-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparallel_haze_detection_v1.py
85 lines (63 loc) · 2.87 KB
/
parallel_haze_detection_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import multiprocessing as mp
import os
import math
import numpy as np
from contextlib import closing
from itertools import product
from scipy.sparse import csr_matrix
from scipy.optimize import lsq_linear
from common import *
Lock = None
def _init(haze_img, weight_sum):
global Lock, HazeImg, WeightSum
HazeImg = haze_img
WeightSum = weight_sum
Lock = mp.Lock()
def create_shared_array(dtype, shape):
"""Create a new shared array. Return the shared array pointer, and a NumPy array view to it.
Note that the buffer values are not initialized.
"""
dtype = np.dtype(dtype)
# Get a ctype type from the NumPy dtype.
cdtype = np.ctypeslib.as_ctypes_type(dtype)
# Create the RawArray instance.
shared_arr = mp.RawArray(cdtype, math.prod(shape))
# Get a NumPy array view.
arr = shared_to_numpy(shared_arr, dtype, shape)
return shared_arr, arr
def shared_to_numpy(shared_arr, dtype, shape):
return np.frombuffer(shared_arr, dtype=dtype).reshape(shape)
def solve_patch_haze_detection_v1(data):
i0, i1, x, y = data
x_end, y_end = x + PatchWidth, y + PatchHeight
haze_img, weight_sum = shared_to_numpy(*HazeImg), shared_to_numpy(*WeightSum)
patch_i0, patch_i1 = i0[y:y_end, x:x_end], i1[y:y_end, x:x_end]
patch_haze = solve_haze_detection_v1(patch_i0, patch_i1, verbose=False)
with Lock:
haze_img[y:y_end, x:x_end] += patch_haze * PatchWeight2D[:, :, np.newaxis]
weight_sum[y:y_end, x:x_end] += PatchWeight2D[:, :, np.newaxis]
def detect_haze_parallel_v1(i0, i1):
height, width = i0.shape[:2]
with Stopwatch(f"solve_haze_detection_v3 {width}x{height}, {width * height} pixels") as st:
max_x_inclusive = width - PatchWidth + 1
max_y_inclusive = height - PatchHeight + 1
num_patches_x = max(1, int(np.ceil(max_x_inclusive / PatchStrideX)))
num_patches_y = max(1, int(np.ceil(max_y_inclusive / PatchStrideY)))
lsx = np.linspace(0, width - PatchWidth, num_patches_x, dtype=int)
lsy = np.linspace(0, height - PatchHeight, num_patches_y, dtype=int)
(shared_haze_img, haze_img) = create_shared_array(None, (height, width, 4))
(shared_weight_sum, weight_sum) = create_shared_array(None, (height, width, 1))
haze_img.flat[:] = np.zeros((height * width) << 2)
weight_sum.flat[:] = np.zeros(height * width)
with mp.Pool(
os.cpu_count(),
initializer=_init,
initargs=(
(shared_haze_img, None, (height, width, 4)),
(shared_weight_sum, None, (height, width, 1))
)
) as pool:
pool.map(solve_patch_haze_detection_v1, product([i0], [i1], lsx, lsy))
pool.close()
pool.join()
return haze_img / weight_sum