-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathcorrelation_louvain.m
155 lines (141 loc) · 6.2 KB
/
correlation_louvain.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
function [M, Q, res]=correlation_louvain(CIJ,T,M0,ECIJ)
%CORRELATION_LOUVAIN Optimal community structure from correlation matrix
% Following the article of MacMahon, Garlaschelli, PhysRev X (2015)
% Community detection for correlation matrices
%
% M = correlation_louvain(CIJ,T);
% [M,Q] = correlation_louvain(CIJ,T);
% [M,Q] = correlation_louvain(CIJ,T,M0);
% [M,Q] = correlation_louvain(CIJ,T,M0);
%
% The optimal community structure is a subdivision of the network into
% nonoverlapping groups of nodes which maximizes the number of within-
% group edges, and minimizes the number of between-group edges.
%
% This function is a fast and accurate multi-iterative generalization of the
% Louvain community detection algorithm.
%
% Input: C a positive semidefinite correlation matrix
% T number of time samples used to build the
% correlation matrix, (compulsory)
% M0, initial community affiliation vector (optional)
% B, objective-function type or custom objective-function matrix (optional)
% 'ITNM' Infinite time series with no global mode
% 'FTNM' Finite time series without global mode
% 'FTWM' Finite time series with global mode
%
% Outputs: M, community structure
% Q, optimized quality value
%
% References: Blondel et al. (2008) J. Stat. Mech. P10008.
% Reichardt and Bornholdt (2006) Phys. Rev. E 74, 016110.
% Ronhovde and Nussinov (2008) Phys. Rev. E 80, 016109
% Sun et al. (2008) Europhysics Lett 86, 28004.
% MacMahon et al. (2015) Phys Rev X.
%
% Basic community_louvain version by "Mika Rubinov, U Cambridge 2015"
% RMT modification to handle positive/negative correlation matrices by
% "Carlo Nicolini, Istituto Italiano di Tecnologia, 2016-2017"
%
% Check positive semidefiniteness by checking the second argument of chol
% (see documentation of chol for details)
[~,p]=chol(CIJ);
if ~isreal(CIJ)
error('Correlation matrix must be real matrix.');
end
if p~=0
error('Correlation matrix must be real semipositive definite matrix');
end
n=length(CIJ); % number of nodes
Cnorm=2*sum(sum(triu(CIJ))); % sum of edges (each undirected edge is counted twice)
% Compute the random matrix theory RMT spectrum of CIJ
res = rmtdecompose(CIJ,T);
if ~exist('ECIJ','var') || isempty(ECIJ)
ECIJ = eye(n); % assume the null model for infinitely long time series without global mode
end
% Check if membership vector already exists
if ~exist('M0','var') || isempty(M0)
M0=1:n;
elseif numel(M0)~=n
error('M0 must contain n elements.');
end
% reindex the membership vector
[~,~,Mb] = unique(M0);
M = Mb; % start with a membership vector already reindexed to have values in 1:c where c is the number of communities
if ischar(ECIJ)
switch ECIJ
case 'ITNM';
ECIJ = (CIJ - eye(n)); % Infinite time series without global mode
case 'FTNM';
ECIJ = (CIJ-res.Cr); % Finite time series without global mode
case 'FTWM';
ECIJ = CIJ - res.Cr - res.Cg; % Finite time series with global mode
otherwise;
error('Unknown null model.');
end
else
ECIJ = double(ECIJ);
if ~isequal(size(CIJ),size(ECIJ))
error('CIJ and ECIJ must have the same size.');
end
if max(max(abs(ECIJ-ECIJ.')))>1e-10
warning('ECIJ is not symmetric, enforcing symmetry.');
end
end
%ECIJ = (ECIJ+ECIJ.')/2; % symmetrize null model
Hnm=zeros(n,n); % node-to-module degree
for m=1:max(Mb) % loop over modules
Hnm(:,m)=sum(ECIJ(:,Mb==m),2);
end
H=sum(Hnm,2); % node degree
Hm=sum(Hnm,1); % module degree
Q0 = -inf;
Q = sum(ECIJ(bsxfun(@eq,M0,M0.')));%;/Cnorm % compute RMT modularity
first_iteration = true;
while Q-Q0>1e-16
flag = true; % flag for within-hierarchy search
while flag;
flag = false;
for u=randperm(n) % loop over all nodes in random order
ma = Mb(u); % current module of u
dQ = Hnm(u,:) - Hnm(u,ma) + ECIJ(u,u);
dQ(ma) = 0; % (line above) algorithm condition
[max_dQ, mb] = max(dQ); % maximal increase in modularity and corresponding module
if max_dQ>1e-10; % if maximal increase is positive
flag = true;
Mb(u) = mb; % reassign module
Hnm(:,mb) = Hnm(:,mb)+ECIJ(:,u); % change node-to-module strengths
Hnm(:,ma) = Hnm(:,ma)-ECIJ(:,u);
Hm(mb) = Hm(mb)+H(u); % change module strengths
Hm(ma) = Hm(ma)-H(u);
end
end
end
[~,~,Mb] = unique(Mb); % new module assignments
M0 = M;
if first_iteration
M=Mb;
first_iteration=false;
else
for u=1:n % loop through initial module assignments
M(M0==u)=Mb(u); % assign new modules
end
end
n=max(Mb); % new number of modules
B1=zeros(n); % new weighted matrix
for u=1:n
for v=u:n
bm=sum(sum(ECIJ(Mb==u,Mb==v))); % pool weights of nodes in same module
B1(u,v)=bm;
B1(v,u)=bm;
end
end
ECIJ=B1/sum(sum(triu(ECIJ)));
Mb=1:n; % initial module assignments
Hnm=ECIJ; % node-to-module strength
H=sum(ECIJ); % node strength
Hm=H; % module strength
Q0=Q;
Q=trace(ECIJ)/Cnorm; % compute modularity
end
Q