Skip to content

Latest commit

 

History

History
 
 

segformer

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers

Introduction

Official Repo

Code Snippet

SegFormer (ArXiv'2021)
@article{xie2021segformer,
  title={SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers},
  author={Xie, Enze and Wang, Wenhai and Yu, Zhiding and Anandkumar, Anima and Alvarez, Jose M and Luo, Ping},
  journal={arXiv preprint arXiv:2105.15203},
  year={2021}
}

Usage

To use other repositories' pre-trained models, it is necessary to convert keys.

We provide a script mit2mmseg.py in the tools directory to convert the key of models from the official repo to MMSegmentation style.

python tools/model_converters/swin2mmseg.py ${PRETRAIN_PATH} ${STORE_PATH}

This script convert model from PRETRAIN_PATH and store the converted model in STORE_PATH.

Results and models

ADE20k

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
Segformer MIT-B0 512x512 160000 2.1 51.32 37.41 38.34 config model | log
Segformer MIT-B1 512x512 160000 2.6 47.66 40.97 42.54 config model | log
Segformer MIT-B2 512x512 160000 3.6 30.88 45.58 47.03 config model | log
Segformer MIT-B3 512x512 160000 4.8 22.11 47.82 48.81 config model | log
Segformer MIT-B4 512x512 160000 6.1 15.45 48.46 49.76 config model | log
Segformer MIT-B5 512x512 160000 7.2 11.89 49.13 50.22 config model | log
Segformer MIT-B5 640x640 160000 11.5 11.30 49.62 50.36 config model | log

Evaluation with AlignedResize:

Method Backbone Crop Size Lr schd mIoU mIoU(ms+flip)
Segformer MIT-B0 512x512 160000 38.1 38.57
Segformer MIT-B1 512x512 160000 41.64 42.76
Segformer MIT-B2 512x512 160000 46.53 47.49
Segformer MIT-B3 512x512 160000 48.46 49.14
Segformer MIT-B4 512x512 160000 49.34 50.29
Segformer MIT-B5 512x512 160000 50.08 50.72
Segformer MIT-B5 640x640 160000 50.58 50.8

We replace AlignedResize in original implementatiuon to Resize + ResizeToMultiple. If you want to test by using AlignedResize, you can change the dataset pipeline like this:

test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(2048, 512),
        # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            # resize image to multiple of 32, improve SegFormer by 0.5-1.0 mIoU.
            dict(type='ResizeToMultiple', size_divisor=32),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]