-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
594 lines (459 loc) · 22.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
import torch, gc
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torchvision.models import convnext_large, ConvNeXt_Large_Weights
from torchvision import datasets, transforms
from torch.utils.data import Dataset, DataLoader
from torch.cuda.amp import GradScaler, autocast
from PIL import Image
import glob
import csv
import random
import numpy as np
import os
import pandas as pd
import wandb
from sklearn.utils import shuffle, class_weight
from sklearn.metrics import roc_auc_score,roc_curve,auc,balanced_accuracy_score,accuracy_score,cohen_kappa_score,matthews_corrcoef,f1_score
from sklearn.preprocessing import label_binarize
from sklearn.model_selection import train_test_split
from base_model import InstanceClassifier, AttDual, DSMILNet
import datetime, copy
import matplotlib.pyplot as plt
import argparse
from histolab.tiler import GridTiler
from histolab.slide import Slide
from histolab.masks import TissueMask
from tqdm import tqdm
def get_feats_for_dataset(feats,dataset):
f_cnt= feats[:,:1000]
f_vig = feats[:,1000:2000]
f_van = feats[:,2000:3000]
if dataset == 'VAN':
feats = f_van
elif dataset == 'VIG':
feats = f_vig
elif dataset == 'CNT':
feats = f_cnt
elif dataset == 'CNT_VIG':
feats = torch.cat((f_cnt, f_vig), dim=1)
elif dataset == 'VIG_CNT':
feats = torch.cat((f_vig, f_cnt), dim=1)
elif dataset == 'VAN_VIG':
feats = torch.cat((f_van, f_vig), dim=1)
elif dataset == 'CNT_VAN':
feats = torch.cat((f_cnt, f_van), dim=1)
elif dataset == 'VIG_VAN':
feats = torch.cat((f_vig, f_van), dim=1)
elif dataset == 'VAN_CNT':
feats = torch.cat((f_van, f_cnt), dim=1)
elif dataset == 'CNT_VIG_VAN':
feats = torch.cat((f_cnt, f_vig, f_van), dim=1)
elif dataset == 'VAN_VIG_CNT':
feats = torch.cat((f_van, f_vig, f_cnt), dim=1)
elif dataset == 'VIG_CNT_VAN':
feats = torch.cat((f_vig, f_cnt, f_van), dim=1)
elif dataset == 'CNT_VAN_VIG':
feats = torch.cat((f_cnt, f_van, f_vig), dim=1)
elif dataset == 'VAN_CNT_VIG':
feats = torch.cat((f_van, f_cnt, f_vig), dim=1)
elif dataset == 'VIG_VAN_CNT':
feats = torch.cat((f_vig, f_van, f_cnt), dim=1)
return feats
def build_testloader(config):
working_file = "/restricteddata/skincancer_kuk/Scanned_WSI/metadata_workingfile_label.csv"
path = "/restricteddata/skincancer_kuk/tiles_20x/Features/ConvNext_20X"
path_vig = "/restricteddata/skincancer_kuk/tiles_20x/Features/VIG_20X"
path_van = "/restricteddata/skincancer_kuk/tiles_20x/Features/Van_20X"
path_combined = "/system/user/publicwork/yitaocai/Master_Thesis/Integrated_CVV20X_Dataset"
feats_files_cnt = sorted(glob.glob(os.path.join(path,"*", "*.csv"), recursive=True))
feats_files_vig = sorted(glob.glob(os.path.join(path_vig,"*", "*.csv"), recursive=True))
feats_files_van = sorted(glob.glob(os.path.join(path_van,"*", "*.csv"), recursive=True))
feats_files_combined = sorted(glob.glob(os.path.join(path_combined, "*.csv"), recursive=True))
if config.classes == 3:
df = get_working_df(feats_files_cnt, working_file)
# df = shuffle(df).reset_index(drop=True)
df_vig = get_working_df(feats_files_vig, working_file)
# df_vig = shuffle(df_vig).reset_index(drop=True)
df_van = get_working_df(feats_files_van, working_file)
# df_van = shuffle(df_van).reset_index(drop=True)
df_combined = get_working_df(feats_files_combined, working_file)
# df_combined = shuffle(df_combined[df_combined["labels"]!=2]).reset_index(drop=True)
elif config.classes == 2:
df_combined = get_working_df(feats_files_combined, working_file)
df_combined = shuffle(df_combined[df_combined["labels"]!=2]).reset_index(drop=True)
df = get_working_df(feats_files_cnt, working_file)
df = shuffle(df[df["labels"]!=2]).reset_index(drop=True)
df_vig = get_working_df(feats_files_vig, working_file)
df_vig = shuffle(df_vig[df_vig["labels"]!=2]).reset_index(drop=True)
df_van = get_working_df(feats_files_van, working_file)
df_van = shuffle(df_van[df_van["labels"]!=2]).reset_index(drop=True)
# ls =df.labels.to_numpy()
# # print(np.unique(ls, return_counts=True))
# from collections import Counter
# cw = Counter(ls)
if config.df == 'df_combined':
test_df = df_combined[df_combined['sets']=='test']
elif config.df == 'df':
test_df = df[df['sets']=='test']
elif config.df == 'df_vig':
test_df = df_vig[df_vig['sets']=='test']
elif config.df == 'df_van':
test_df = df_van[df_van['sets']=='test']
return test_df
def get_working_df(feats_files,metadata_file):
"""
Collects the features files from the files in the given path.
"""
metadata = pd.read_csv(metadata_file)
metadata = metadata[metadata["diagnosis"]!="unsure"]
# metadata['label'] = metadata['diagnosis'].apply(lambda x: 0 if x =='normal' else (2 if x == 'scc' or x=='plep' or x== 'mb bowen_bowen_plep' else 1))
labels = []
sets = []
files = []
for file in feats_files:
bag_name = os.path.basename(file).split('.')[0]
if bag_name in metadata["image_nr"].values:
# print(metadata.loc[metadata["image_nr"] == bag_name, 'label'].values)
bag_label = metadata.loc[metadata["image_nr"] == bag_name, 'label'].values[0]
bag_set = metadata.loc[metadata["image_nr"] == bag_name, 'set'].values[0]
labels.append(bag_label)
sets.append(bag_set)
files.append(file)
df = pd.DataFrame(files, columns=["feats_files"])
df["labels"] = labels
df["sets"] = sets
return df
def get_feats_df(path,metadata_file):
"""
Collects the features files from the files in the given path.
"""
metadata = pd.read_csv(metadata_file)
feats_files = sorted(glob.glob(os.path.join(path, "*.csv"), recursive=True))
labels = []
for file in feats_files:
bag_name = os.path.basename(file).split('.')[0]
bag_label = metadata.loc[metadata["image_nr"] == bag_name, 'label'].values[0]
labels.append(bag_label)
df = pd.DataFrame(feats_files, columns=["feats_files"])
df["labels"] = labels
return df
def get_bag_feats(feats_df):
feats= pd.read_csv(feats_df.iloc[0], header=None)
feats = feats.to_numpy()[1:]
label = feats_df.iloc[1]
return feats, label
def get_test_bags(bags_list,df_test,config):
test_bags = []
bags= [os.path.basename(bag) for bag in bags_list]
test_files = [os.path.basename(file).rstrip(".csv") for file in df_test["feats_files"].values]
test_csv = []
for i, (bag,label) in enumerate(zip(test_files,df_test["labels"].values)):
if bag in bags:
if label == 0:
test_bags.append(os.path.join(config.bag_dir + "/0_normal/", bag))
elif label == 1:
test_bags.append(os.path.join(config.bag_dir + "/1_bas/", bag))
elif label == 2:
test_bags.append(os.path.join(config.bag_dir + "/2_scc/", bag))
test_csv.append(df_test["feats_files"].values[i])
return test_bags,test_csv
def compute_roc(label, pred, n_classes):
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(label[:, i], pred[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
return fpr, tpr, roc_auc
def optimal_thresh(fpr, tpr, thresholds, p = 0):
loss = (fpr - tpr) - p * tpr / (fpr + tpr + 1)
idx = np.argmin(loss, axis=0)
return fpr[idx], tpr[idx], thresholds[idx]
def multi_label_roc(labels, predictions, config):
aucs = []
if len(predictions.shape)==1:
predictions = predictions[:, None]
for c in range(config.classes):
label = labels[:, c]
prediction = predictions[:, c]
c_auc = roc_auc_score(label, prediction)
aucs.append(c_auc)
return aucs
def plot_auc(pred,y,config):
fpr,tpr,roc_auc = dict(),dict(),dict()
for i in range(config.classes):
fpr[i],tpr[i],_ = roc_curve(y[:,i], pred[:,i])
roc_auc[i] = auc(fpr[i], tpr[i])
fpr["micro"],tpr["micro"],_ = roc_curve(y.ravel() , pred.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(config.classes)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(config.classes):
mean_tpr += np.interp(all_fpr, fpr[i], tpr[i])
mean_tpr /= config.classes
fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
# Plot all ROC curves
plt.figure(figsize=[8.6,6.5])
plt.plot(
fpr["micro"],
tpr["micro"],
label="micro-average ROC curve (area = {0:0.2f})".format(roc_auc["micro"]),
color="deeppink",
linestyle=":",
linewidth=4,
)
plt.plot(
fpr["macro"],
tpr["macro"],
label="macro-average ROC curve (area = {0:0.2f})".format(roc_auc["macro"]),
color="navy",
linestyle=":",
linewidth=4,
)
# colors = ["aqua", "darkorange", "cornflowerblue", "green", "red", "purple", "yellow", "blue", "black", "brown", "pink", "grey"]
colors = ["purple", "darkorange", "green"]
if config.classes == 3:
classesname = ["NORMAL vs BAS&SCC", "BAS vs NORMAL&SCC", "SCC vs NORMAL&BAS"]
elif config.classes == 2:
classesname = ["NORMAL", "BAS"]
for i, color,name in zip(range(config.classes), colors, classesname):
plt.plot(
fpr[i],
tpr[i],
color=color,
lw=2,
label=" ROC curve of class {0} (area = {1:0.2f})".format(name, roc_auc[i]),
)
plt.plot([0, 1], [0, 1], "k--", lw=2)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC curve")
plt.legend(loc="lower right")
plt.show()
d = datetime.date.today().strftime("%m%d%Y")
# save_path = "/system/user/publicwork/yitaocai/Master_Thesis/auc/auc_plot"
if not os.path.exists(config.AUC_save_path):
os.makedirs(config.AUC_save_path)
# auc_plot = os.path.join(config.AUC_save_path, f"topk{config.topk}_{config.num_heads}h_{config.num_layers}layers_{config.classes}C"+"_"+f"seed{config.seed}"+"_"+ f"{config.dataset}"+f"{d}"+".png")
auc_plot = os.path.join(config.AUC_save_path, f"{config.classes}C"+"_"+f"seed{config.seed}"+"_"+ f"{config.dataset}"+f"{d}"+".png")
plt.savefig(auc_plot)
def build_optimizer(model,config):
if config.optimizer == "SGD":
optimizer = torch.optim.SGD(model.parameters(),
lr=config.lr, momentum=config.momentum)
elif config.optimizer == "Adam":
optimizer = torch.optim.Adam(model.parameters(), lr=config.lr, betas=config.betas, weight_decay=config.weight_decay)
elif config.optimizer == "Adamax":
optimizer = torch.optim.Adamax(model.parameters(), lr=config.lr, betas=config.betas, weight_decay=config.weight_decay)
elif config.optimizer == "ASGD":
optimizer = torch.optim.ASGD(model.parameters(), lr=config.lr, weight_decay=config.weight_decay)
return optimizer
def build_scheduler(optimizer, config):
if config.scheduler == "cosine":
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, config.epochs, config.minlr)
elif config.scheduler == "plateau":
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', verbose=True)
return scheduler
def build_dataloader(config,mode="train"):
working_file = "/restricteddata/skincancer_kuk/Scanned_WSI/metadata_workingfile_label.csv"
path = "/restricteddata/skincancer_kuk/tiles_20x/Features/ConvNext_20X"
path_vig = "/restricteddata/skincancer_kuk/tiles_20x/Features/VIG_20X"
path_van = "/restricteddata/skincancer_kuk/tiles_20x/Features/Van_20X"
path_combined = "/system/user/publicwork/yitaocai/Master_Thesis/Integrated_CVV20X_Dataset"
feats_files_cnt = sorted(glob.glob(os.path.join(path,"*", "*.csv"), recursive=True))
feats_files_vig = sorted(glob.glob(os.path.join(path_vig,"*", "*.csv"), recursive=True))
feats_files_van = sorted(glob.glob(os.path.join(path_van,"*", "*.csv"), recursive=True))
feats_files_combined = sorted(glob.glob(os.path.join(path_combined, "*.csv"), recursive=True))
if config.classes == 3:
df = get_working_df(feats_files_cnt, working_file)
df = shuffle(df).reset_index(drop=True)
df_vig = get_working_df(feats_files_vig, working_file)
# df_vig = shuffle(df_vig).reset_index(drop=True)
df_van = get_working_df(feats_files_van, working_file)
# df_van = shuffle(df_van).reset_index(drop=True)
df_combined = get_working_df(feats_files_combined, working_file)
# df_combined = shuffle(df_combined[df_combined["labels"]!=2]).reset_index(drop=True)
elif config.classes == 2:
df_combined = get_working_df(feats_files_combined, working_file)
df_combined = shuffle(df_combined[df_combined["labels"]!=2]).reset_index(drop=True)
df = get_working_df(feats_files_cnt, working_file)
df = shuffle(df[df["labels"]!=2]).reset_index(drop=True)
df_vig = get_working_df(feats_files_vig, working_file)
df_vig = shuffle(df_vig[df_vig["labels"]!=2]).reset_index(drop=True)
df_van = get_working_df(feats_files_van, working_file)
df_van = shuffle(df_van[df_van["labels"]!=2]).reset_index(drop=True)
if mode == "train":
if config.split == "determined":
dft = df[df['sets']=='train']
dft = shuffle(dft).reset_index(drop=True)
dft_vig = df_vig[df_vig['sets']=='train']
dft_vig = shuffle(dft_vig).reset_index(drop=True)
dft_van = df_van[df_van['sets']=='train']
dft_van = shuffle(dft_van).reset_index(drop=True)
dft_combined = df_combined[df_combined['sets']=='train']
dft_combined = shuffle(dft_combined).reset_index(drop=True)
dfv = df[df['sets']=='val']
dfv = shuffle(dfv).reset_index(drop=True)
dfv_vig = df_vig[df_vig['sets']=='val']
dfv_vig = shuffle(dfv_vig).reset_index(drop=True)
dfv_van = df_van[df_van['sets']=='val']
dfv_van = shuffle(dfv_van).reset_index(drop=True)
dfv_combined = df_combined[df_combined['sets']=='val']
dfv_combined = shuffle(dfv_combined).reset_index(drop=True)
else:
df = df[df["sets"] != "test"]
df_vig = df_vig[df_vig["sets"] != "test"]
df_van = df_van[df_van["sets"] != "test"]
df_combined = df_combined[df_combined["sets"] != "test"]
# sd = random.randint(0,99999)
dft, dfv = train_test_split(df, test_size=0.1, random_state=config.seed, stratify=df['labels'])
dft_vig, dfv_vig = train_test_split(df_vig, test_size=0.1, random_state=config.seed, stratify=df_vig['labels'])
dft_vig,dfv_vig = shuffle(dft_vig).reset_index(drop=True), shuffle(dfv_vig).reset_index(drop=True)
dft_van, dfv_van = train_test_split(df_van, test_size=0.1, random_state=config.seed, stratify=df_van['labels'])
dft_van,dfv_van = shuffle(dft_van).reset_index(drop=True), shuffle(dfv_van).reset_index(drop=True)
dft_combined, dfv_combined = train_test_split(df_combined, test_size=0.1, random_state=config.seed, stratify=df_combined['labels'])
dft_combined,dfv_combined = shuffle(dft_combined).reset_index(drop=True), shuffle(dfv_combined).reset_index(drop=True)
if config.df == 'df_combined':
train_df = dft_combined
valid_df = dfv_combined
elif config.df == 'df':
train_df = dft
valid_df = dfv
elif config.df == 'df_vig':
train_df = dft_vig
valid_df = dfv_vig
elif config.df == 'df_van':
train_df = dft_van
valid_df = dfv_van
return train_df, valid_df
elif mode == "test":
if config.df == 'df_combined':
test_df = df_combined[df_combined['sets']=='test']
elif config.df == 'df':
test_df = df[df['sets']=='test']
elif config.df == 'df_vig':
test_df = df_vig[df_vig['sets']=='test']
elif config.df == 'df_van':
test_df = df_van[df_van['sets']=='test']
return test_df
def get_pos(dir):
import re
if os.path.exists(dir):
files = sorted(glob.glob(os.path.join(dir, '*.png'), recursive=True), key=lambda f: int(re.split("[_ -]",os.path.basename(f))[1]))
else:
raise ValueError("{} does not exist".format(dir))
image_pos_list = []
for file in files:
basename = os.path.basename(file).rstrip(".png")
image_pos = [re.split("[_ -]", basename)[1]] + re.split("[_ -]", basename)[3:7]
image_pos = [int(x) for x in image_pos]
image_pos_list.append(image_pos)
return image_pos_list
def rename(path,format,df):
import re
mrxs_files = sorted(glob.glob(os.path.join(path, '*'+ format), recursive=True))
data_files = sorted(glob.glob(os.path.join(path,'*/'), recursive=True))
for mrxs, data in zip(mrxs_files, data_files):
basename_mrxs = os.path.basename(mrxs)
basename_data = os.path.basename(os.path.dirname(data))
filename_mrxs = "T" + re.split("T", basename_data)[1] + format
try:
image_name = df.loc[df["filename"] == filename_mrxs]["image_nr"].values[0]
os.rename(mrxs, os.path.join(path, str(image_name) + format))
os.rename(data, os.path.join(path, str(image_name)))
except:
continue
def get_tiles(slidepath, basepath, labels, serial_no, format = ".mrxs",tile_size = 512 ):
slides_files = sorted(glob.glob(os.path.join(slidepath, '*'+ format), recursive=True))
# print(slides_files[0:5])
slides = [os.path.basename(f).rstrip(format) for f in slides_files]
PROCESS_NORMAL_PATH = os.path.join(basepath,'0_normal')
PROCESS_BAS_PATH = os.path.join(basepath,'1_bas')
PROCESS_SCC_PATH = os.path.join(basepath,'2_scc')
if not os.path.exists(PROCESS_NORMAL_PATH) or not os.path.exists(PROCESS_BAS_PATH) or not os.path.exists(PROCESS_SCC_PATH):
os.makedirs(PROCESS_NORMAL_PATH)
os.makedirs(PROCESS_BAS_PATH)
os.makedirs(PROCESS_SCC_PATH)
print(f"start processing {len(slides)} slides")
i=0
pbar = tqdm(enumerate(slides), total=len(slides))
for _ , filename in pbar:
print(f"filename is {filename}")
print(f"filesname is in serial_no {filename in serial_no}")
if filename in serial_no:
i+=1
# pbar.set_description(f"Start processing slide {i} {filename} ")
temp_slidepath = os.path.join(slidepath, filename + format)
idx = serial_no.index(filename)
if labels[idx] == 0:
slide = Slide(temp_slidepath, processed_path = PROCESS_NORMAL_PATH)
elif labels[idx] == 1:
slide = Slide(temp_slidepath, processed_path = PROCESS_BAS_PATH)
elif labels[idx] == 2:
slide = Slide(temp_slidepath, processed_path = PROCESS_SCC_PATH)
grid_tiles_extractor = GridTiler(
tile_size=(tile_size, tile_size),
level=1,
check_tissue=True, # default
tissue_percent=0.95,
pixel_overlap=0, # default
prefix = filename +'/', # save tiles in the "grid" subdirectory of slide's processed_path
suffix=".png"
)
grid_tiles_extractor.locate_tiles(
slide=slide,
extraction_mask = TissueMask(),
scale_factor=64,
alpha=64,
outline="#046C4C",
)
grid_tiles_extractor.extract(slide)
pbar.set_description(f"The tiling of the slide {i} {filename} is done")
else:
continue
print(f"{i} slides are processed")
def tile_a_slide(slidepath, basepath, labels, serial_no, format = ".mrxs",tile_size = 512 ):
filename = os.path.basename(slidepath).rstrip(format)
PROCESS_NORMAL_PATH = os.path.join(basepath,'0_normal')
PROCESS_BAS_PATH = os.path.join(basepath,'1_bas')
PROCESS_SCC_PATH = os.path.join(basepath,'2_scc')
if not os.path.exists(PROCESS_NORMAL_PATH) or not os.path.exists(PROCESS_BAS_PATH) or not os.path.exists(PROCESS_SCC_PATH):
os.makedirs(PROCESS_NORMAL_PATH)
os.makedirs(PROCESS_BAS_PATH)
os.makedirs(PROCESS_SCC_PATH)
print(f"filename is {filename}")
print(f"filesname is in serial_no {filename in serial_no}")
if filename in serial_no:
temp_slidepath = slidepath
idx = serial_no.index(filename)
if labels[idx] == 0:
slide = Slide(temp_slidepath, processed_path = PROCESS_NORMAL_PATH)
elif labels[idx] == 1:
slide = Slide(temp_slidepath, processed_path = PROCESS_BAS_PATH)
elif labels[idx] == 2:
slide = Slide(temp_slidepath, processed_path = PROCESS_SCC_PATH)
grid_tiles_extractor = GridTiler(
tile_size=(tile_size, tile_size),
level=1,
check_tissue=True, # default
tissue_percent=0.95,
pixel_overlap=0, # default
prefix = filename +'/', # save tiles in the "grid" subdirectory of slide's processed_path
suffix=".png"
)
grid_tiles_extractor.locate_tiles(
slide=slide,
extraction_mask = TissueMask(),
scale_factor=64,
alpha=64,
outline="#046C4C",
)
grid_tiles_extractor.extract(slide)
print(f"the slide {filename} is processed")