forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnest.yml
192 lines (192 loc) · 5.88 KB
/
resnest.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
Collections:
- Name: resnest
Metadata:
Training Data:
- Cityscapes
- ADE20k
Paper:
URL: https://arxiv.org/abs/2004.08955
Title: 'ResNeSt: Split-Attention Networks'
README: configs/resnest/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271
Version: v0.17.0
Converted From:
Code: https://github.com/zhanghang1989/ResNeSt
Models:
- Name: fcn_s101-d8_512x1024_80k_cityscapes
In Collection: resnest
Metadata:
backbone: S-101-D8
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 418.41
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
memory (GB): 11.4
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.56
mIoU(ms+flip): 78.98
Config: configs/resnest/fcn_s101-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes_20200807_140631-f8d155b3.pth
- Name: pspnet_s101-d8_512x1024_80k_cityscapes
In Collection: resnest
Metadata:
backbone: S-101-D8
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 396.83
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
memory (GB): 11.8
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.57
mIoU(ms+flip): 79.19
Config: configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth
- Name: deeplabv3_s101-d8_512x1024_80k_cityscapes
In Collection: resnest
Metadata:
backbone: S-101-D8
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 531.91
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
memory (GB): 11.9
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.67
mIoU(ms+flip): 80.51
Config: configs/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes_20200807_144429-b73c4270.pth
- Name: deeplabv3plus_s101-d8_512x1024_80k_cityscapes
In Collection: resnest
Metadata:
backbone: S-101-D8
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 423.73
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
memory (GB): 13.2
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.62
mIoU(ms+flip): 80.27
Config: configs/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes_20200807_144429-1239eb43.pth
- Name: fcn_s101-d8_512x512_160k_ade20k
In Collection: resnest
Metadata:
backbone: S-101-D8
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 77.76
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 14.2
Results:
- Task: Semantic Segmentation
Dataset: ADE20k
Metrics:
mIoU: 45.62
mIoU(ms+flip): 46.16
Config: configs/resnest/fcn_s101-d8_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k_20200807_145416-d3160329.pth
- Name: pspnet_s101-d8_512x512_160k_ade20k
In Collection: resnest
Metadata:
backbone: S-101-D8
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 76.8
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 14.2
Results:
- Task: Semantic Segmentation
Dataset: ADE20k
Metrics:
mIoU: 45.44
mIoU(ms+flip): 46.28
Config: configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth
- Name: deeplabv3_s101-d8_512x512_160k_ade20k
In Collection: resnest
Metadata:
backbone: S-101-D8
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 107.76
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 14.6
Results:
- Task: Semantic Segmentation
Dataset: ADE20k
Metrics:
mIoU: 45.71
mIoU(ms+flip): 46.59
Config: configs/resnest/deeplabv3_s101-d8_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k_20200807_144503-17ecabe5.pth
- Name: deeplabv3plus_s101-d8_512x512_160k_ade20k
In Collection: resnest
Metadata:
backbone: S-101-D8
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 83.61
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 16.2
Results:
- Task: Semantic Segmentation
Dataset: ADE20k
Metrics:
mIoU: 46.47
mIoU(ms+flip): 47.27
Config: configs/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k_20200807_144503-27b26226.pth