-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathDay19.cs
220 lines (180 loc) · 6.55 KB
/
Day19.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
using System;
using System.Runtime.CompilerServices;
using AdventOfCode.CSharp.Common;
namespace AdventOfCode.CSharp.Y2020.Solvers;
public class Day19 : ISolver
{
public static void Solve(ReadOnlySpan<byte> input, Solution solution)
{
// split input into the two sections
int messagesStart = input.IndexOf("\n\n"u8);
ReadOnlySpan<byte> rulesSpan = input.Slice(0, messagesStart + 1);
ReadOnlySpan<byte> messagesSpan = input.Slice(messagesStart + 2);
// rules[n][i][j] returns the jth element of the ith subrule for rule n
int[][][] rules = ParseRules(rulesSpan);
// this only works for the AoC input, but all rules will always reduce to the same number of terminals
int[] ruleLengths = GetRuleLengths(rules);
static int GCD(int a, int b)
{
return b == 0 ? a : GCD(b, a % b);
}
int rule0Len = ruleLengths[0];
int rule42Len = ruleLengths[42];
int rule11Len = ruleLengths[11];
int rule31Len = ruleLengths[31];
int part2Multiple = GCD(rule42Len, rule31Len);
int part1 = 0;
int part2 = 0;
foreach (Range messageRange in messagesSpan.SplitLines())
{
ReadOnlySpan<byte> message = messagesSpan[messageRange];
if (message.Length == rule0Len && MatchesRule(message, 0))
{
part1++;
}
else if (message.Length > rule0Len && message.Length % part2Multiple == 0)
{
// we take advantage of the fact that the input always contains the rule "0: 8 11"
// and there are no other rules that use 8 or 11.
//
// rule 8 is just rule 42 repeating
// rule 11 is rule 42 n times, then rule 31 n times.
//
// this means that we are looking for 42 * (a + b) + 31 * b where a >= 1 and b >= 1
int num31s = 0;
for (int i = message.Length - rule31Len; i >= 0; i -= rule31Len)
{
if (!MatchesRule(message.Slice(i, rule31Len), 31))
{
break;
}
num31s++;
}
if (num31s == 0)
{
continue;
}
int num42s = (message.Length - (num31s * rule31Len)) / rule42Len;
if (num42s <= num31s)
{
continue;
}
bool isValid = true;
for (int i = 0; i < num42s * rule42Len; i += rule42Len)
{
if (!MatchesRule(message.Slice(i, rule42Len), 42))
{
isValid = false;
break;
}
}
if (isValid)
{
part2++;
}
}
}
// all messages in part 1 are valid for part 2
part2 += part1;
solution.SubmitPart1(part1);
solution.SubmitPart2(part2);
bool MatchesRule(ReadOnlySpan<byte> str, int ruleNumber)
{
if (ruleNumber < 0)
{
byte c = str[0];
return (ruleNumber == -1 && c == 'a') || (ruleNumber == -2 && c == 'b');
}
foreach (int[] subRule in rules[ruleNumber])
{
if (MatchesSubRule(str, subRule))
{
return true;
}
}
return false;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
bool MatchesSubRule(ReadOnlySpan<byte> str, int[] subRule)
{
int i = 0;
foreach (int subRuleNumber in subRule)
{
int ruleLen = subRuleNumber < 0 ? 1 : ruleLengths[subRuleNumber];
if (!MatchesRule(str.Slice(i, ruleLen), subRuleNumber))
{
return false;
}
i += ruleLen;
}
return true;
}
}
private static int[][][] ParseRules(ReadOnlySpan<byte> rules)
{
int numRules = rules.Count((byte)'\n');
int[][][] rulesArr = new int[numRules][][];
var reader = new SpanReader(rules);
while (!reader.Done)
{
int ruleId = reader.ReadIntUntil(':');
reader.SkipLength(1); // skip the space
if (reader.Peek() == '"')
{
int rule = reader[1] == 'a' ? -1 : -2;
rulesArr[ruleId] = [[rule]];
reader.SkipLength("\"a\"\n".Length);
}
else
{
var ruleValueReader = new SpanReader(reader.ReadUntil('\n'));
int n1 = ruleValueReader.ReadPosIntUntil(' ');
int[] group1 = ruleValueReader.Done || ruleValueReader.Peek() == '|'
? [n1]
: [n1, ruleValueReader.ReadPosIntUntil(' ')];
if (ruleValueReader.Done)
{
rulesArr[ruleId] = [group1];
}
else
{
ruleValueReader.SkipLength("| ".Length);
int n3 = ruleValueReader.ReadPosIntUntil(' ');
int[] group2 = ruleValueReader.Done
? [n3]
: [n3, ruleValueReader.ReadPosIntUntilEnd()];
rulesArr[ruleId] = [group1, group2];
}
}
}
return rulesArr;
}
private static int[] GetRuleLengths(int[][][] rules)
{
int[] lengths = new int[rules.Length];
// ensure whole array is cached
for (int i = 0; i < rules.Length; i++)
{
_ = GetRuleLength(i);
}
return lengths;
int GetRuleLength(int ruleNumber)
{
int cachedLen = lengths[ruleNumber];
if (cachedLen != 0)
{
return cachedLen;
}
// rules always have the same length regardless of which alternative is taken
// so we can just take the first rule
int[] rule = rules[ruleNumber][0];
int len = 0;
foreach (int subRuleNumber in rule)
{
// negative sub-rule means it is a terminal of length 1
len += subRuleNumber < 0 ? 1 : GetRuleLength(subRuleNumber);
}
return lengths[ruleNumber] = len;
}
}
}