1:
seed = torch.randint(100000, ()).item()
else:
seed = args.seed
# pre-loading data folder
dfolder = args.dfolder
if 'cifar10' in dfolder:
dfolder = dfolder + '_' + str(args.c10_ep)
if dfolder == '':
data_folder = ''
else:
data_folder = constants.descriptors_data_folder[dfolder]
config = {
'arch': arch,
'arch_kwargs': {
'arch': arch,
'nbit': nbit,
'nclass': nclass,
'pretrained': True,
'freeze_weight': True if args.backbone_lr_scale == 0 else False,
'bias': args.hash_bias,
'backbone': args.backbone,
# linear
'in_channels': configs.in_features(dfolder, dataset=args.ds),
},
'batch_size': args.bs,
'max_batch_size': args.maxbs,
'dataset': args.ds, # notice that it is using args.ds instead of ds
'device': args.device,
'dfolder': args.dfolder,
'multiclass': ds in constants.datasets['multiclass'],
'dataset_kwargs': {
'resize': configs.imagesize(ds) if args.resize_size == -1 else args.resize_size,
'crop': configs.cropsize(ds) if args.crop_size == -1 else args.crop_size,
'norm': 2,
'evaluation_protocol': args.c10_ep,
'use_db_as_train': args.usedb, # for 50a and 50b
'train_ratio': args.train_ratio,
'reset': args.ds_reset,
'separate_multiclass': False,
'train_skip_preprocess': args.train_skip_preprocess,
'db_skip_preprocess': args.db_skip_preprocess,
'test_skip_preprocess': args.test_skip_preprocess,
'dataset_name_suffix': args.dataset_name_suffix, # e.g. "_resize", it will load "data/xxx_resize"
'neighbour_topk': 5, # for neighbour dataset
'no_augmentation': args.no_aug,
'data_folder': data_folder,
'use_random_augmentation': args.rand_aug
},
'optim': args.optim,
'optim_kwargs': {
'lr': lr,
'momentum': 0.9, # sgd, rms
'nesterov': False, # sgd
'betas': (0.9, 0.999), # adam
'alpha': 0.99, # rms
'weight_decay': args.wd,
},
'epochs': epochs,
'scheduler': args.scheduler,
'scheduler_kwargs': {
'step_size': max(1, int(args.epochs * args.step_size)), # get_stepsize(args.loss),
'gamma': args.lr_decay_rate,
'milestones': '0.5,0.75',
'linear_init_lr': 0.001,
'linear_last_lr': 0.00001,
},
'save_interval': 0,
'eval_interval': (epochs // args.eval) if args.eval else 0,
'shuffle_database': args.shuffle_database,
'tag': tag,
'seed': seed,
'loss': args.loss,
'loss_param': get_loss_param_v2(args.loss,
multiclass=ds in constants.datasets['multiclass'],
nbit=nbit,
device=args.device, loss_params_str=args.loss_params),
'backbone_lr_scale': args.backbone_lr_scale,
'start_epoch_from': 0,
'resume_dir': args.resume_dir,
'save_checkpoint': args.enable_checkpoint,
'load_from': args.load_from,
'save_model': args.save_model,
'save_best_model_only': args.save_best_model_only,
'discard_hash_outputs': args.discard_hash_outputs,
'benchmark': args.benchmark,
'num_worker': args.num_worker,
'wandb_enable': args.wandb,
'disable_tqdm': args.disable_tqdm
}
if args.R == 0:
config['dataset'] = ds # using original dataset for convenient
config['R'] = configs.R(config)
config['dataset'] = args.ds # it switch back to descriptor, if it is descriptor
else:
config['R'] = args.R
if args.distance_func == 'hamming':
config['distance_func'] = 'jmlh-dist' if config['loss'] in ['jmlh', 'tbh'] else 'hamming'
else:
config['distance_func'] = args.distance_func
config['zero_mean_eval'] = args.zero_mean_eval
if len(custom_param) != 0:
logging.info('Custom Param enabled! No overridden will be perform')
update(config, custom_param)
configs.disable_tqdm = config['disable_tqdm']
if args.resume:
resume_dir = args.resume_dir
logging.info(f"resume from {resume_dir}")
config = json.load(open(resume_dir + "/config.json"))
train_history = json.load(open(resume_dir + "/train_history.json"))
last_epoch = len(train_history)
config['start_epoch_from'] = train_history[-1]['ep']
config['save_checkpoint'] = args.enable_checkpoint
config['resume_dir'] = resume_dir
logdir = resume_dir
else:
if args.ds == 'descriptor':
ds_prefix = dfolder
else:
ds_prefix = ds
logdir = (
f'logs/{args.loss}_{config["arch_kwargs"]["backbone"]}_{config["arch"]}_{config["arch_kwargs"]["nbit"]}_'
f'{ds_prefix}_'
f'{config["epochs"]}_'
f'{config["optim_kwargs"]["lr"]}_'
f'{config["optim"]}')
# always ensure path name is "logdir/count_tag_seed"
latest_count = -1
if os.path.isdir(logdir):
for dirname in os.listdir(logdir):
try:
count = int(dirname.split('_')[0])
latest_count = max(count, latest_count)
except ValueError:
print(dirname)
latest_count += 1
if config['tag'] != '':
logdir += f'/{latest_count:03d}_{config["tag"]}_{config["seed"]}'
else:
logdir += f'/{latest_count:03d}_{config["seed"]}'
config['logdir'] = logdir
os.makedirs(logdir, exist_ok=True)
# setup logger
setup_logging(logdir + '/log.txt')
logging.info(f'Log directory: {logdir}')
try:
method = None
for key in constants.losses:
if args.loss in constants.losses[key]:
method = key
if method is None:
raise NotImplementedError(f"Loss {args.loss} not found in {list(constants.losses.keys())}")
gpu_mean_transform = args.gpu_mean_transform
if args.loss in ['cibhash']:
config['dataset_kwargs']['no_augmentation'] = True
config['dataset_kwargs']['train_skip_preprocess'] = True
config['dataset_kwargs']['dataset_type'] = 'cibhash'
gpu_mean_transform = True
logging.info('GPU Mean Transform enabled.')
train_general.main(config,
gpu_transform=False,
gpu_mean_transform=gpu_mean_transform,
method=method)
except RuntimeError as e:
reporter = MemReporter()
reporter.report(verbose=True)
raise e