-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
73 lines (60 loc) · 1.85 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
'''Some helper functions for PyTorch, including:
- progress_bar: progress bar mimic xlua.progress.
- set_lr : set the learning rate
- clip_gradient : clip gradient
'''
import os
import sys
import time
import math
import torch
import torch.nn as nn
import torch.nn.init as init
from torch.autograd import Function
# _, term_width = os.popen('stty size', 'r').read().split()
term_width = 400
term_width = int(term_width)
TOTAL_BAR_LENGTH = 30.
last_time = time.time()
begin_time = last_time
def progress_bar(current, total, msg=None):
global last_time, begin_time
if current == 0:
begin_time = time.time() # Reset for new bar.
cur_len = int(TOTAL_BAR_LENGTH*current/total)
rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1
sys.stdout.write(' [')
for i in range(cur_len):
sys.stdout.write('=')
sys.stdout.write('>')
for i in range(rest_len):
sys.stdout.write('.')
sys.stdout.write(']')
cur_time = time.time()
step_time = cur_time - last_time
last_time = cur_time
tot_time = cur_time - begin_time
L = []
if msg:
L.append(' | ' + msg)
msg = ''.join(L)
sys.stdout.write(msg)
for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3):
sys.stdout.write(' ')
# Go back to the center of the bar.
for i in range(term_width-int(TOTAL_BAR_LENGTH/2)+2):
sys.stdout.write('\b')
sys.stdout.write(' %d/%d ' % (current+1, total))
if current < total-1:
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
sys.stdout.flush()
def set_lr(optimizer, lr):
for group in optimizer.param_groups:
group['lr'] = lr
def clip_gradient(optimizer, grad_clip):
for group in optimizer.param_groups:
#print(group['params'])
for param in group['params']:
param.grad.data.clamp_(-grad_clip, grad_clip)