-
Notifications
You must be signed in to change notification settings - Fork 86
/
floatToRealProofsScript.sml
1064 lines (1026 loc) · 46.6 KB
/
floatToRealProofsScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
Proofs about translation from floating-point computations to real-number
computations. Needed to prove simulations in the end-to-end correctness
theorems.
*)
open icing_rewriterTheory source_to_source2Theory fpOptTheory fpOptPropsTheory
fpSemPropsTheory semanticPrimitivesTheory evaluateTheory
semanticsTheory semanticsPropsTheory pureExpsTheory floatToRealTheory
evaluatePropsTheory fpSemPropsTheory mllistTheory;
local open ml_progTheory in end;
open icingTacticsLib preamble;
val _ = temp_delsimps ["lift_disj_eq", "lift_imp_disj"];
val _ = new_theory "floatToRealProofs";
(** Real-valued identitites preserve real semantics **)
Definition freeVars_real_bound_def:
freeVars_real_bound e env =
∀ x. x IN FV e ⇒ ∃ r. nsLookup env.v x = SOME (Real r)
End
Definition is_real_id_exp_def:
is_real_id_exp rws (st1:'a semanticPrimitives$state) st2 env e r =
(evaluate st1 env [realify (rewriteFPexp rws e)] = (st2, Rval r) ∧
freeVars_real_bound e env ∧
st1.fp_state.canOpt = FPScope Opt ∧
st1.fp_state.real_sem = T ⇒
∃ choices.
evaluate st1 env [realify e] =
(st2 with fp_state := st2.fp_state with
<| choices := choices|>, Rval r))
End
Definition freeVars_list_real_bound_def:
freeVars_list_real_bound es env =
∀ x. x IN FV_list es ⇒ ∃ r. nsLookup env.v x = SOME (Real r)
End
Definition is_real_id_list_def:
is_real_id_list rws (st1:'a semanticPrimitives$state) st2 env exps r =
(evaluate st1 env (MAP realify (MAP (rewriteFPexp rws) exps)) = (st2, Rval r) ∧
freeVars_list_real_bound exps env ∧
st1.fp_state.canOpt = FPScope Opt ∧
st1.fp_state.real_sem = T ⇒
∃ choices.
evaluate st1 env (MAP realify exps) =
(st2 with fp_state := st2.fp_state with
<| choices := choices|>, Rval r))
End
Theorem empty_rw_real_id:
∀ (st1 st2:'a semanticPrimitives$state) env e r.
is_real_id_exp [] st1 st2 env e r
Proof
rpt strip_tac \\ fs[is_real_id_exp_def, rewriteFPexp_def]
\\ fs[fpState_component_equality, semState_comp_eq]
QED
Definition freeVars_realExp_bound_def:
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env (cfg: config)
Here (Lit l) =
T ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env (cfg: config)
Here (App op exps) =
(if isFpArithExp (App op exps) then freeVars_real_bound (App op exps) env
else T) ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env (cfg: config)
Here (Var x) = T ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env (cfg: config)
Here e = T ∧
(* If we are not at the end of the path, further navigate through the AST *)
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg (Left _)
(Lit l) = T ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg (Left _)
(Var x) = T ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg (Center path)
(Raise e) =
freeVars_realExp_bound st1 st2 env cfg path e ∧
(* We cannot support "Handle" expressions because we must be able to reorder exceptions *)
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg path
(Handle e pes) = T ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg
(ListIndex (i, path)) (Con mod exps) =
(EVERYi (λ n e. if (n = i)
then (freeVars_realExp_bound st1 st2 env cfg path e)
else T) exps) ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg
(Left _) (Fun s e) = T ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg
(ListIndex (i, path)) (App op exps) =
(EVERYi (λ n e. if (n = i)
then (freeVars_realExp_bound st1 st2 env cfg path e)
else T) exps) ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg
(Left path) (Log lop e2 e3) =
freeVars_realExp_bound st1 st2 env cfg path e2 ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg
(Right path) (Log lop e2 e3) =
freeVars_realExp_bound st1 st2 env cfg path e3 ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg
(Left path) (If e1 e2 e3) =
freeVars_realExp_bound st1 st2 env cfg path e1 ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg
(Center path) (If e1 e2 e3) =
freeVars_realExp_bound st1 st2 env cfg path e2 ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg
(Right path) (If e1 e2 e3) =
freeVars_realExp_bound st1 st2 env cfg path e3 ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg
(Left path) (Mat e pes) =
freeVars_realExp_bound st1 st2 env cfg path e ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg
(ListIndex (i, path)) (Mat e pes) =
EVERYi (λ n (p, e').
if (n = i) then
∀ v env_v.
pmatch env.c st1.refs p (HD v) [] = Match env_v ⇒
∀ st1 st2. freeVars_realExp_bound st1 st2
(env with v := nsAppend (alist_to_ns env_v) env.v) cfg path e'
else T) pes ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg
(Left path) (Let so e1 e2) =
(freeVars_realExp_bound st1 st2 env cfg path e1) ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg
(Right path) (Let so e1 e2) =
(∀ r.
evaluate st1 env [realify e1] = (st2, Rval r) ⇒
(∀ st1 st2.
freeVars_realExp_bound st1 st2 (env with v := nsOptBind so (HD r) env.v)
cfg path e2)) ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg
(Center path) (Letrec ses e) =
(ALL_DISTINCT (MAP (λ(x,y,z). x) (MAP (λ (x,y,e). (x,y,realify e)) ses)) ⇒
freeVars_realExp_bound st1 st2 (env with v :=
build_rec_env (MAP (λ (x,y,e). (x,y,realify e)) ses) env env.v)
cfg path e) ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg
(Center path) (Tannot e t) =
freeVars_realExp_bound st1 st2 env cfg path e ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg
(Center path) (Lannot e l) =
freeVars_realExp_bound st1 st2 env cfg path e ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg
(Center path) (FpOptimise sc e) =
freeVars_realExp_bound st1 st2 env (cfg with canOpt := if sc = Opt then T else F) path e ∧
freeVars_realExp_bound (st1:'a semanticPrimitives$state) st2 env cfg _ e = T
End
Definition is_real_id_perform_rewrites_def:
is_real_id_perform_rewrites rws (st1:'a semanticPrimitives$state) st2 env cfg e r path ⇔
(evaluate st1 env [realify (perform_rewrites cfg path rws e)] = (st2, Rval r) ∧
(∀ (st1:'a semanticPrimitives$state) st2. freeVars_realExp_bound st1 st2 env cfg path e) ∧
(cfg.canOpt ⇔ st1.fp_state.canOpt = FPScope Opt) ∧
st1.fp_state.canOpt ≠ Strict ∧
st1.fp_state.real_sem ⇒
∃ choices.
evaluate st1 env [realify e] =
(st2 with fp_state := st2.fp_state with
<| choices := choices|>, Rval r))
End
Definition freeVars_realPlan_bound_def:
freeVars_realPlan_bound (st1:'a semanticPrimitives$state) st2 env cfg [] e = T ∧
freeVars_realPlan_bound (st1:'a semanticPrimitives$state) st2 env cfg (Label s :: realPlan) e =
freeVars_realPlan_bound st1 st2 env cfg realPlan e ∧
freeVars_realPlan_bound (st1:'a semanticPrimitives$state) st2 env cfg (Expected e_opt :: realPlan) e =
freeVars_realPlan_bound (st1:'a semanticPrimitives$state) st2 env cfg realPlan e ∧
freeVars_realPlan_bound (st1:'a semanticPrimitives$state) st2 env cfg (Apply (path, rewrites)::rest) e =
(freeVars_realExp_bound st1 st2 env cfg path e ∧
freeVars_realPlan_bound st1 st2 env cfg rest (perform_rewrites cfg path rewrites e))
End
Definition is_real_id_optimise_with_plan_def:
is_real_id_optimise_with_plan plan (st1:'a semanticPrimitives$state) st2 env cfg exps r =
(evaluate st1 env
(MAP realify (MAP (λ e. FST (optimise_with_plan cfg plan e)) exps)) = (st2, Rval r) ∧
(∀ e. MEM e exps ⇒
(∀ (st1:'a semanticPrimitives$state) st2. freeVars_realPlan_bound st1 st2 env cfg plan e)) ∧
(cfg.canOpt ⇔ st1.fp_state.canOpt = FPScope Opt) ∧
st1.fp_state.canOpt ≠ Strict ∧
st1.fp_state.real_sem ⇒
∃ choices.
evaluate st1 env (MAP realify exps) =
(st2 with fp_state := st2.fp_state with
<| choices := choices|>, Rval r))
End
Theorem is_real_id_perform_rewrites_empty:
∀ rws path.
MEM (Apply (path, rws)) [] ⇒
∀ st1 st2 env cfg exps r.
is_real_id_perform_rewrites rws st1 st2 env cfg exps r path
Proof
fs[]
QED
Theorem real_valued_id_compositional:
∀ rws opt.
(∀ (st1 st2:'a semanticPrimitives$state) env e r.
is_real_id_exp rws st1 st2 env e r) ∧
(∀ (st1 st2:'a semanticPrimitives$state) env e r.
is_real_id_exp [opt] st1 st2 env e r) ⇒
∀ (st1 st2:'a semanticPrimitives$state) env e r.
is_real_id_exp ([opt] ++ rws) st1 st2 env e r
Proof
rw[is_real_id_exp_def]
\\ qpat_x_assum `_ = (_, _)` mp_tac
\\ PairCases_on `opt` \\ simp[rewriteFPexp_def]
\\ reverse TOP_CASE_TAC \\ fs[]
\\ fs[fpState_component_equality, semState_comp_eq]
\\ ntac 2 (TOP_CASE_TAC \\ fs[])
\\ strip_tac
\\ last_x_assum (first_assum o mp_then Any mp_tac) \\ fs[]
\\ impl_tac
>- (
gs[freeVars_real_bound_def]
\\ qspecl_then [‘opt1’, ‘opt0’, ‘e’, ‘x'’, ‘x’, ‘[]’,
‘λ x. ∃ r. nsLookup env.v x = SOME (Real r)’]
mp_tac icing_rewriterProofsTheory.match_preserves_FV
\\ impl_tac \\ gs[substLookup_def])
\\ strip_tac
\\ rename [‘matchesFPexp src e [] = SOME subst’, ‘appFPexp tgt subst = SOME eOpt’]
\\ ‘eOpt = rewriteFPexp [(src,tgt)] e’ by (fs[rewriteFPexp_def])
\\ rveq
\\ last_x_assum (first_assum o mp_then Any mp_tac) \\ fs[]
QED
Theorem lift_real_id_exp_list:
∀rws.
(∀ (st1 st2: 'a semanticPrimitives$state) env e r.
is_real_id_exp rws st1 st2 env e r) ⇒
∀exps (st1 st2:'a semanticPrimitives$state) env r.
is_real_id_list rws st1 st2 env exps r
Proof
strip_tac>>strip_tac>>
simp[is_real_id_list_def]>>Induct
>- (
simp[evaluate_def]>>
rw[semanticPrimitivesTheory.state_component_equality,semanticPrimitivesTheory.fpState_component_equality])>>
rw[]>>
fs[Once evaluate_cons]>>
qpat_x_assum`_ = (st2,_)` mp_tac>>
TOP_CASE_TAC>>simp[]>>
TOP_CASE_TAC>>simp[]>>
TOP_CASE_TAC>>simp[]>>
TOP_CASE_TAC>>simp[]>>
strip_tac>>rveq>>
fs[is_real_id_exp_def]>>
last_x_assum drule>>fs[]>>
impl_tac >- (gs[freeVars_list_real_bound_def, freeVars_real_bound_def]) >>
strip_tac>>simp[]>>
first_x_assum drule>>
impl_tac >-
(fs[freeVars_list_real_bound_def]
>> drule (CONJUNCT1 evaluate_fp_opts_inv)>>simp[])>>
strip_tac>>fs[]>>
drule (CONJUNCT1 evaluate_add_choices)>>
disch_then(qspec_then`choices` assume_tac)>>simp[]>>
rw[semanticPrimitivesTheory.state_component_equality,semanticPrimitivesTheory.fpState_component_equality]
QED
Theorem lift_real_id_exp_list_strong:
∀rws.
(∀ (st1 st2: 'a semanticPrimitives$state) env e r.
is_real_id_exp rws st1 st2 env e r) ⇒
∀ (st1 st2:'a semanticPrimitives$state) env exps r.
is_real_id_list rws st1 st2 env exps r
Proof
metis_tac[lift_real_id_exp_list]
QED
val no_change_tac =
(qpat_x_assum ‘evaluate _ _ [_] = _’ (mp_then Any assume_tac (prep (CONJUNCT1 evaluate_fp_rws_append)))
\\ pop_assum (qspecl_then [‘rws’, ‘st2.fp_state.opts’] strip_assume_tac)
\\ fs[semState_comp_eq, fpState_component_equality]
\\ qexistsl_tac [‘fpOpt’, ‘st1.fp_state.choices’, ‘st2.fp_state.opts’, ‘st2.fp_state.choices’]
\\ imp_res_tac (CONJUNCT1 evaluate_add_choices)
\\ fs[semState_comp_eq, fpState_component_equality]);
fun ext_eval_tac t rws opts =
qpat_x_assum t $ mp_then Any (qspecl_then [rws, opts] strip_assume_tac)
(CONJUNCT1 evaluate_fp_rws_append);
fun ext_evalm_tac t rws opts =
qpat_x_assum t $ mp_then Any (qspecl_then [rws, opts] strip_assume_tac)
(CONJUNCT2 evaluate_fp_rws_append);
fun ext_choices_tac t choices =
qpat_x_assum t $ mp_then Any (qspec_then choices assume_tac) (CONJUNCT1 evaluate_add_choices)
fun ext_choicesm_tac t choices =
qpat_x_assum t $ mp_then Any (qspec_then choices assume_tac) (CONJUNCT1 $ CONJUNCT2 evaluate_add_choices)
fun ext_choicesd_tac t choices =
qpat_x_assum t $ mp_then Any (qspec_then choices assume_tac) (CONJUNCT2 $ CONJUNCT2 evaluate_add_choices)
fun get_IH t =
qpat_x_assum t (fn th => first_x_assum (fn ith => mp_then Any mp_tac ith th))
Theorem perform_rewrites_lift_reverse_real:
∀ exps (st1:'a semanticPrimitives$state) st2 env vs cfg path rws i.
(∀ (st1:'a semanticPrimitives$state) st2.
EVERYi
(λn e. n = i ⇒ freeVars_realExp_bound st1 st2 env cfg path e)
exps) ∧
(∀ e. MEM e exps ⇒
∀ (st1:'a semanticPrimitives$state) st2 env r.
(∀ (st1:'a semanticPrimitives$state) st2. freeVars_realExp_bound st1 st2 env cfg path e) ∧
(cfg.canOpt ⇔
st1.fp_state.canOpt = FPScope Opt) ∧
st1.fp_state.canOpt ≠ Strict ∧ st1.fp_state.real_sem ∧
evaluate st1 env [realify (perform_rewrites cfg path rws e)] = (st2,Rval r) ⇒
∃ choices.
evaluate st1 env [realify e] =
(st2 with fp_state := st2.fp_state with choices := choices, Rval r)) ∧
(cfg.canOpt ⇔ st1.fp_state.canOpt = FPScope Opt) ∧
st1.fp_state.canOpt ≠ Strict ∧
st1.fp_state.real_sem ∧
evaluate st1 env
(REVERSE (MAPi
($o (λ a. realify a) o
λn e. if n = i then perform_rewrites cfg path rws e else e)
exps)) = (st2,Rval vs) ⇒
∃ choices.
evaluate st1 env (REVERSE (MAP realify exps)) =
(st2 with fp_state := st2.fp_state with choices := choices, Rval vs)
Proof
Induct_on ‘exps’
>- (simp[evaluate_def] \\ rpt strip_tac
\\ gs[semState_comp_eq, fpState_component_equality])
\\ rpt strip_tac \\ qpat_x_assum `evaluate _ _ _ = _` mp_tac
\\ simp[Once evaluate_cons, Once evaluate_append]
(* Case split where we optimise *)
\\ Cases_on ‘i = 0’ \\ gs[]
>~ [‘i = 0’]
>- (
rveq
\\ ‘$o (λ a. realify a) o (λ n e. if n = 0 then perform_rewrites cfg path rws e else e) o SUC =
λ n e. realify e’
by (fs[FUN_EQ_THM])
\\ pop_assum (gs o single)
\\ simp[CaseEq"result", CaseEq"prod"]
\\ rpt strip_tac \\ rveq \\ gs[] \\ rveq
\\ gs[EVERYi_def]
\\ rename1 ‘evaluate st2 env [realify (perform_rewrites cfg path rws e1)] = (st3, Rval v1)’
\\ first_x_assum $ qspec_then ‘e1’ mp_tac
\\ simp[] \\ disch_then (fn ith => first_assum (fn th => mp_then Any mp_tac ith th))
\\ impl_tac
>- (
rpt conj_tac
>- (
rpt strip_tac
\\ first_x_assum $ qspecl_then [‘st1'’, ‘st2'’] assume_tac \\ gs[])
\\ imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ strip_tac \\ simp[Once evaluate_append]
\\ ‘MAPi (λ n e. realify e) exps = MAP realify exps’
by (AP_THM_TAC \\ gs[FUN_EQ_THM] \\ rpt $ pop_assum kall_tac
\\ Induct_on ‘x’ \\ gs[]
\\ ‘(λ n e. realify e) o SUC = λ n e. realify e’ by gs[FUN_EQ_THM]
\\ pop_assum $ gs o single)
\\ pop_assum $ gs o single
\\ gs[semState_comp_eq, fpState_component_equality])
\\ ‘$o (λ e. realify e) o (λ n e. if n = i then perform_rewrites cfg path rws e else e) o SUC =
$o (λ e. realify e) o (λ n e. if n = (i-1) then perform_rewrites cfg path rws e else e)’
by (fs[FUN_EQ_THM] \\ rpt strip_tac \\ COND_CASES_TAC \\ gs[])
\\ pop_assum (once_rewrite_tac o single)
\\ simp[CaseEq"result", CaseEq"prod"]
\\ rpt strip_tac \\ rveq \\ gs[] \\ rveq
\\ gs[EVERYi_def]
\\ qpat_x_assum ‘evaluate _ _ (REVERSE _) = _’
(fn th => last_x_assum (fn ith => mp_then Any mp_tac ith th))
\\ impl_tac
>- (
gs[] \\ rpt strip_tac
\\ first_x_assum (qspecl_then [‘st1'’, ‘st2’] assume_tac)
\\ ‘(λ n e. n = i - 1 ⇒ freeVars_realExp_bound st1' st2 env cfg path e) =
(λ n e. n = i ⇒ freeVars_realExp_bound st1' st2 env cfg path e) o SUC’
suffices_by (pop_assum (gs o single))
\\ gs[FUN_EQ_THM] \\ rpt strip_tac \\ gs[] \\ EQ_TAC
\\ rpt strip_tac \\ gs[])
\\ strip_tac
\\ simp[Once evaluate_append]
\\ ext_choices_tac ‘evaluate _ _ [realify h] = _’ ‘choices’
\\ gs[semState_comp_eq, fpState_component_equality]
QED
Theorem perform_rewrites_lift_match:
∀ pes (st1:'a semanticPrimitives$state) st2 env vs cfg path rws i v.
(∀ (st1:'a semanticPrimitives$state) st2.
EVERYi (λ n (p, e').
n = i ⇒
∀ v env_v.
pmatch env.c st1.refs p (HD v) [] = Match env_v ⇒
∀ (st1:'a semanticPrimitives$state) st2.
freeVars_realExp_bound st1 st2
(env with v := nsAppend (alist_to_ns env_v) env.v) cfg path e') pes) ∧
(∀ p e. MEM (p,e) pes ⇒
∀ (st1:'a semanticPrimitives$state) st2 env r.
(∀ (st1:'a semanticPrimitives$state) st2. freeVars_realExp_bound st1 st2 env cfg path e) ∧
(cfg.canOpt ⇔
st1.fp_state.canOpt = FPScope Opt) ∧
st1.fp_state.canOpt ≠ Strict ∧ st1.fp_state.real_sem ∧
evaluate st1 env [realify (perform_rewrites cfg path rws e)] = (st2,Rval r) ⇒
∃ choices.
evaluate st1 env [realify e] =
(st2 with
fp_state := st2.fp_state with choices := choices, Rval r)) ∧
(cfg.canOpt ⇔ st1.fp_state.canOpt = FPScope Opt) ∧
st1.fp_state.canOpt ≠ Strict ∧
st1.fp_state.real_sem ∧
evaluate_match st1 env (HD v)
(MAPi
($o (λ (p,e). (p, realify e)) o
(λn (p,e). if n = i then (p, perform_rewrites cfg path rws e) else (p,e)))
pes) bind_exn_v = (st2,Rval vs) ⇒
∃ choices.
evaluate_match st1 env (HD v) (MAP (λ (p, e). (p, realify e)) pes) bind_exn_v =
(st2 with fp_state :=
st2.fp_state with choices := choices, Rval vs)
Proof
Induct_on ‘pes’
>- (simp[evaluate_def] \\ rpt strip_tac
\\ gs[semState_comp_eq, fpState_component_equality])
\\ rpt strip_tac \\ qpat_x_assum `evaluate_match _ _ _ _ _= _` mp_tac
\\ Cases_on ‘h’
(* Case split where we optimise *)
\\ Cases_on ‘i = 0’ \\ gs[]
>~ [‘i = 0’]
>- (
rveq \\ simp[SimpL “$==>”, Once evaluate_def]
\\ ‘$o (λ (p, e). (p, realify e)) o
(λ n (p:pat, e). if n = 0 then (p, perform_rewrites cfg path rws e) else (p, e)) o SUC =
λ n (p,e). (p, realify e)’
by (fs[FUN_EQ_THM] \\ rpt strip_tac \\ Cases_on ‘x’ \\ gs[])
\\ pop_assum (gs o single)
\\ COND_CASES_TAC \\ gs[]
\\ simp[CaseEq"match_result"] \\ rpt strip_tac
(* Optimised but did not match *)
>- (
simp[Once evaluate_def]
\\ ‘MAPi (λ n (p,e). (p, realify e)) pes = MAP (λ (p, e). (p, realify e)) pes’
by (rpt $ pop_assum kall_tac \\ Induct_on ‘pes’ \\ gs[]
\\ pop_assum (gs o single o GSYM)
\\ AP_THM_TAC \\ AP_TERM_TAC \\ gs[FUN_EQ_THM])
\\ pop_assum (gs o single)
\\ gs[semState_comp_eq, fpState_component_equality])
\\ first_x_assum $ qspecl_then [‘q’, ‘r’] mp_tac \\impl_tac \\ gs[]
\\ strip_tac
\\ get_IH ‘evaluate _ _ _ = _’
\\ impl_tac
>- (
gs[EVERYi_def] \\ rpt strip_tac
\\ first_x_assum (qspecl_then [‘st1’] strip_assume_tac)
\\ first_x_assum irule \\ asm_exists_tac \\ gs[])
\\ strip_tac
\\ gs[Once evaluate_def, semState_comp_eq, fpState_component_equality])
\\ ‘$o (λ (p:pat, e). (p, realify e)) o
(λ n (p:pat,e). if n = i then (p, perform_rewrites cfg path rws e) else (p,e)) o SUC =
$o (λ (p:pat, e). (p, realify e)) o (λ n (p,e). if n = i-1 then (p, perform_rewrites cfg path rws e) else (p,e))’
by (gs[FUN_EQ_THM] \\ gs[] \\ rpt strip_tac
\\ Cases_on ‘x'’ \\ gs[] \\ COND_CASES_TAC \\ gs[])
\\ pop_assum (gs o single)
\\ simp[SimpL “$==>”, evaluate_def]
\\ COND_CASES_TAC \\ gs[]
\\ simp[CaseEq"match_result"] \\ rpt strip_tac
(* First pattern did not match *)
>- (
get_IH ‘evaluate_match _ _ _ _ _ = _’ \\ impl_tac
>- (
gs[] \\ conj_tac
>- (
rpt strip_tac
\\ ‘(λ n (p,e).
n = i - 1 ⇒
∀ v env_v.
pmatch env.c st1'.refs p (HD v) [] = Match env_v ⇒
∀(st1:'a semanticPrimitives$state) st2.
freeVars_realExp_bound st1 st2
(env with v := nsAppend (alist_to_ns env_v) env.v) cfg
path e) =
(λ n (p,e). n = i ⇒
∀ v env_v.
pmatch env.c st1'.refs p (HD v) [] = Match env_v ⇒
∀(st1:'a semanticPrimitives$state) st2.
freeVars_realExp_bound st1 st2
(env with v := nsAppend (alist_to_ns env_v) env.v) cfg
path e) o SUC’
by (gs[FUN_EQ_THM] \\ Cases_on ‘x’ \\ gs[] \\ rpt strip_tac \\ gs[] \\ EQ_TAC
\\ rpt strip_tac
>- (‘n = i-1’ by gs[] \\ res_tac \\ first_x_assum irule)
\\ ‘SUC n = i’ by gs[] \\ res_tac \\ first_x_assum irule)
\\ pop_assum $ once_rewrite_tac o single
\\ gs[EVERYi_def])
\\ rpt strip_tac \\ first_x_assum $ qspecl_then [‘p’, ‘e’] mp_tac
\\ impl_tac \\ gs[])
\\ strip_tac
\\ fsrw_tac [SATISFY_ss][evaluate_def, semState_comp_eq, fpState_component_equality])
(* First pattern did match *)
\\ gs[evaluate_def, semState_comp_eq, fpState_component_equality]
QED
Theorem evaluate_case_case:
(case
(case evaluate st1 env es of
| (st2, Rval r) => f st2 r
| (st2, Rerr e) => (st2, Rerr e)) of
| (st2, Rval r) => g st2 r
| (st2, Rerr e) => (st2, Rerr e)) =
case evaluate st1 env es of
| (st2, Rerr e) => (st2, Rerr e)
| (st2, Rval r) =>
(case f st2 r of
| (st2, Rerr e) => (st2, Rerr e)
| (st2, Rval r) =>
g st2 r)
Proof
TOP_CASE_TAC \\ pop_assum mp_tac
\\ ntac 2 TOP_CASE_TAC \\ fs[]
\\ strip_tac \\ rveq \\ fs[]
QED
Theorem st_simps = CONJ semState_comp_eq fpState_component_equality
Theorem do_eval_res_fp_state:
∀ vs st st2 env decs choices.
do_eval_res vs st:'a semanticPrimitives$state # (v sem_env # dec list, v) result = (st2, Rval (env, decs)) ⇒
do_eval_res vs (st with fp_state := st.fp_state with choices := choices):'a semanticPrimitives$state # (v sem_env # dec list, v) result =
(st2 with fp_state := st2.fp_state with choices := choices, Rval (env, decs))
Proof
rw[do_eval_res_def, st_simps, CaseEq"option", CaseEq"prod"]
QED
(** TODO: Needs to incorporate somehow the Eval primitive **)
Theorem perform_rewrites_real_id_correct:
∀ cfg path rws e (st1:'a semanticPrimitives$state) st2 env r.
(∀ (st1:'a semanticPrimitives$state) st2 env exps r.
is_real_id_list rws st1 st2 env exps r) ∧
(∀ (st1:'a semanticPrimitives$state) st2.
freeVars_realExp_bound st1 st2 env cfg path e) ∧
(cfg.canOpt <=> st1.fp_state.canOpt = FPScope Opt) ∧
st1.fp_state.canOpt <> Strict ∧
st1.fp_state.real_sem ∧
evaluate st1 env [realify (perform_rewrites cfg path rws e)] = (st2, Rval r) ⇒
∃ choices.
evaluate st1 env [realify e]=
(st2 with fp_state := st2.fp_state with choices := choices, Rval r)
Proof
ho_match_mp_tac perform_rewrites_ind \\ rpt strip_tac \\ fs[perform_rewrites_def]
\\ TRY (no_change_tac \\ NO_TAC)
>- (
reverse (Cases_on ‘cfg.canOpt’) \\ fs[]
>- no_change_tac
\\ fs[freeVars_realExp_bound_def]
\\ Cases_on ‘rewriteFPexp rws (App op exps) = App op exps’
>- (pop_assum $ fs o single
\\ no_change_tac)
\\ ‘isFpArithExp (App op exps)’
by (imp_res_tac icing_rewriterProofsTheory.isFpArithExp_rewrite_preserved)
\\ res_tac \\ fs[is_real_id_list_def]
\\ first_x_assum (qspecl_then [‘st1’, ‘st2’, ‘env’, ‘[App op exps]’, ‘r’] mp_tac)
\\ impl_tac >- fs[freeVars_list_real_bound_def, freeVars_real_bound_def]
\\ strip_tac \\ gs[semState_comp_eq, fpState_component_equality])
>- (
qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[Once evaluate_def, CaseEq"option", CaseEq"prod", CaseEq"result", realify_def])
>- (
qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[Once evaluate_def, CaseEq"option", CaseEq"prod", CaseEq"result", realify_def]
\\ COND_CASES_TAC \\ fs[CaseEq"option", CaseEq"prod", CaseEq"result"]
\\ strip_tac \\ rveq
\\ fs[freeVars_realExp_bound_def]
\\ qpat_x_assum `evaluate _ _ (REVERSE _) = _` $ mp_then Any mp_tac perform_rewrites_lift_reverse_real
\\ impl_tac >- gs[]
\\ strip_tac \\ simp[Once evaluate_def]
\\ ‘(λ a. realify a) = realify’ by gs[FUN_EQ_THM]
\\ gs[semState_comp_eq, fpState_component_equality])
>- (gs[semState_comp_eq, fpState_component_equality])
>- (
qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[realify_def] \\ Cases_on ‘op’
\\ simp[Once evaluate_def, CaseEq"option", CaseEq"prod", CaseEq"result", CaseEq"op_class", astTheory.getOpClass_def, CaseEq"list"]
\\ strip_tac \\ rveq
\\ fs[freeVars_realExp_bound_def]
\\ TRY (‘st'.fp_state.real_sem’ by (imp_res_tac evaluate_fp_opts_inv \\ gs[]))
\\ gs[CaseEq"option", CaseEq"prod"]
\\ TRY(
qpat_x_assum `evaluate _ _ (REVERSE _) = _` $ mp_then Any mp_tac perform_rewrites_lift_reverse_real
\\ impl_tac \\ gs[]
\\ strip_tac \\ simp[Once evaluate_def, astTheory.getOpClass_def]
\\ ‘(λ a. realify a) = realify’ by gs[FUN_EQ_THM]
\\ gs[semState_comp_eq, fpState_component_equality]
\\ gs[])
>- (
pop_assum mp_tac
\\ Cases_on ‘exps’ \\ gs[evaluate_def, semState_comp_eq, fpState_component_equality]
\\ Cases_on ‘t’ \\ gs[evaluate_def, semState_comp_eq, fpState_component_equality]
\\ Cases_on ‘t'’ \\ gs[evaluate_def, semState_comp_eq, fpState_component_equality]
\\ reverse (Cases_on ‘t’) >- gs[evaluate_def, semState_comp_eq, fpState_component_equality]
\\ gs[]
\\ simp[SimpL“$==>”, evaluate_def, evaluate_case_case, CaseEq"result", CaseEq"prod",
astTheory.getOpClass_def]
\\ rpt strip_tac \\ rveq \\ gs[]
\\ ‘st'3'.fp_state.real_sem’ by (imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ gs[CaseEq"option", CaseEq"prod"] \\ rveq \\ gs[]
\\ Cases_on ‘i=0’ \\ gs[]
>- (
get_IH ‘evaluate _ _ [realify (perform_rewrites _ _ _ _)] = _’
\\ impl_tac >- gs[EVERYi_def]
\\ rpt strip_tac \\ simp[evaluate_def, astTheory.getOpClass_def]
\\ ext_choices_tac ‘evaluate _ _ [realify h''] = _’ ‘choices’
\\ gs[semState_comp_eq, fpState_component_equality]
\\ ext_choices_tac ‘evaluate _ _ [realify h'] = _’
‘choices + st''.fp_state.choices - st'.fp_state.choices’
\\ imp_res_tac evaluate_sing \\ rveq \\ gs[] \\ rveq
\\ gs[semState_comp_eq, fpState_component_equality, do_app_def, CaseEq"v"]
\\ rveq \\ gs[]
\\ Cases_on ‘v'3'’
\\ gs[semState_comp_eq, fpState_component_equality, do_app_def, CaseEq"v"])
\\ Cases_on ‘i = 1’ \\ gs[]
>- (
get_IH ‘evaluate _ _ [realify (perform_rewrites _ _ _ _)] = _’
\\ impl_tac >- (gs[EVERYi_def] \\ imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ rpt strip_tac \\ fs[evaluate_def, astTheory.getOpClass_def, do_app_def]
\\ imp_res_tac evaluate_sing \\ rveq \\ gs[] \\ rveq
\\ gs[semState_comp_eq, fpState_component_equality, do_app_def, CaseEq"v"]
\\ rveq \\ gs[]
\\ Cases_on ‘v'3'’
\\ gs[semState_comp_eq, fpState_component_equality, do_app_def, CaseEq"v"])
\\ Cases_on ‘i = 2’ \\ gs[]
>- (
get_IH ‘evaluate _ _ [realify (perform_rewrites _ _ _ _)] = _’
\\ impl_tac >- (gs[EVERYi_def] \\ imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ rpt strip_tac \\ fs[evaluate_def, astTheory.getOpClass_def, do_app_def]
\\ imp_res_tac evaluate_sing \\ rveq \\ gs[] \\ rveq
\\ gs[semState_comp_eq, fpState_component_equality, do_app_def, CaseEq"v"]
\\ rveq \\ gs[]
\\ ext_choices_tac ‘evaluate _ _ [realify h'] = _’ ‘choices’
\\ gs[]
\\ Cases_on ‘v'3'’
\\ gs[semState_comp_eq, fpState_component_equality, do_app_def, CaseEq"v"])
\\ fs[evaluate_def, astTheory.getOpClass_def, do_app_def]
\\ imp_res_tac evaluate_sing \\ rveq \\ gs[] \\ rveq
\\ gs[semState_comp_eq, fpState_component_equality, do_app_def, CaseEq"v"])
>- (
Cases_on ‘st'.clock = 0’ \\ gs[dec_clock_def]
\\ ext_choices_tac ‘evaluate _ _ [e] = _’ ‘choices’
\\ gs[semState_comp_eq, fpState_component_equality])
\\ imp_res_tac do_eval_res_fp_state
\\ first_x_assum $ qspec_then ‘choices’ $ assume_tac
\\ gs[]
\\ COND_CASES_TAC \\ gs[dec_clock_def, CaseEq"prod", CaseEq"result", CaseEq"option", CaseEq"error_result"]
\\ ext_choicesd_tac ‘evaluate_decs _ _ _ = _’ ‘choices’
\\ gs[st_simps] \\ rveq \\ gs[]
\\ pop_assum mp_tac \\ qmatch_goalsub_abbrev_tac ‘evaluate_decs _ _ _ = (st2N, _)’
\\ rpt strip_tac
\\ qexists_tac ‘st2N.fp_state.choices’ \\ qexists_tac ‘st2N’ \\ unabbrev_all_tac
\\ gs[st_simps])
>- (
qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[Once evaluate_def, CaseEq"option", CaseEq"prod", CaseEq"result", realify_def]
\\ gs[freeVars_realExp_bound_def] \\ strip_tac \\ rveq
\\ get_IH ‘evaluate _ _ [realify (perform_rewrites _ _ _ _)] = _’
\\ impl_tac >- gs[]
\\ strip_tac \\ Cases_on ‘v1'’ \\ gs[evaluate_def]
>- (
ext_choices_tac ‘evaluate _ _ [e'] = _’ ‘choices’
\\ gs[semState_comp_eq, fpState_component_equality])
\\ gs[semState_comp_eq, fpState_component_equality])
>- (
qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[Once evaluate_def, CaseEq"option", CaseEq"prod", CaseEq"result", realify_def]
\\ gs[freeVars_realExp_bound_def] \\ strip_tac \\ rveq
\\ Cases_on ‘v1'’ \\ gs[evaluate_def] \\ rveq \\ gs[]
>- (
‘e' = realify (perform_rewrites cfg path rws e)’
by (
qpat_x_assum `do_log _ _ _ = _` mp_tac
\\ gs[do_log_def] \\ COND_CASES_TAC \\ gs[])
\\ pop_assum (gs o single)
\\ get_IH ‘evaluate _ _ [realify (perform_rewrites _ _ _ _)] = _’
\\ impl_tac >- (imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ strip_tac \\ gs[do_log_def] \\ COND_CASES_TAC
\\ gs[semState_comp_eq, fpState_component_equality])
\\ gs[do_log_def] \\ COND_CASES_TAC
\\ gs[semState_comp_eq, fpState_component_equality])
>- (
qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[Once evaluate_def, CaseEq"option", CaseEq"prod", CaseEq"result", realify_def]
\\ gs[freeVars_realExp_bound_def] \\ strip_tac \\ rveq
\\ get_IH ‘evaluate _ _ [realify (perform_rewrites _ _ _ _)] = _’
\\ impl_tac >- gs[]
\\ strip_tac
\\ gs[semState_comp_eq, fpState_component_equality, evaluate_def]
\\ ext_choices_tac ‘evaluate _ _ [e'] = _’ ‘choices’
\\ gs[semState_comp_eq, fpState_component_equality])
>- (
qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[Once evaluate_def, CaseEq"option", CaseEq"prod", CaseEq"result", realify_def]
\\ gs[freeVars_realExp_bound_def] \\ strip_tac \\ rveq
\\ gs[do_if_def] \\ Cases_on ‘HD v = Boolv T’ \\ gs[]
>- (
rveq
\\ get_IH ‘evaluate _ _ [realify (perform_rewrites _ _ _ _)] = _’
\\ impl_tac >- (imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ strip_tac
\\ gs[semState_comp_eq, fpState_component_equality, evaluate_def, do_if_def])
\\ rveq
\\ gs[semState_comp_eq, fpState_component_equality, evaluate_def, do_if_def])
>- (
qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[Once evaluate_def, CaseEq"option", CaseEq"prod", CaseEq"result", realify_def]
\\ gs[freeVars_realExp_bound_def] \\ strip_tac \\ rveq
\\ gs[do_if_def] \\ reverse (Cases_on ‘HD v = Boolv T’) \\ gs[]
>- (
rveq
\\ get_IH ‘evaluate _ _ [realify (perform_rewrites _ _ _ _)] = _’
\\ impl_tac >- (imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ strip_tac
\\ gs[semState_comp_eq, fpState_component_equality, evaluate_def, do_if_def])
\\ rveq
\\ gs[semState_comp_eq, fpState_component_equality, evaluate_def, do_if_def])
>- (
qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[Once evaluate_def, CaseEq"option", CaseEq"prod", CaseEq"result", realify_def]
\\ gs[freeVars_realExp_bound_def] \\ strip_tac \\ rveq
\\ pop_assum mp_tac \\ COND_CASES_TAC \\ gs[]
\\ strip_tac
\\ get_IH ‘evaluate _ _ [realify (perform_rewrites _ _ _ _)] = _’
\\ impl_tac >- gs[]
\\ strip_tac
\\ gs[semState_comp_eq, fpState_component_equality, evaluate_def]
\\ ext_choicesm_tac ‘evaluate_match _ _ _ _ _ = _’ ‘choices’
\\ gs[semState_comp_eq, fpState_component_equality])
>- (
qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[Once evaluate_def, CaseEq"option", CaseEq"prod", CaseEq"result", realify_def]
\\ gs[freeVars_realExp_bound_def] \\ strip_tac \\ rveq
\\ pop_assum mp_tac \\ COND_CASES_TAC \\ gs[] \\ strip_tac
\\ pop_assum $ mp_then Any mp_tac perform_rewrites_lift_match
\\ impl_tac
>- (
gs[] \\ rpt conj_tac
>- (
rpt strip_tac \\ first_x_assum (qspecl_then [‘p’, ‘e'’] mp_tac)
\\ gs[])
\\ imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ strip_tac \\ simp[evaluate_def]
\\ ‘can_pmatch_all env.c st'.refs (MAP FST (MAP (λ (p,e). (p, realify e)) pes)) (HD v)’
by (‘$o FST o
$o (λ (p:pat, e). (p, realify e)) o
(λ n (p:pat,e). if n = i then (p, perform_rewrites cfg path rws e) else (p, e)) =
$o FST o (λ n (p, e). (p,realify e))’
by (gs[FUN_EQ_THM] \\ rpt strip_tac \\ Cases_on ‘x = i’ \\ gs[]
\\ Cases_on ‘x'’ \\ gs[])
\\ pop_assum (gs o single)
\\ ‘MAP FST (MAP (λ (p,e). (p, realify e)) pes) =
MAPi ($o FST o (λ n (p,e). (p,realify e))) pes’
by (rpt $ pop_assum kall_tac \\ Induct_on ‘pes’
\\ gs[] \\ rpt strip_tac
\\ AP_THM_TAC \\ AP_TERM_TAC \\ gs[FUN_EQ_THM])
\\ gs[])
\\ gs[semState_comp_eq, fpState_component_equality])
>- (
qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[Once evaluate_def, CaseEq"option", CaseEq"prod", CaseEq"result", realify_def]
\\ gs[freeVars_realExp_bound_def] \\ strip_tac \\ rveq
\\ get_IH ‘evaluate _ _ [realify (perform_rewrites _ _ _ _)] = _’
\\ impl_tac >- gs[]
\\ strip_tac
\\ gs[semState_comp_eq, fpState_component_equality, evaluate_def]
\\ ext_choices_tac ‘evaluate _ _ [realify e2] = _’ ‘choices’
\\ gs[semState_comp_eq, fpState_component_equality])
>- (
qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[Once evaluate_def, CaseEq"option", CaseEq"prod", CaseEq"result", realify_def]
\\ gs[freeVars_realExp_bound_def] \\ strip_tac \\ rveq
\\ get_IH ‘evaluate _ _ [realify (perform_rewrites _ _ _ _)] = _’
\\ impl_tac
>- (
gs[] \\ rpt conj_tac
>- (res_tac \\ first_x_assum MATCH_ACCEPT_TAC)
\\ imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ strip_tac
\\ gs[semState_comp_eq, fpState_component_equality, evaluate_def])
>- (
qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[Once evaluate_def, CaseEq"option", CaseEq"prod", CaseEq"result", realify_def]
\\ COND_CASES_TAC \\ gs[]
\\ gs[freeVars_realExp_bound_def] \\ strip_tac \\ rveq
\\ get_IH ‘evaluate _ _ [realify(perform_rewrites _ _ _ _)] = _’
\\ impl_tac >- gs[]
\\ strip_tac
\\ gs[evaluate_def, semState_comp_eq, fpState_component_equality])
>- (
qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[Once evaluate_def, CaseEq"option", CaseEq"prod", CaseEq"result", realify_def]
\\ gs[freeVars_realExp_bound_def] \\ strip_tac \\ rveq
\\ get_IH ‘evaluate _ _ [realify (perform_rewrites _ _ _ _)] = _’
\\ impl_tac >- gs[]
\\ strip_tac
\\ gs[evaluate_def, semState_comp_eq, fpState_component_equality])
>- (
qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[Once evaluate_def, CaseEq"option", CaseEq"prod", CaseEq"result", realify_def]
\\ gs[freeVars_realExp_bound_def] \\ strip_tac \\ rveq
\\ get_IH ‘evaluate _ _ [realify (perform_rewrites _ _ _ _)] = _’
\\ impl_tac >- gs[]
\\ strip_tac
\\ gs[evaluate_def, semState_comp_eq, fpState_component_equality])
\\ qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[Once evaluate_def, CaseEq"option", CaseEq"prod", CaseEq"result", realify_def]
\\ gs[freeVars_realExp_bound_def] \\ strip_tac \\ rveq
\\ get_IH ‘evaluate _ _ [realify (perform_rewrites _ _ _ _)] = _’
\\ impl_tac >- gs[]
\\ strip_tac
\\ gs[evaluate_def, semState_comp_eq, fpState_component_equality]
QED
Theorem is_real_id_list_perform_rewrites_lift:
(∀ rws.
(∀ (st1:'a semanticPrimitives$state) st2 env exps r.
is_real_id_list rws st1 st2 env exps r) ⇒
(∀ path (st1:'a semanticPrimitives$state) st2 env cfg e r.
is_real_id_perform_rewrites rws st1 st2 env cfg e r path))
Proof
rpt strip_tac
\\ gs[is_real_id_perform_rewrites_def]
\\ rpt strip_tac \\ imp_res_tac perform_rewrites_real_id_correct
\\ fsrw_tac[SATISFY_ss][semState_comp_eq, fpState_component_equality]
QED
Theorem is_real_id_perform_rewrites_optimise_with_plan_lift_sing:
∀ plan.
(∀ rws pth.
MEM (Apply (pth, rws)) plan ⇒
(∀ (st1:'a semanticPrimitives$state) st2 env cfg exps r.
is_real_id_perform_rewrites rws st1 st2 env cfg exps r pth)) ⇒
(∀ (st1:'a semanticPrimitives$state) st2 env cfg e r.
is_real_id_optimise_with_plan plan st1 st2 env cfg [e] r)
Proof
Induct_on ‘plan’ \\ fs[]
>- fs[is_real_id_optimise_with_plan_def, optimise_with_plan_def,
semanticPrimitivesTheory.state_component_equality,
semanticPrimitivesTheory.fpState_component_equality]
\\ rpt strip_tac
\\ Cases_on ‘h’ \\ fs[is_real_id_optimise_with_plan_def]
>~ [‘Label s’]
>- (fs[optimise_with_plan_def]
\\ rpt strip_tac \\ res_tac
\\ fs[semanticPrimitivesTheory.state_component_equality,
semanticPrimitivesTheory.fpState_component_equality,
freeVars_realPlan_bound_def])
>~ [‘Expected e’]
>- (fs[optimise_with_plan_def]
\\ TOP_CASE_TAC \\ fs[]
\\ rpt strip_tac \\ res_tac
\\ fs[semanticPrimitivesTheory.state_component_equality,
semanticPrimitivesTheory.fpState_component_equality,
freeVars_realPlan_bound_def])
>~ [‘Apply p’]
\\ Cases_on ‘p’ \\ fs[optimise_with_plan_def]
\\ COND_CASES_TAC \\ fs[]
\\ fs[semanticPrimitivesTheory.state_component_equality,
semanticPrimitivesTheory.fpState_component_equality]
\\ COND_CASES_TAC \\ fs[freeVars_realPlan_bound_def]
>- (
rpt strip_tac \\ fs[is_real_id_perform_rewrites_def] \\ res_tac
\\ fs[semanticPrimitivesTheory.state_component_equality,
semanticPrimitivesTheory.fpState_component_equality])
\\ Cases_on ‘(optimise_with_plan cfg plan
(perform_rewrites cfg q r' e))’
\\ fs[] \\ COND_CASES_TAC
\\ fs[semanticPrimitivesTheory.state_component_equality,
semanticPrimitivesTheory.fpState_component_equality]
\\ rpt strip_tac
\\ first_x_assum $
qspecl_then [‘st1’, ‘st2’, ‘env’, ‘cfg’,
‘perform_rewrites cfg q r' e’, ‘r’]
mp_tac
\\ fs[] \\ strip_tac
\\ first_x_assum $ qspecl_then [‘r'’, ‘q’] mp_tac
\\ impl_tac \\ fs[]
\\ strip_tac \\ fs[is_real_id_perform_rewrites_def]
\\ res_tac
\\ fs[semanticPrimitivesTheory.state_component_equality,
semanticPrimitivesTheory.fpState_component_equality]
QED
Theorem is_real_id_perform_rewrites_optimise_with_plan_lift:
∀ plan.
(∀ rws pth.
MEM (Apply (pth, rws)) plan ⇒
(∀ (st1:'a semanticPrimitives$state) st2 env cfg exps r.
is_real_id_perform_rewrites rws st1 st2 env cfg exps r pth)) ⇒
(∀ (st1:'a semanticPrimitives$state) st2 env cfg exps r.
is_real_id_optimise_with_plan plan st1 st2 env cfg exps r)
Proof
ntac 2 strip_tac
\\ Induct_on ‘exps’ \\ fs[is_real_id_optimise_with_plan_def]
>- fs[optimise_with_plan_def,
semanticPrimitivesTheory.state_component_equality,
semanticPrimitivesTheory.fpState_component_equality]
\\ drule is_real_id_perform_rewrites_optimise_with_plan_lift_sing
\\ rpt strip_tac
\\ simp[Once evaluate_cons]
\\ qpat_x_assum ‘evaluate _ _ _ = _’ $ mp_tac
\\ simp[Once evaluate_cons, CaseEq"prod", CaseEq"result"]
\\ rpt strip_tac \\ rveq
\\ first_x_assum (qspecl_then [‘st1’, ‘s'’, ‘env’, ‘cfg’, ‘h’, ‘vs’] strip_assume_tac)
\\ first_x_assum (qspecl_then [‘s'’, ‘s''’, ‘env’, ‘cfg’, ‘vs'’] strip_assume_tac)
\\ fs[is_real_id_optimise_with_plan_def]
\\ rfs[] \\ fs[]
\\ pop_assum mp_tac \\ impl_tac
>- (imp_res_tac evaluate_fp_opts_inv \\ fs[])
\\ strip_tac
\\ qpat_x_assum ‘evaluate _ _ (MAP realify exps) = _’
(mp_then Any mp_tac (CONJUNCT1 evaluate_add_choices))
\\ disch_then (qspec_then ‘choices’ assume_tac)
\\ fs[semState_comp_eq, fpState_component_equality]
QED
Theorem isPureExp_no_optimisations:
(∀e.
isPureExp e ⇒
isPureExp ((no_optimisations cfg) e)) ∧
(∀es.
isPureExpList es ⇒
isPureExpList (MAP (no_optimisations cfg) es)) ∧
(∀pes.
isPurePatExpList pes ⇒
isPurePatExpList (MAP (λ(p,e). (p,(no_optimisations cfg) e)) pes))
Proof
ho_match_mp_tac isPureExp_ind>>
rw[isPureExp_def, source_to_source2Theory.no_optimisations_def]>>fs[] >>
`(λa. (no_optimisations cfg) a) = (no_optimisations cfg)` by
simp[FUN_EQ_THM]>>
simp[]
QED
Theorem realify_no_optimisations_commutes_IMP:
∀ e cfg e2.
realify (no_optimisations cfg e) = e2 ⇒
no_optimisations cfg (realify e) = e2
Proof
ho_match_mp_tac realify_ind \\ rpt strip_tac \\ fs[realify_def, no_optimisations_def]
\\ rveq \\ fs[no_optimisations_def]
>- (
Induct_on ‘pes’ \\ fs[]
\\ rpt strip_tac
>- (Cases_on ‘h’ \\ fs[realify_def, no_optimisations_def])
\\ first_x_assum irule
\\ strip_tac \\ metis_tac [])
>- (Induct_on ‘exps’ \\ fs[])
>- (Cases_on ‘op’ \\ fs[realify_def, no_optimisations_def, CaseEq"list"]
\\ TRY (Induct_on ‘exps’ \\ fs[no_optimisations_def] \\ NO_TAC)
\\ Cases_on ‘exps’ \\ fs[no_optimisations_def]
\\ Cases_on ‘t’ \\ fs[no_optimisations_def]
\\ Cases_on ‘t'’ \\ fs[no_optimisations_def]
\\ Cases_on ‘t’ \\ fs[no_optimisations_def]
\\ Induct_on ‘t'’ \\ fs[no_optimisations_def]
\\ rpt strip_tac \\ first_x_assum irule \\ metis_tac[])
\\ Induct_on ‘pes’ \\ fs[] \\ rpt strip_tac
>- (Cases_on ‘h’ \\ fs[realify_def, no_optimisations_def])
\\ first_x_assum irule
\\ strip_tac \\ metis_tac []
QED
Theorem isPureExp_realify:
(∀e.
isPureExp e ⇒
isPureExp (realify e)) ∧
(∀es.
isPureExpList es ⇒
isPureExpList (MAP realify es)) ∧
(∀pes.
isPurePatExpList pes ⇒
isPurePatExpList (MAP (λ(p,e). (p,realify e)) pes))
Proof
ho_match_mp_tac isPureExp_ind>>
rw[isPureExp_def, realify_def]>>fs[]
>-
(Cases_on`e`>>simp[isPureExp_def, realify_def])
>- (
`(λa. realify a) = realify` by
fs[ETA_AX]>>
simp[])>>
TOP_CASE_TAC>>
`(λa. realify a) = realify` by fs[ETA_AX]>>
fs[isPureExp_def,isPureOp_def]>>
every_case_tac>>fs[isPureOp_def,isPureExp_def]>>
simp[isPureOp_def]
QED
Theorem realify_no_optimisations_comm:
realify (no_optimisations cfg e) = no_optimisations cfg (realify e)
Proof
metis_tac [realify_no_optimisations_commutes_IMP]
QED
(* Lemmas needed to automate proof generation *)
Theorem is_perform_rewrites_id_empty_plan:
! rws path.