forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet.yml
186 lines (186 loc) · 6.32 KB
/
unet.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
Collections:
- Name: unet
Metadata:
Training Data:
- DRIVE
- STARE
- CHASE_DB1
- HRF
Paper:
URL: https://arxiv.org/abs/1505.04597
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
README: configs/unet/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Version: v0.17.0
Converted From:
Code: http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net
Models:
- Name: fcn_unet_s5-d16_64x64_40k_drive
In Collection: unet
Metadata:
backbone: UNet-S5-D16
crop size: (64,64)
lr schd: 40000
memory (GB): 0.68
Results:
- Task: Semantic Segmentation
Dataset: DRIVE
Metrics:
mIoU: 78.67
Config: configs/unet/fcn_unet_s5-d16_64x64_40k_drive.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth
- Name: pspnet_unet_s5-d16_64x64_40k_drive
In Collection: unet
Metadata:
backbone: UNet-S5-D16
crop size: (64,64)
lr schd: 40000
memory (GB): 0.599
Results:
- Task: Semantic Segmentation
Dataset: DRIVE
Metrics:
mIoU: 78.62
Config: configs/unet/pspnet_unet_s5-d16_64x64_40k_drive.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth
- Name: deeplabv3_unet_s5-d16_64x64_40k_drive
In Collection: unet
Metadata:
backbone: UNet-S5-D16
crop size: (64,64)
lr schd: 40000
memory (GB): 0.596
Results:
- Task: Semantic Segmentation
Dataset: DRIVE
Metrics:
mIoU: 78.69
Config: configs/unet/deeplabv3_unet_s5-d16_64x64_40k_drive.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth
- Name: fcn_unet_s5-d16_128x128_40k_stare
In Collection: unet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
memory (GB): 0.968
Results:
- Task: Semantic Segmentation
Dataset: STARE
Metrics:
mIoU: 81.02
Config: configs/unet/fcn_unet_s5-d16_128x128_40k_stare.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth
- Name: pspnet_unet_s5-d16_128x128_40k_stare
In Collection: unet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
memory (GB): 0.982
Results:
- Task: Semantic Segmentation
Dataset: STARE
Metrics:
mIoU: 81.22
Config: configs/unet/pspnet_unet_s5-d16_128x128_40k_stare.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth
- Name: deeplabv3_unet_s5-d16_128x128_40k_stare
In Collection: unet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
memory (GB): 0.999
Results:
- Task: Semantic Segmentation
Dataset: STARE
Metrics:
mIoU: 80.93
Config: configs/unet/deeplabv3_unet_s5-d16_128x128_40k_stare.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth
- Name: fcn_unet_s5-d16_128x128_40k_chase_db1
In Collection: unet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
memory (GB): 0.968
Results:
- Task: Semantic Segmentation
Dataset: CHASE_DB1
Metrics:
mIoU: 80.24
Config: configs/unet/fcn_unet_s5-d16_128x128_40k_chase_db1.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth
- Name: pspnet_unet_s5-d16_128x128_40k_chase_db1
In Collection: unet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
memory (GB): 0.982
Results:
- Task: Semantic Segmentation
Dataset: CHASE_DB1
Metrics:
mIoU: 80.36
Config: configs/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth
- Name: deeplabv3_unet_s5-d16_128x128_40k_chase_db1
In Collection: unet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
memory (GB): 0.999
Results:
- Task: Semantic Segmentation
Dataset: CHASE_DB1
Metrics:
mIoU: 80.47
Config: configs/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth
- Name: fcn_unet_s5-d16_256x256_40k_hrf
In Collection: unet
Metadata:
backbone: UNet-S5-D16
crop size: (256,256)
lr schd: 40000
memory (GB): 2.525
Results:
- Task: Semantic Segmentation
Dataset: HRF
Metrics:
mIoU: 79.45
Config: configs/unet/fcn_unet_s5-d16_256x256_40k_hrf.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth
- Name: pspnet_unet_s5-d16_256x256_40k_hrf
In Collection: unet
Metadata:
backbone: UNet-S5-D16
crop size: (256,256)
lr schd: 40000
memory (GB): 2.588
Results:
- Task: Semantic Segmentation
Dataset: HRF
Metrics:
mIoU: 80.07
Config: configs/unet/pspnet_unet_s5-d16_256x256_40k_hrf.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth
- Name: deeplabv3_unet_s5-d16_256x256_40k_hrf
In Collection: unet
Metadata:
backbone: UNet-S5-D16
crop size: (256,256)
lr schd: 40000
memory (GB): 2.604
Results:
- Task: Semantic Segmentation
Dataset: HRF
Metrics:
mIoU: 80.21
Config: configs/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth