-
Notifications
You must be signed in to change notification settings - Fork 84
/
splitwordsScript.sml
105 lines (93 loc) · 2.81 KB
/
splitwordsScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
(*
A high-level specification of words and frequencies
*)
open preamble
mlstringTheory
fsFFIPropsTheory
val _ = new_theory"splitwords";
Definition splitwords_def:
splitwords s = tokens isSpace s
End
(*
EVAL ``splitwords (strlit"hello there hello how are you one two one two three")``
*)
Theorem splitwords_nil[simp]:
splitwords (implode "") = []
Proof
EVAL_TAC
QED
Theorem splitwords_nil_lit[simp]:
splitwords (strlit "") = []
Proof
EVAL_TAC
QED
Theorem splitwords_concat:
isSpace sp ⇒
splitwords (s1 ^ str sp ^ s2) = splitwords s1 ++ splitwords s2
Proof
rewrite_tac [GSYM strcat_assoc]
\\ rw[splitwords_def,mlstringTheory.tokens_append,mlstringTheory.strcat_assoc]
QED
Theorem splitwords_concat_space:
isSpace sp ⇒ splitwords (s1 ^ str sp) = splitwords s1
Proof
rw[] \\ qspec_then`implode ""`mp_tac(Q.GEN`s2`splitwords_concat) \\
fs[mlstringTheory.strcat_thm]
QED
Theorem splitwords_lines_of:
FLAT (MAP splitwords (lines_of content)) =
splitwords content
Proof
`isSpace #"\n"` by EVAL_TAC \\
rw[all_lines_def,lines_of_def,MAP_MAP_o,o_DEF,
GSYM mlstringTheory.str_def,splitwords_concat_space] \\
rw[splitwords_def,mlstringTheory.TOKENS_eq_tokens_sym] \\
srw_tac[ETA_ss][GSYM o_DEF,GSYM MAP_MAP_o] \\
simp[GSYM MAP_FLAT] \\ AP_TERM_TAC \\
qmatch_goalsub_rename_tac `splitlines ls` \\
rw[splitlines_def]
>- (
qmatch_asmsub_abbrev_tac`NULL (LAST l)` \\
Q.ISPEC_THEN`l`mp_tac APPEND_FRONT_LAST \\
impl_tac >- rw[Abbr`l`] \\
fs[NULL_EQ] \\ strip_tac \\
`FLAT (MAP (TOKENS isSpace) (FRONT l)) = FLAT (MAP (TOKENS isSpace) l)` by (
pop_assum(fn th => CONV_TAC(RAND_CONV(DEPTH_CONV(REWR_CONV(SYM th))))) \\
simp[] \\ EVAL_TAC ) \\
simp[Abbr`l`] \\
match_mp_tac FLAT_MAP_TOKENS_FIELDS \\
rw[] \\ EVAL_TAC ) \\
match_mp_tac FLAT_MAP_TOKENS_FIELDS \\
rw[] \\ EVAL_TAC
QED
Definition frequency_def:
frequency s w = LENGTH (FILTER ($= w) (splitwords s))
End
(*
EVAL``frequency (strlit"hello there hello how are you one two one two three") (strlit"hello")``
EVAL``frequency (strlit"hello there hello how are you one two one two three") (strlit"one")``
EVAL``frequency (strlit"hello there hello how are you one two one two three") (strlit"three")``
EVAL``frequency (strlit"hello there hello how are you one two one two three") (strlit"four")``
*)
Theorem frequency_nil[simp]:
frequency (implode "") w = 0
Proof
EVAL_TAC
QED
Theorem frequency_nil_lit[simp]:
frequency (strlit "") w = 0
Proof
EVAL_TAC
QED
Theorem frequency_concat:
isSpace sp ⇒
frequency (s1 ^ str sp ^ s2) w = frequency s1 w + frequency s2 w
Proof
rw[frequency_def,splitwords_concat,FILTER_APPEND]
QED
Theorem frequency_concat_space:
isSpace sp ⇒ frequency (s1 ^ str sp) = frequency s1
Proof
rw[FUN_EQ_THM,frequency_def,splitwords_concat_space]
QED
val _ = export_theory();