-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_jobs_experiment.py
277 lines (233 loc) · 10.5 KB
/
run_jobs_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os
import random
from multiprocessing import Queue, Process
import sys
import numpy as np
import torch
import pandas as pd
from policy_learning.deep_gmm import train_policy_deepgmm
from policy_learning.efficient_gmm_baselines import train_policy_gmm_benchmark, \
RandomKitchenSinkGenerator, calc_norm_matrix_efficient, \
PolynomialWeightsGenerator
from nuisance.nuisance_generator import StandardNuisanceGenerator
from policy_learning.policy_networks import LinearPolicyNetwork, \
FlexiblePolicyNetwork
from scenarios.jobs_scenario import JobsScenario
from policy_learning.unweighted_baselines import train_policy_unweighted, \
doubly_robust_psi
def main():
general_experiment_arguments = {
"num_rep": 64,
"num_procs": 1,
"num_gpu": 1,
"run_finite_gmm": False,
}
# make results directory if necessary
results_dir = "jobs_results"
if not os.path.exists(results_dir):
os.makedirs(results_dir)
# run experiment with LinearPolicy
run_experiment(results_dir=results_dir,
out_file_prefix="linear_linear",
policy_network_class=LinearPolicyNetwork,
esprm_lr=0.001, esprm_epoch_data_mul=8000000,
esprm_max_epoch=8000, **general_experiment_arguments)
# run experiment with FlexiblePolicy
run_experiment(results_dir=results_dir,
out_file_prefix="linear_flexible",
policy_network_class=FlexiblePolicyNetwork,
esprm_lr=0.0002, esprm_epoch_data_mul=8000000,
esprm_max_epoch=8000, **general_experiment_arguments)
def run_experiment(results_dir, out_file_prefix, policy_network_class,
num_rep, num_procs, num_gpu,
esprm_lr, esprm_epoch_data_mul, esprm_max_epoch,
run_finite_gmm=False):
batch_size = 1024
max_num_epochs = 500
max_no_improve = 5
psi_function = doubly_robust_psi
job_queue = Queue()
results_queue = Queue()
num_jobs = 0
for rep in range(num_rep):
batch_job = {
"job_list": [],
"seed": random.randint(0, 2 ** 32 - 1),
"batch_size": batch_size,
"max_num_epochs": max_num_epochs,
"max_no_improve": max_no_improve,
"rep": rep,
"psi_function": psi_function,
"policy_network_class": policy_network_class,
"nuisance_generator_class": StandardNuisanceGenerator,
"nuisance_generator_args": {
"y_method": "torch",
"p_method": "torch",
"y_args": {},
"p_args": {},
},
}
# # unweighted nuisance job
job = {"method": "unweighted"}
batch_job["job_list"].append(job)
num_jobs += 1
# deep gmm job
job = {"method": "deepgmm", "policy_lr": esprm_lr,
"epoch_data_mul": esprm_epoch_data_mul,
"deepgmm_max_num_epoch": esprm_max_epoch}
batch_job["job_list"].append(job)
num_jobs += 1
if run_finite_gmm:
# Polynomial kernel weights
for poly_deg in (2, 3):
job = {"method": "gmm",
"weights_generator_class": PolynomialWeightsGenerator,
"weights_generator_args": {"degree": poly_deg},
"norm_matrix_function": calc_norm_matrix_efficient}
batch_job["job_list"].append(job)
num_jobs += 1
# RBF kernel weights
for num_moments in (16, 32, 64):
job = {"method": "gmm",
"weights_generator_class": RandomKitchenSinkGenerator,
"weights_generator_args": {"num_moments": num_moments},
"norm_matrix_function": calc_norm_matrix_efficient}
batch_job["job_list"].append(job)
num_jobs += 1
job_queue.put(batch_job)
procs = []
for p_i in range(num_procs):
device_i = p_i % num_gpu
job_queue.put("STOP")
p = Process(target=worker_function,
args=(device_i, job_queue, results_queue))
p.start()
procs.append(p)
results_list = []
for _ in range(num_jobs):
results = results_queue.get()
results_list.append(results)
for p in procs:
p.join()
out_df = results_list_to_data_frame(results_list)
out_df.to_csv("%s/%s.csv" % (results_dir, out_file_prefix))
def worker_function(device_i, job_queue, results_queue):
if torch.cuda.is_available():
with torch.cuda.device(device_i):
loop_jobs(job_queue, results_queue)
else:
loop_jobs(job_queue, results_queue)
def loop_jobs(job_queue, results_queue):
for batch_job in iter(job_queue.get, "STOP"):
# set random seed
starting_seed = batch_job["seed"]
random.seed(starting_seed)
try:
np.random.seed(starting_seed)
except:
print(starting_seed)
np.random.seed(starting_seed % (2 ** 32))
print("seed fail")
torch.manual_seed(starting_seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(starting_seed)
rep = batch_job["rep"]
train_df = pd.read_csv("jobs_data/train_%d.csv" % rep)
num_dev = len(train_df) // 5
num_tune = len(train_df) // 5
scenario = JobsScenario(train_df, num_dev=num_dev, num_tune=num_tune)
batch_size = batch_job["batch_size"]
max_num_epochs = batch_job["max_num_epochs"]
max_no_improve = batch_job["max_no_improve"]
psi_function = batch_job["psi_function"]
policy_network_class = batch_job["policy_network_class"]
nuisance_generator_class = batch_job["nuisance_generator_class"]
nuisance_generator_args = batch_job["nuisance_generator_args"]
print("starting next batch job (iter=%d)" % rep)
x, a, y, = scenario.get_train()
x_tune, a_tune, y_tune, = scenario.get_tune()
x_dev, a_dev, y_dev, = scenario.get_dev()
# print(len(x), len(x_tune), len(x_dev))
nuisance_generator = nuisance_generator_class(
scenario, **nuisance_generator_args)
nuisance_generator.setup(x_tune, a_tune, y_tune, x_dev, a_dev, y_dev)
for job in batch_job["job_list"]:
if job["method"] == "unweighted":
policy_network = train_policy_unweighted(
x=x, a=a, y=y, batch_size=batch_size,
max_num_epoch=max_num_epochs,
max_no_improve=max_no_improve,
psi_function=psi_function,
nuisance_generator=nuisance_generator,
policy_network_class=policy_network_class, verbose=False,
x_dev=x_dev, a_dev=a_dev, y_dev=y_dev, y_dev_cf=None)
job_metadata = {"method": "unweighted",
"weights": "Unweighted"}
elif job["method"] == "gmm":
weights_class = job["weights_generator_class"]
weights_args = job["weights_generator_args"]
norm_matrix_function = job["norm_matrix_function"]
weights_generator = weights_class(
x_tune, a_tune, y_tune, x_dev, a_dev, y_dev, **weights_args)
policy_network = train_policy_gmm_benchmark(
x=x, a=a, y=y, batch_size=batch_size,
num_stages=3, max_num_epoch_per_stage=max_num_epochs,
max_no_improve=max_no_improve, psi_function=psi_function,
nuisance_generator=nuisance_generator,
policy_network_class=policy_network_class, verbose=False,
weights_function=weights_generator,
norm_matrix_function=norm_matrix_function,
x_dev=x_dev, a_dev=a_dev, y_dev=y_dev, y_dev_cf=None)
job_metadata = {"method": "gmm",
"weights": str(weights_generator)}
elif job["method"] == "deepgmm":
policy_lr = job["policy_lr"]
epoch_data_mul = job["epoch_data_mul"]
deepgmm_max_num_epoch = job["deepgmm_max_num_epoch"]
policy_network = train_policy_deepgmm(
x=x, a=a, y=y, batch_size=batch_size,
psi_function=psi_function, policy_lr=policy_lr,
epoch_data_mul=epoch_data_mul,
max_num_epoch=deepgmm_max_num_epoch,
nuisance_generator=nuisance_generator,
policy_network_class=policy_network_class, verbose=False,
x_dev=x_dev, a_dev=a_dev, y_dev=y_dev, y_dev_cf=None)
num_epoch_code = epoch_data_mul // 1000000
weights_str = "DeepGmm:%.4f:%d" % (policy_lr, num_epoch_code)
job_metadata = {"method": "deepgmm",
"weights": weights_str}
else:
policy_network = None
sys.stderr.write("Invalid method: %s" % job["method"])
job_metadata = {"method": "Invalid",
"weights": "Invalid"}
results = {"rep": rep}
results.update(job_metadata)
if policy_network is not None:
policy_val = evaluate_job_policy(policy_network, rep)
results["test_policy_val"] = policy_val
results["theta"] = policy_network.get_policy_weights()
else:
results["test_policy_val"] = None
results["theta"] = None
results_queue.put(results)
print("finished job batch (iter=%d)" % rep)
def evaluate_job_policy(policy_network, rep):
test_df = pd.read_csv("jobs_data/test_%d.csv" % rep)
scenario = JobsScenario(test_df, num_dev=0, num_tune=0)
x_test, a_test, y_test = scenario.get_all_data_for_testing()
ipw_test = scenario.get_ipw()
pred_a = (policy_network(x_test).view(-1) >= 0).long()
a_match = (pred_a == a_test).double()
policy_val = (y_test.view(-1) * ipw_test * a_match).mean()
return float(policy_val.detach().cpu().numpy())
def results_list_to_data_frame(results_list):
keys = {k for results in results_list for k in results.keys()}
data_frame_dict = {}
for k in keys:
vals = [results[k] if k in results else None
for results in results_list]
data_frame_dict[k] = np.array(vals)
return pd.DataFrame(data_frame_dict)
if __name__ == "__main__":
main()