-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathListProgScript.sml
621 lines (513 loc) · 18.8 KB
/
ListProgScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
(*
Module about the built-in list tyoe.
*)
open preamble ml_translatorLib ml_progLib cfLib std_preludeTheory
open mllistTheory ml_translatorTheory OptionProgTheory
open basisFunctionsLib
val _ = new_theory"ListProg"
val _ = translation_extends "OptionProg"
val cakeml = append_prog o process_topdecs;
val _ = ml_prog_update (open_module "List");
val () = generate_sigs := true;
val _ = ml_prog_update (add_dec
``Dtabbrev unknown_loc ["'a"] "list" (Atapp [Atvar "'a"] (Short "list"))`` I);
val r = translate NULL;
val _ = ml_prog_update open_local_block;
val res = translate LENGTH_AUX_def;
val _ = ml_prog_update open_local_in_block;
val result = next_ml_names := ["length"]
val res = translate LENGTH_AUX_THM;
val _ = ml_prog_update open_local_block;
val res = translate REV_DEF;
val res = translate map_rev'_def;
val res = translate filter_rev'_def;
val res = translate flat_rev'_def;
val _ = ml_prog_update open_local_in_block;
val result = next_ml_names := ["rev"];
val res = translate REVERSE_REV;
val result = next_ml_names := ["mapRev"];
val res = translate map_rev_def;
val result = next_ml_names := ["filterRev"];
val res = translate filter_rev_def;
val result = next_ml_names := ["flatRev"];
val res = translate flat_rev_def;
(* New list-append translation *)
val append_v_thm = trans "@" listSyntax.append_tm;
Theorem append_v_thm[allow_rebind] =
append_v_thm
(* Old list-append translation *)
(* val append_v_thm = translate APPEND; *)
(* Theorem append_v_thm = append_v_thm *)
val result = translate HD;
val hd_side_def = Q.prove(
`!xs. hd_side xs = ~(xs = [])`,
Cases THEN FULL_SIMP_TAC (srw_ss()) [fetch "-" "hd_side_def"])
|> update_precondition;
val result = translate TL_DEF;
val result = translate LAST_DEF;
val _ = next_ml_names := ["getItem"];
val result = translate mllistTheory.getItem_def;
Triviality nth_thm:
mllist$nth l 0 = HD l ∧
mllist$nth l (SUC n) = mllist$nth (TL l) n
Proof
gvs [mllistTheory.nth_def,listTheory.EL]
QED
val result = translate nth_thm;
val nth_side_def = theorem"nth_side_def";
val result = translate (TAKE_def |> REWRITE_RULE[GSYM take_def]);
val result = translate (DROP_def |> REWRITE_RULE[GSYM drop_def]);
val _ = next_ml_names := ["takeUntil","dropUntil"];
val result = translate takeUntil_def;
val result = translate dropUntil_def;
val _ = next_ml_names := ["cmp"];
val result = translate list_compare_def;
val result = next_ml_names := ["concat"];
val result = translate FLAT;
(* the let is introduced to produce slight better code (smaller stack frames) *)
val MAP_let = prove(
``MAP f xs =
case xs of
| [] => []
| (y::ys) => let z = f y in z :: MAP f ys``,
Cases_on `xs` \\ fs []);
Theorem MAP_ind:
∀P. (∀f xs. (∀y ys z. xs = y::ys ∧ z = f y ⇒ P f ys) ⇒ P f xs) ⇒
∀f xs. P f xs
Proof
ntac 2 strip_tac \\ Induct_on `xs` \\ fs []
QED
val _ = add_preferred_thy "-"; (* so that the translator finds MAP_ind above *)
val result = next_ml_names := ["map"]
val result = translate MAP_let;
val _ = ml_prog_update open_local_block;
val result = translate mllistTheory.mapi_def;
val _ = ml_prog_update open_local_in_block;
val result = next_ml_names := ["mapi","mapPartial"];
val result = translate MAPI_thm;
val result = translate mapPartial_def;
Quote cakeml:
fun app f ls = case ls of [] => ()
| (x::xs) => (f x; app f xs)
End
val result = translate FIND_thm;
val result = translate FILTER;
val _ = ml_prog_update open_local_block;
val result = translate partition_aux_def;
val _ = ml_prog_update open_local_in_block;
val result = next_ml_names := ["partition"];
val result = translate mllistTheory.partition_def;
val result = translate foldl_def;
val _ = ml_prog_update open_local_block;
val result = translate foldli_aux_def;
val _ = ml_prog_update open_local_in_block;
val result = next_ml_names := ["foldli"];
val result = translate foldli_def;
val result = translate FOLDR;
val result = next_ml_names := ["foldri"];
val result = translate (FOLDRi_def |> REWRITE_RULE[o_DEF]);
val result = translate EXISTS_DEF;
val result = next_ml_names := ["all"];
val result = translate EVERY_DEF;
val result = translate SNOC;
val _ = ml_prog_update open_local_block;
val result = translate GENLIST_AUX;
val _ = ml_prog_update open_local_in_block;
val result = next_ml_names := ["genlist"];
val result = translate GENLIST_GENLIST_AUX;
val result = next_ml_names := ["tabulate"];
val result = translate tabulate_aux_def;
local
val st = get_ml_prog_state();
in
Theorem tabulate_aux_inv_spec:
∀f fv A heap_inv n m nv mv acc accv ls.
NUM n nv /\ NUM m mv /\ LIST_TYPE A acc accv /\
ls = REVERSE acc ++ GENLIST (f o FUNPOW SUC n) (m - n) /\
(!i iv. NUM i iv /\ n <= i /\ i < m ==>
app p fv [iv] heap_inv (POSTv v. &(A (f i) v) * heap_inv))
==>
app (p:'ffi ffi_proj) ^(fetch_v "tabulate" st) [nv;mv;fv;accv] heap_inv
(POSTv lv. &LIST_TYPE A ls lv * heap_inv)
Proof
ntac 6 gen_tac
\\ Induct_on`m-n`
>- (
rw[]
\\ xcf "tabulate" st
\\ xlet `POSTv boolv. &BOOL (n >= m) boolv * heap_inv`
>-(xopb \\ xsimpl \\ fs[NUM_def, INT_def] \\ intLib.COOPER_TAC)
\\ xif \\ asm_exists_tac \\ simp[]
\\ xapp
\\ instantiate \\ xsimpl
\\ `m - n = 0` by simp[] \\ simp[])
\\ rw[]
\\ xcf "tabulate" st
\\ xlet `POSTv boolv. &BOOL (n >= m) boolv * heap_inv`
>-(xopb \\ xsimpl \\ fs[NUM_def, INT_def] \\ intLib.COOPER_TAC)
\\ xif \\ asm_exists_tac \\ simp[]
\\ Cases_on`m` \\ fs[]
\\ rename1`SUC v = SUC m - n`
\\ `v = m - n` by decide_tac
\\ qpat_x_assum`SUC v = _`(assume_tac o SYM)
\\ rw[] \\ fs[GENLIST_CONS,FUNPOW_SUC_PLUS]
\\ xlet `POSTv v. &(A (f n) v) * heap_inv`
>- ( xapp \\ xsimpl )
\\ xlet `POSTv nv. &NUM (n+1) nv * heap_inv`
>-( xopn \\ xsimpl \\ fs[NUM_def,INT_def] \\ intLib.COOPER_TAC)
\\ xlet `POSTv av. &LIST_TYPE A (f n::acc) av * heap_inv`
>-( xcon \\ xsimpl \\ fs[LIST_TYPE_def] )
\\ xapp
\\ xsimpl
\\ map_every qexists_tac[`n+1`,`SUC m`]
\\ instantiate
\\ simp[o_DEF,ADD1]
\\ once_rewrite_tac[CONS_APPEND]
\\ simp[]
QED
end
val result = next_ml_names := ["tabulate"];
val result = translate tabulate_def;
local
val st = get_ml_prog_state();
in
Theorem tabulate_inv_spec:
!f fv A heap_inv n nv ls.
NUM n nv /\ ls = GENLIST f n /\
(!i iv. NUM i iv /\ i < n ==> app p fv [iv] heap_inv (POSTv v. &(A (f i) v) * heap_inv))
==>
app (p:'ffi ffi_proj) ^(fetch_v "tabulate" st) [nv; fv] heap_inv (POSTv lv. &LIST_TYPE A ls lv * heap_inv)
Proof
rpt strip_tac
\\ xcf "tabulate" st
\\ xlet`POSTv v. &LIST_TYPE A [] v * heap_inv`
>- (xcon \\ xsimpl \\ fs[LIST_TYPE_def] )
\\ xapp_spec tabulate_aux_inv_spec
\\ xsimpl
\\ instantiate
\\ simp[FUNPOW_SUC_PLUS,o_DEF,ETA_AX]
QED
end
val result = translate collate_def;
Theorem ZIP_ind:
∀P. (∀v. (∀x4 x3 x2 x1. v = (x4::x3,x2::x1) ⇒ P (x3,x1)) ⇒ P v) ⇒ ∀v. P v
Proof
simp [FORALL_PROD] \\ ntac 2 strip_tac \\ Induct \\ rw []
QED
Theorem ZIP_eq:
ZIP x =
case x of
| (x::xs,y::ys) => (x,y) :: ZIP (xs,ys)
| _ => []
Proof
PairCases_on ‘x’ \\ fs [ZIP_def]
\\ Cases_on ‘x0’ \\ Cases_on ‘x1’ \\ fs [ZIP_def]
QED
val result = translate ZIP_eq;
val result = translate MEMBER_def;
val result = translate SUM;
Theorem UNZIP_eq:
!xs.
UNZIP xs =
case xs of
[] => ([], [])
| (y,z)::xs =>
let (ys,zs) = UNZIP xs in
(y::ys, z::zs)
Proof
Induct \\ simp [ELIM_UNCURRY, FORALL_PROD]
QED
Theorem UNZIP_ind:
∀P. (∀v. (∀x4 x3. v = x4::x3 ⇒ ∀x2 x1. x4 = (x2,x1) ⇒ P x3) ⇒ P v) ⇒ ∀v. P v
Proof
simp [FORALL_PROD]
\\ gen_tac \\ strip_tac
\\ Induct \\ rw []
QED
val result = translate UNZIP_eq;
val result = translate (PAD_RIGHT |> REWRITE_RULE [GSYM sub_check_def]);
val result = translate (PAD_LEFT |> REWRITE_RULE [GSYM sub_check_def]);
val result = translate (ALL_DISTINCT |> REWRITE_RULE [MEMBER_INTRO]);
val _ = next_ml_names := ["isPrefix"];
val result = translate isPREFIX;
val result = translate FRONT_DEF;
val _ = next_ml_names := ["splitAtPki"];
val result = translate (splitAtPki_def |> REWRITE_RULE [SUC_LEMMA])
Triviality SPLITP_alt:
SPLITP P [] = ([],[]) ∧
SPLITP P (x::l) =
if P x then ([],x::l) else
let (l',l'') = SPLITP P l in
(x::l',l'')
Proof
rw[rich_listTheory.SPLITP,pairTheory.ELIM_UNCURRY]
QED
val _ = next_ml_names := ["split"];
val result = translate SPLITP_alt
val front_side_def = Q.prove(
`!xs. front_side xs = ~(xs = [])`,
Induct THEN ONCE_REWRITE_TAC [fetch "-" "front_side_def"]
THEN FULL_SIMP_TAC (srw_ss()) [CONTAINER_def])
|> update_precondition;
val last_side_def = Q.prove(
`!xs. last_side xs = ~(xs = [])`,
Induct THEN ONCE_REWRITE_TAC [fetch "-" "last_side_def"]
THEN FULL_SIMP_TAC (srw_ss()) [CONTAINER_def])
|> update_precondition;
val nth_side_def = Q.prove(
`!n xs. nth_side xs n = (n < LENGTH xs)`,
Induct THEN Cases_on `xs` THEN ONCE_REWRITE_TAC [fetch "-" "nth_side_def"]
THEN fs[CONTAINER_def])
|> update_precondition;
Theorem LUPDATE_ind:
∀P. (∀e n. P e n []) ∧ (∀e n x xs. (∀e n. P e n xs) ⇒ P e n (x::xs)) ⇒ ∀e n xs. P e n xs
Proof
ntac 2 strip_tac \\ Induct_on ‘xs’ \\ fs []
QED
Theorem LUPDATE_eq:
LUPDATE e n xs =
case xs of
| [] => []
| y::ys => if n = 0 then e :: ys else y :: LUPDATE e (n-1) ys
Proof
Cases_on ‘xs’ \\ fs [LUPDATE_DEF,PRE_SUB1]
QED
val _ = next_ml_names := ["update"];
val result = translate LUPDATE_eq;
val _ = (next_ml_names := ["compare"]);
val _ = translate mllistTheory.list_compare_def;
val _ = ml_prog_update open_local_block;
Definition qsort_part_def:
qsort_part ord y [] ys zs = (ys,zs) ∧
qsort_part ord y (x::xs) ys zs =
if ord x y then qsort_part ord y xs (x::ys) zs
else qsort_part ord y xs ys (x::zs)
End
Triviality qsort_part_length:
∀ord y xs ys zs ys1 zs1.
qsort_part ord y xs ys zs = (ys1,zs1) ⇒
LENGTH ys1 ≤ LENGTH xs + LENGTH ys ∧
LENGTH zs1 ≤ LENGTH xs + LENGTH zs
Proof
Induct_on ‘xs’
\\ fs [qsort_part_def,AllCaseEqs()]
\\ rw [] \\ res_tac \\ fs []
QED
Definition qsort_acc_def:
qsort_acc ord [] acc = acc ∧
qsort_acc ord (x::xs) acc =
let (l1,l2) = qsort_part ord x xs [] [] in
qsort_acc ord l1 (x::qsort_acc ord l2 acc)
Termination
WF_REL_TAC ‘measure $ λ(ord,xs,acc). LENGTH xs’ \\ rw []
\\ imp_res_tac $ GSYM qsort_part_length \\ fs []
End
val res = translate qsort_part_def;
val res = translate qsort_acc_def;
val _ = ml_prog_update open_local_in_block;
Triviality qsort_part_thm:
∀xs ys zs ord x.
qsort_part ord x xs ys zs = PART (λy. ord y x) xs ys zs
Proof
Induct \\ fs [qsort_part_def,sortingTheory.PART_DEF]
QED
Triviality qsort_acc:
∀ord xs acc. qsort_acc ord xs acc = QSORT ord xs ++ acc
Proof
ho_match_mp_tac qsort_acc_ind \\ rw []
\\ simp [Once QSORT_DEF,Once qsort_acc_def]
\\ pairarg_tac \\ fs [sortingTheory.PARTITION_DEF]
\\ pairarg_tac \\ fs [qsort_part_thm]
QED
Triviality qsort_acc_thm:
QSORT ord xs = qsort_acc ord xs []
Proof
simp [qsort_acc]
QED
val _ = next_ml_names := ["sort"];
val res = translate qsort_acc_thm;
val _ = ml_prog_update close_local_blocks;
val _ = ml_prog_update (close_module NONE);
(* finite maps -- depend on lists *)
val _ = ml_prog_update (open_module "Alist");
Definition FMAP_EQ_ALIST_def:
FMAP_EQ_ALIST f l <=> (ALOOKUP l = FLOOKUP f)
End
Definition FMAP_TYPE_def:
FMAP_TYPE (a:'a -> v -> bool) (b:'b -> v -> bool) (f:'a|->'b) =
\v. ?l. LIST_TYPE (PAIR_TYPE a b) l v /\ FMAP_EQ_ALIST f l
End
val _ = add_type_inv ``FMAP_TYPE (a:'a -> v -> bool) (b:'b -> v -> bool)``
``:('a # 'b) list``;
val _ = next_ml_names := ["lookup"];
val ALOOKUP_eval = translate ALOOKUP_def;
val Eval_FLOOKUP = Q.prove(
`!v. ((LIST_TYPE (PAIR_TYPE (b:'b -> v -> bool) (a:'a -> v -> bool)) -->
b --> OPTION_TYPE a) ALOOKUP) v ==>
((FMAP_TYPE b a --> b --> OPTION_TYPE a) FLOOKUP) v`,
SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,FMAP_TYPE_def,
PULL_EXISTS,FMAP_EQ_ALIST_def] THEN METIS_TAC [])
|> (fn th => MATCH_MP th ALOOKUP_eval)
|> add_user_proved_v_thm;
val _ = next_ml_names := ["update"];
Definition AUPDATE_def:
AUPDATE l (x:'a,y:'b) = (x,y)::l
End
val AUPDATE_eval = translate AUPDATE_def;
Triviality FMAP_EQ_ALIST_UPDATE:
FMAP_EQ_ALIST f l ==> FMAP_EQ_ALIST (FUPDATE f (x,y)) (AUPDATE l (x,y))
Proof
SIMP_TAC (srw_ss()) [FMAP_EQ_ALIST_def,AUPDATE_def,ALOOKUP_def,FUN_EQ_THM,
finite_mapTheory.FLOOKUP_DEF,finite_mapTheory.FAPPLY_FUPDATE_THM]
THEN METIS_TAC []
QED
val Eval_FUPDATE = Q.prove(
`!v. ((LIST_TYPE (PAIR_TYPE a b) -->
PAIR_TYPE (a:'a -> v -> bool) (b:'b -> v -> bool) -->
LIST_TYPE (PAIR_TYPE a b)) AUPDATE) v ==>
((FMAP_TYPE a b --> PAIR_TYPE a b --> FMAP_TYPE a b) FUPDATE) v`,
rw[Arrow_def,AppReturns_def,FMAP_TYPE_def] \\
first_x_assum(fn th => first_x_assum (qspec_then`refs`strip_assume_tac o MATCH_MP th)) \\
METIS_TAC[FMAP_EQ_ALIST_UPDATE,PAIR,APPEND_ASSOC] (* this also works above, but slower *))
|> (fn th => MATCH_MP th AUPDATE_eval)
|> add_user_proved_v_thm;
val NIL_eval = hol2deep ``[]:('a # 'b) list``
val Eval_FEMPTY = Q.prove(
`!v. (LIST_TYPE (PAIR_TYPE (a:'a -> v -> bool) (b:'b -> v -> bool)) []) v ==>
((FMAP_TYPE a b) FEMPTY) v`,
SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,FMAP_TYPE_def,
PULL_EXISTS,FMAP_EQ_ALIST_def] THEN REPEAT STRIP_TAC THEN Q.EXISTS_TAC `[]`
THEN FULL_SIMP_TAC (srw_ss()) [ALOOKUP_def,FUN_EQ_THM,
finite_mapTheory.FLOOKUP_DEF])
|> MATCH_MP (MATCH_MP Eval_WEAKEN NIL_eval)
|> add_eval_thm;
Definition AEVERY_AUX_def:
(AEVERY_AUX aux P [] = T) /\
(AEVERY_AUX aux P ((x:'a,y:'b)::xs) =
if MEMBER x aux then AEVERY_AUX aux P xs else
P (x,y) /\ AEVERY_AUX (x::aux) P xs)
End
Definition AEVERY_def:
AEVERY = AEVERY_AUX []
End
val _ = next_ml_names := ["every","every"];
val _ = translate AEVERY_AUX_def;
val AEVERY_eval = translate AEVERY_def;
Triviality AEVERY_AUX_THM:
!l aux P. AEVERY_AUX aux P l <=>
!x y. (ALOOKUP l x = SOME y) /\ ~(MEM x aux) ==> P (x,y)
Proof
Induct
THEN FULL_SIMP_TAC std_ss [ALOOKUP_def,AEVERY_AUX_def,FORALL_PROD,
MEM,GSYM MEMBER_INTRO] THEN REPEAT STRIP_TAC
THEN SRW_TAC [] [] THEN METIS_TAC [SOME_11]
QED
Triviality AEVERY_THM:
AEVERY P l <=> !x y. (ALOOKUP l x = SOME y) ==> P (x,y)
Proof
SIMP_TAC (srw_ss()) [AEVERY_def,AEVERY_AUX_THM]
QED
Triviality AEVERY_EQ_FEVERY:
FMAP_EQ_ALIST f l ==> (AEVERY P l <=> FEVERY P f)
Proof
FULL_SIMP_TAC std_ss [FMAP_EQ_ALIST_def,FEVERY_DEF,AEVERY_THM]
THEN FULL_SIMP_TAC std_ss [FLOOKUP_DEF]
QED
val Eval_FEVERY = Q.prove(
`!v. (((PAIR_TYPE (a:'a->v->bool) (b:'b->v->bool) --> BOOL) -->
LIST_TYPE (PAIR_TYPE a b) --> BOOL) AEVERY) v ==>
(((PAIR_TYPE (a:'a->v->bool) (b:'b->v->bool) --> BOOL) -->
FMAP_TYPE a b --> BOOL) FEVERY) v`,
rw[Arrow_def,AppReturns_def,FMAP_TYPE_def,PULL_EXISTS,BOOL_def] \\
first_x_assum(fn th => first_x_assum (qspec_then`refs`strip_assume_tac o MATCH_MP th)) \\
fs [] \\ first_assum(part_match_exists_tac (hd o strip_conj) o concl) \\ fs[] \\
METIS_TAC[AEVERY_EQ_FEVERY,Boolv_11])
|> (fn th => MATCH_MP th AEVERY_eval)
|> add_user_proved_v_thm;
val _ = next_ml_names := ["map"];
Definition AMAP_def:
(AMAP f [] = []) /\
(AMAP f ((x:'a,y:'b)::xs) = (x,(f y):'c) :: AMAP f xs)
End
val AMAP_eval = translate AMAP_def;
Triviality ALOOKUP_AMAP:
!l. ALOOKUP (AMAP f l) a =
case ALOOKUP l a of NONE => NONE | SOME x => SOME (f x)
Proof
Induct THEN SIMP_TAC std_ss [AMAP_def,ALOOKUP_def,FORALL_PROD]
THEN SRW_TAC [] []
QED
Triviality FMAP_EQ_ALIST_o_f:
FMAP_EQ_ALIST m l ==> FMAP_EQ_ALIST (x o_f m) (AMAP x l)
Proof
SIMP_TAC std_ss [FMAP_EQ_ALIST_def,FUN_EQ_THM,FLOOKUP_DEF,
o_f_DEF,ALOOKUP_AMAP] THEN REPEAT STRIP_TAC THEN SRW_TAC [] []
QED
val Eval_o_f = Q.prove(
`!v. (((b --> c) --> LIST_TYPE (PAIR_TYPE (a:'a->v->bool) (b:'b->v->bool)) -->
LIST_TYPE (PAIR_TYPE a (c:'c->v->bool))) AMAP) v ==>
(((b --> c) --> FMAP_TYPE a b --> FMAP_TYPE a c) $o_f) v`,
rw[Arrow_def,AppReturns_def,FMAP_TYPE_def,PULL_EXISTS] \\
first_x_assum(fn th => first_x_assum (qspec_then`refs`strip_assume_tac o MATCH_MP th)) \\
fs [] \\ first_assum(part_match_exists_tac (hd o strip_conj) o concl) \\ fs[] \\
METIS_TAC[FMAP_EQ_ALIST_o_f])
|> (fn th => MATCH_MP th AMAP_eval)
|> add_user_proved_v_thm;
(* TODO: quick fix on account of hol2deep not accepting ``$++`` *)
val append_eval =
let
val th = fetch "-" "append_v_thm"
val pat = th |> concl |> rator
val inv = ``(LIST_TYPE (PAIR_TYPE a b) -->
LIST_TYPE (PAIR_TYPE a b) -->
LIST_TYPE (PAIR_TYPE a b))
((++) : ('a # 'b) list -> ('a # 'b) list -> ('a # 'b) list)``
val (ii,ss) = match_term pat inv
val th = INST ii (INST_TYPE ss th)
in th end
val Eval_FUNION = Q.prove(
`!v. (LIST_TYPE (PAIR_TYPE a b) --> LIST_TYPE (PAIR_TYPE a b) -->
LIST_TYPE (PAIR_TYPE a b)) APPEND v ==>
(FMAP_TYPE a b --> FMAP_TYPE a b --> FMAP_TYPE a b) $FUNION v`,
rw[Arrow_def,AppReturns_def,FMAP_TYPE_def,FMAP_EQ_ALIST_def,PULL_EXISTS] \\
first_x_assum(fn th => first_x_assum (qspec_then`refs`strip_assume_tac o MATCH_MP th)) \\
fs [] \\ first_assum(part_match_exists_tac (hd o strip_conj) o concl) \\ fs[] \\ rw[] \\
first_x_assum(fn th => first_x_assum (qspec_then`refs''`strip_assume_tac o MATCH_MP th)) \\
fs [] \\ first_assum(part_match_exists_tac (hd o strip_conj) o concl) \\ fs[] \\
first_assum(part_match_exists_tac (hd o strip_conj) o concl) \\ fs[] \\
FULL_SIMP_TAC std_ss [ALOOKUP_APPEND,FUN_EQ_THM]
THEN FULL_SIMP_TAC std_ss [FLOOKUP_DEF,FUNION_DEF,IN_UNION]
THEN REPEAT STRIP_TAC THEN SRW_TAC [] [] THEN FULL_SIMP_TAC std_ss [])
|> (fn th => MATCH_MP th append_eval)
|> add_user_proved_v_thm;
val _ = next_ml_names := ["delete"];
Definition ADEL_def:
(ADEL [] z = []) /\
(ADEL ((x:'a,y:'b)::xs) z = if x = z then ADEL xs z else (x,y)::ADEL xs z)
End
val ADEL_eval = translate ADEL_def;
Triviality ALOOKUP_ADEL:
!l a x. ALOOKUP (ADEL l a) x = if x = a then NONE else ALOOKUP l x
Proof
Induct THEN SRW_TAC [] [ALOOKUP_def,ADEL_def] THEN Cases_on `h`
THEN SRW_TAC [] [ALOOKUP_def,ADEL_def]
QED
Triviality FMAP_EQ_ALIST_ADEL:
!x l. FMAP_EQ_ALIST x l ==>
FMAP_EQ_ALIST (x \\ a) (ADEL l a)
Proof
FULL_SIMP_TAC std_ss [FMAP_EQ_ALIST_def,ALOOKUP_def,fmap_domsub,FUN_EQ_THM]
THEN REPEAT STRIP_TAC THEN SRW_TAC [] [ALOOKUP_ADEL,FLOOKUP_DEF,DRESTRICT_DEF]
THEN FULL_SIMP_TAC std_ss []
QED
val Eval_fmap_domsub = Q.prove(
`!v. ((LIST_TYPE (PAIR_TYPE a b) --> a -->
LIST_TYPE (PAIR_TYPE a b)) ADEL) v ==>
((FMAP_TYPE a b --> a --> FMAP_TYPE a b) $\\) v`,
rw[Arrow_def,AppReturns_def,FMAP_TYPE_def,PULL_EXISTS] \\
first_x_assum(fn th => first_x_assum (qspec_then`refs`strip_assume_tac o MATCH_MP th)) \\
METIS_TAC[FMAP_EQ_ALIST_ADEL])
|> (fn th => MATCH_MP th ADEL_eval)
|> add_user_proved_v_thm;
val _ = ml_prog_update (close_module NONE);
val _ = export_theory()