-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpipeline_single.py
85 lines (65 loc) · 3.13 KB
/
pipeline_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import os
import re
import time
import torch
import shutil
import subprocess
import pandas as pd
from figure_separator import extract
from ImageSoup import extract_figures_single_paper
from classifier import classify
from torchvision import datasets
from label_scale_bar_detector.localizer import detect, GPU_on, GPU_off
from utils import (image_extractor, gif_to_jpg, crop_images, crop_labels, crop_scales,
read_OCR_from_folder, run_segmentation, measure_bars, drop_zeros)
def run_pipeline_single(output_dir, gpu, publisher, html_source):
# Set GPU option in the Makefile of label_scale_bar_detector
if gpu:
GPU_on()
else:
GPU_off()
def make_path(path):
return os.path.join(output_dir, path)
def create_dir(path):
if not os.path.isdir(path):
os.makedirs(path)
create_dir(output_dir)
# Extract images from htmls
meta = extract_figures_single_paper(publisher, html_source)
# publishers = ["Elsevier", "Nature Publishing Group", "The Royal Society of Chemistry", "Springer"]
# # Extract images
# for publisher in publishers:
# image_extractor.extract(publisher, download=True)
# create_dir(make_path('extracted_images_gif'))
image_extractor.extract_single_paper(publisher, meta)
# Convert from gif to jpg
# if not os.path.isdir(make_path("extracted_images_jpg")):
# os.mkdir(make_path("extracted_images_jpg"))
for f in os.listdir(make_path("extracted_images_gif")):
create_dir(os.path.join(make_path('extracted_images_jpg')))
gif_to_jpg(os.path.join(make_path("extracted_images_gif"), f),
os.path.join(make_path("extracted_images_jpg"), str(f) + ".jpg"))
# Separate subfigures from composite figures
extract(make_path('extracted_images_jpg'), output_dir)
crop_images(make_path("extracted_images_jpg"), make_path("extracted_subfigures_json"), make_path("extracted_subfigures_png"))
classify(make_path('extracted_subfigures_png'), 'sem_tem_other', output_dir, gpu)
# # Classify subfigures into TEM, XRD, Other
# classify(make_path('extracted_subfigures_png'), 'tem_xrd_other', output_dir, GPU)
# # Classify TEM images into subcategories
# classify(make_path('TEM'), 'tem_subcategories', output_dir, GPU)
# Classify TEM images into Particulate and Non-particulate
classify(make_path('TEM'), 'particulate', output_dir, gpu)
# Detect labels, scales and bars
detect(make_path('Particulate'))
# Crop located labels, scales and bars
crop_scales(make_path('Particulate'), 'label_scale_bar_detector/localizer/darknet/result.json', output_dir)
# Read labels and scales
labels_path = make_path("label")
scales_path = make_path("scale")
read_OCR_from_folder('label', labels_path, output_dir)
read_OCR_from_folder('scale', scales_path, output_dir)
drop_zeros(make_path("scales.csv"))
# measure bar lengths and add to csv
measure_bars(make_path("bar"), make_path("scales.csv"), scales_path)
# Run particle segmentation
run_segmentation(make_path("Particulate"), "particle_segmentation/Mask_RCNN", make_path("scales.csv"), output_dir)