forked from wkentaro/labelme
-
Notifications
You must be signed in to change notification settings - Fork 0
/
labelme2voc.py
executable file
·146 lines (127 loc) · 4.76 KB
/
labelme2voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python
from __future__ import print_function
import argparse
import glob
import json
import os
import os.path as osp
import sys
import imgviz
try:
import lxml.builder
import lxml.etree
except ImportError:
print('Please install lxml:\n\n pip install lxml\n')
sys.exit(1)
import numpy as np
import PIL.Image
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('input_dir', help='input annotated directory')
parser.add_argument('output_dir', help='output dataset directory')
parser.add_argument('--labels', help='labels file', required=True)
parser.add_argument(
'--noviz', help='no visualization', action='store_true'
)
args = parser.parse_args()
if osp.exists(args.output_dir):
print('Output directory already exists:', args.output_dir)
sys.exit(1)
os.makedirs(args.output_dir)
os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
os.makedirs(osp.join(args.output_dir, 'Annotations'))
if not args.noviz:
os.makedirs(osp.join(args.output_dir, 'AnnotationsVisualization'))
print('Creating dataset:', args.output_dir)
class_names = []
class_name_to_id = {}
for i, line in enumerate(open(args.labels).readlines()):
class_id = i - 1 # starts with -1
class_name = line.strip()
class_name_to_id[class_name] = class_id
if class_id == -1:
assert class_name == '__ignore__'
continue
elif class_id == 0:
assert class_name == '_background_'
class_names.append(class_name)
class_names = tuple(class_names)
print('class_names:', class_names)
out_class_names_file = osp.join(args.output_dir, 'class_names.txt')
with open(out_class_names_file, 'w') as f:
f.writelines('\n'.join(class_names))
print('Saved class_names:', out_class_names_file)
for label_file in glob.glob(osp.join(args.input_dir, '*.json')):
print('Generating dataset from:', label_file)
with open(label_file) as f:
data = json.load(f)
base = osp.splitext(osp.basename(label_file))[0]
out_img_file = osp.join(
args.output_dir, 'JPEGImages', base + '.jpg')
out_xml_file = osp.join(
args.output_dir, 'Annotations', base + '.xml')
if not args.noviz:
out_viz_file = osp.join(
args.output_dir, 'AnnotationsVisualization', base + '.jpg')
img_file = osp.join(osp.dirname(label_file), data['imagePath'])
img = np.asarray(PIL.Image.open(img_file))
PIL.Image.fromarray(img).save(out_img_file)
maker = lxml.builder.ElementMaker()
xml = maker.annotation(
maker.folder(),
maker.filename(base + '.jpg'),
maker.database(), # e.g., The VOC2007 Database
maker.annotation(), # e.g., Pascal VOC2007
maker.image(), # e.g., flickr
maker.size(
maker.height(str(img.shape[0])),
maker.width(str(img.shape[1])),
maker.depth(str(img.shape[2])),
),
maker.segmented(),
)
bboxes = []
labels = []
for shape in data['shapes']:
if shape['shape_type'] != 'rectangle':
print('Skipping shape: label={label}, shape_type={shape_type}'
.format(**shape))
continue
class_name = shape['label']
class_id = class_names.index(class_name)
(xmin, ymin), (xmax, ymax) = shape['points']
# swap if min is larger than max.
xmin, xmax = sorted([xmin, xmax])
ymin, ymax = sorted([ymin, ymax])
bboxes.append([ymin, xmin, ymax, xmax])
labels.append(class_id)
xml.append(
maker.object(
maker.name(shape['label']),
maker.pose(),
maker.truncated(),
maker.difficult(),
maker.bndbox(
maker.xmin(str(xmin)),
maker.ymin(str(ymin)),
maker.xmax(str(xmax)),
maker.ymax(str(ymax)),
),
)
)
if not args.noviz:
captions = [class_names[l] for l in labels]
viz = imgviz.instances2rgb(
image=img,
labels=labels,
bboxes=bboxes,
captions=captions,
font_size=15,
)
imgviz.io.imsave(out_viz_file, viz)
with open(out_xml_file, 'wb') as f:
f.write(lxml.etree.tostring(xml, pretty_print=True))
if __name__ == '__main__':
main()