-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_longp_planets.py
176 lines (149 loc) · 6.87 KB
/
plot_longp_planets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import pandas as pd
import matplotlib.pylab as plt
from numpy import nan
import os.path
"""
Written by Lauren Weiss, 2018. Edited a bit by Sarah.
"""
def reformat_author_string(string_list): # useful for making citations
authorstrings=[]
for entry in string_list:
authorsyear = entry.split('=')[1].replace('href','').replace('_ET_AL_','').split('_')
while len(authorsyear) > 3:
authorsyear.remove('')
# print authorsyear
author = authorsyear[0].title() # first author, not all caps
year = authorsyear[-1] # year
authorstring="\citep{%s%s}"%(author,year)
# print authorstring
authorstrings.append(authorstring) # add this string
return authorstrings
nea = pd.read_csv('data/planets_2023.csv',skiprows=94)
# print(nea.keys())
discmeths = pd.unique(nea.discoverymethod)
# hd12_dict = {"pl_hostname":["HR 5183 b"],
# "pl_orbper":73*365.25,
# "pl_orbper_unc":14*365.25,
# "pl_bmassj":3.23, # Mjup
# "pl_bmassj_unc":0.17,
# "pl_orbsmax":18, # AU
# "pl_orbsmax_unc":2,
# "pl_orbeccen": 0.83,
# "pl_orbeccen_unc":0.02,
# "K":"\semiamp", # m/s
# "pl_discmethod":"Radial Velocity",
# "disc_authorstring":'This paper',
# "def_authorstring":'This paper'}
# hd12 = pd.DataFrame(hd12_dict)
# hd12 = pd.DataFrame(hd12_dict)
#### Update other planets
# HR 8799, Wang et al. 2018
# nea.loc[nea.pl_name=='HR 8799 b','pl_orbsmax'] = 70.8
# nea.loc[nea.pl_name=='HR 8799 b','pl_orbeccen'] = 0.018
# nea.loc[nea.pl_name=='HR 8799 b','pl_bmassj'] = 5.8
# nea.loc[nea.pl_name=='HR 8799 c','pl_orbsmax'] = 43.1
# nea.loc[nea.pl_name=='HR 8799 c','pl_orbeccen'] = 0.022
# nea.loc[nea.pl_name=='HR 8799 c','pl_bmassj'] = 7.2
# nea.loc[nea.pl_name=='HR 8799 d','pl_orbsmax'] = 26.2
# nea.loc[nea.pl_name=='HR 8799 d','pl_orbeccen'] = 0.129
# nea.loc[nea.pl_name=='HR 8799 d','pl_bmassj'] = 7.2
# nea.loc[nea.pl_name=='HR 8799 e','pl_orbsmax'] = 16.2
# nea.loc[nea.pl_name=='HR 8799 e','pl_orbeccen'] = 0.118
# nea.loc[nea.pl_name=='HR 8799 e','pl_bmassj'] = 7.2
# recompute orbital periods with Kepler's law
# HR8799_mstar = 1.52
# nea.loc[nea.pl_name=='HR 8799 b','pl_orbper'] = pow(pow(nea.loc[nea.pl_name=='HR 8799 b','pl_orbsmax'],3.) / HR8799_mstar, 1/2.) * 365.25
# nea.loc[nea.pl_name=='HR 8799 c','pl_orbper'] = pow(pow(nea.loc[nea.pl_name=='HR 8799 c','pl_orbsmax'],3.) / HR8799_mstar, 1/2.) * 365.25
# nea.loc[nea.pl_name=='HR 8799 d','pl_orbper'] = pow(pow(nea.loc[nea.pl_name=='HR 8799 d','pl_orbsmax'],3.) / HR8799_mstar, 1/2.) * 365.25
# nea.loc[nea.pl_name=='HR 8799 e','pl_orbper'] = pow(pow(nea.loc[nea.pl_name=='HR 8799 e','pl_orbsmax'],3.) / HR8799_mstar, 1/2.) * 365.25
# update citation!
# nea.loc[nea.pl_hostname=='HR 8799','def_authorstring'] = "\citep{Wang2018}"
#### Make a table with the longest-period planets (> 20 years)
# longp = nea[nea.pl_orbper >= 365.25*20.] # 20 years and longer
#### Make a table with planets with semi-major axes between 10 and 100
# longp = nea[(nea.pl_orbsmax >= 10) & (nea.pl_orbsmax <= 100)] # 20 years and longer
# ### redo the author strings from nea format to latex format for long period planets
# longp['disc_authorstring'] = reformat_author_string(longp.pl_disc_reflink)
# longp['def_authorstring'] = reformat_author_string(longp.pl_def_reflink)
# longp.loc[longp.pl_hostname=='HR 8799','def_authorstring'] = "\citep{Wang2018}"
###
### Merge HD 120066 into the table
# longp = pd.concat([longp,hd12])
### Add some notes
# longp['notes'] = ['']*len(longp)
# longp.loc[longp.disc_authorstring=="\citep{Qian2010}",'notes'] = 'Binary star'
# ### Output table
# columns_of_interest=['pl_name','pl_orbper','pl_orbsmax','pl_bmassj','pl_orbeccen','pl_discmethod','disc_authorstring','def_authorstring','notes']
# print longp.loc[:,columns_of_interest].head()
# longp.loc[:,columns_of_interest].to_csv('long-period-planets.csv',index=False)
#### Make some nice plots!
import itertools
marker = itertools.cycle(['o', '^','d', 'P', 's', 'v','p','H',"<",">"])
#color = itertools.cycle
### Plot 1: msini vs. zemimajor axis ###
import numpy as np
counter = 0
for meth in discmeths:
if meth in ['Radial Velocity', 'Imaging', 'Transit']:
planets = nea[nea.discoverymethod==meth]
# planets = planets[planets.st_age < 0.5]
planets = planets.dropna(subset=['pl_orbsmax','pl_bmassj'])
# remove planets with large period uncertainty
# if meth == 'Transit' or meth == 'Radial Velocity':
# planets = planets[planets['pl_orbper']/planets['pl_orbpererr1'] > 1.5]
# planets = planets[np.abs(planets['st_age']/planets['st_ageerr1']) > 1.5]
# print meth, len(planets)
# print(planets['pl_bmassj'])
color = 'C{}'.format(counter)
if len(planets) > 1:
counter += 1
if counter == 3:
counter += 1
plt.scatter(#planets.pl_orbsmax,
planets.pl_orbsmax,
planets.pl_bmassj,
# xerr=planets.pl_orbsmaxerr1,
# yerr=planets.pl_bmassjerr1,fmt='o',
label = meth,
marker = marker.next(),
color=color, s=20, alpha=0.5)
plt.xlim([1e-2,1e4])
plt.ylim([2e-3,20])
# plt.scatter(hd12.pl_orbsmax,hd12.pl_bmassj, marker='*',color='C3',label='HR 5183 b',s=250)
plt.yscale('log')
plt.xscale('log')
plt.xlabel('Semi-major Axis [au]')
# plt.xlabel('Orbital Period [days]')
plt.ylabel('Mass or Msini [M$_{\\mathrm{{J}}}$]')
plt.legend()
plt.savefig('planets.png', dpi=250)
# plt.savefig('{}/Dropbox/Apps/Overleaf/120066/plots/nea_planets.pdf'.format(os.path.expanduser('~')),format='pdf',dpi=250)
#plt.close()
plt.clf()
### Plot 2: eccentricity vs. orbital period ###
# marker = itertools.cycle(['o', '^','d', 'P', '*', 'v','p','H',"<",">"])
# for meth in discmeths:
# planets = nea[nea.discoverymethod==meth]
# planets = planets.dropna(subset=['pl_orbper','pl_orbeccen'])
# print meth, len(planets)
# if len(planets) > 3:
# plt.scatter(#planets.pl_orbsmax,
# planets.pl_orbper,
# planets.pl_orbeccen,
# # xerr=planets.pl_orbsmaxerr1,
# # yerr=planets.pl_bmassjerr1,fmt='o',
# label = meth,
# marker = marker.next())
# # color=color)
# plt.xlim([1,1e7])
# plt.ylim([0,1])
# plt.errorbar(hd12.pl_orbper,hd12.pl_orbeccen,hd12.pl_orbeccen_unc,hd12.pl_orbper_unc, marker='s',color='k',label='HR 5183 b')#,s=50)
# plt.xscale('log')
# #plt.xlabel('Semi-major Axis [AU]')
# plt.xlabel('Orbital Period [days]')
# plt.ylabel('Eccentricity')
# plt.legend(loc='lower right')
# # plt.savefig('nea_planets_ecc.pdf',format='pdf')
# #plt.show()
# #plt.close()
# plt.clf()