-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhead_tail_true.m
170 lines (141 loc) · 6.26 KB
/
head_tail_true.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
function [shell,triTot,triThresUp,triThresDown]=head_tail_true(tri,z,thresUp,thresDown,TR)
shell= {};
w=1;
triTot=[];
for i=1:length(z)
punti = [];
intersections=[];
k=1;
T3=tri(:,3);
T6=tri(:,6);
T9=tri(:,9);
indexTri=find(T3<=z(i) & T6>=z(i) | T3>=z(i) & T6<=z(i) | ...
T6<=z(i) & T9>=z(i)| T6>=z(i) & T9<= z(i) |...
T3>=z(i) & T9<=z(i)| T3<=z(i) & T9>=z(i));
indexTriCop=[];
indexTriCop=find(tri(:,3)==z(i) & tri(:,6)==z(i) & tri(:,9)==z(i));
zTrue=z(i);
if ~isempty(indexTriCop)
V1=tri(indexTriCop(1,1),1:3);
V2=tri(indexTriCop(1,1),4:6);
V3=tri(indexTriCop(1,1),7:9);
normale=cross(V1-V3,V2-V3);
Area=norm(normale)/2;
normale=normale/(2*Area);
while ~isempty(indexTriCop)
if normale(1,3)==-1
zTrue=zTrue+10^-8;
else
zTrue=zTrue-10^-8;
end
indexTriCop=find(tri(:,3)==zTrue & tri(:,6)==zTrue & tri(:,9)==zTrue);
end
indexTri=find(T3<=zTrue & T6>=zTrue | T3>=zTrue & T6<=zTrue | ...
T6<=zTrue & T9>=zTrue| T6>=zTrue & T9<= zTrue |...
T3>=zTrue & T9<=zTrue| T3<=zTrue & T9>=zTrue);
end
k=1;
for j=1:size(indexTri,1)
p3=tri(indexTri(j),3);
p6=tri(indexTri(j),6);
p9=tri(indexTri(j),9);
% primo if - se il piano intereseca un solo punto non lo considerare
% if successivi - se il piano interseca due vertici aggiungi l'edge tra i due vertici
% ultimo if -
if p3==zTrue && p6 >zTrue && p9 >zTrue ||...
p3==zTrue && p6 <zTrue && p9 <zTrue ||...
p3>zTrue && p6 ==zTrue && p9>zTrue || ...
p3<zTrue && p6 ==zTrue && p9<zTrue || ...
p3>zTrue && p6>zTrue && p9 ==zTrue || ...
p3<zTrue && p6<zTrue && p9 ==zTrue
j=j+1;
elseif p3==zTrue && p6==zTrue && p9~=zTrue
intersections(k,:)=[tri(indexTri(j),1:3) tri(indexTri(j),4:6)];
k=k+1;
elseif p3~=zTrue && p6==zTrue && p9==zTrue
intersections(k,:)=[tri(indexTri(j),4:6) tri(indexTri(j),7:9)];
k=k+1;
elseif p3==zTrue && p6~=zTrue && p9==zTrue
intersections(k,:)=[tri(indexTri(j),1:3) tri(indexTri(j),7:9)];
k=k+1;
else
[flag(k), intersections(k,:)] =plane_tri_inter([0 0 zTrue], [0 0 1], tri(indexTri(j),1:3), tri(indexTri(j),4:6), tri(indexTri(j),7:9));
k=k+1;
end
if ~isempty(intersections)
temp_int=[intersections(end,4:6) intersections(end,1:3)];
[~,~,iA1]=intersect(intersections(end,:),intersections,"rows");
[~,~,iA2]=intersect(temp_int,intersections,"rows");
if (length(iA1)>=1 && length(iA2)>=1) || length(iA1)>1
intersections(end,:)=[];
k=size(intersections,1)+1;
end
end
end
if ~isempty(intersections)
triTot(i,1)=size(indexTri,1); % n di triangoli totali su quel layer
TR_temp=triangulation(TR.ConnectivityList(indexTri,:),TR.Points);
F = faceNormal(TR_temp); %normali alle face dei triangoli
u=[0 0 1]; %normale all'asse z
ThetaInDegrees=zeros(length(F),1); % calcolo gli angoli tra le normali e l'asse z
k=1;
for j=1:length(F)
CosTheta = max(min(dot(u,F(j,:))/(norm(u)*norm(F(j,:))),1),-1);
ThetaInDegrees(k) = real(acosd(CosTheta));
k=k+1;
end
UP=find(ThetaInDegrees(:)<=thresUp);
DOWN=find(ThetaInDegrees(:)>=thresDown);
triThresDown(i,1)=size(DOWN,1);
triThresUp(i,1)=size(UP,1);
intersections(:,3)=round(intersections(:,3),7);
intersections(:,6)=round(intersections(:,6),7);
temp1=nan*ones(size(intersections,1),1);
temp2=nan*ones(size(intersections,1),1);
punti(1,:)=intersections(1,1:3);
punti(2,:)=intersections(1,4:6);
intersections(1,4:6)=nan*ones(1,3);
n=2;
for j=1:size(intersections,1)-1
for h=1:size(intersections,1)
temp1(h)=sqrt((punti(n,1)-intersections(h,1))^2+(punti(n,2)-intersections(h,2))^2);
temp2(h)=sqrt((punti(n,1)-intersections(h,4))^2+(punti(n,2)-intersections(h,5))^2);
end
id=[];
[a,ii]=min(temp1);
[b,jj]=min(temp2);
c=min(a,b);
if c==a && ~isnan(intersections(ii,4)) && ~isnan(intersections(ii,5)) && ~isnan(intersections(ii,6))
n=n+1;
punti(n,:)=intersections(ii,4:6);
intersections(ii,:)=nan*ones(1,6);
elseif c==a && isnan(intersections(ii,4)) && isnan(intersections(ii,5)) && isnan(intersections(ii,6))
n=n+1;
punti(n,:)=[nan nan nan];
intersections(ii,1:3)=[nan nan nan];
id=find(~isnan(intersections(:,1)),1);
elseif c==b && ~isnan(intersections(jj,1)) && ~isnan(intersections(jj,2)) && ~isnan(intersections(jj,3))
n=n+1;
punti(n,:)=intersections(jj,1:3);
intersections(jj,:)=nan*ones(1,6);
else
n=n+1;
punti(n,:)=[nan nan nan];
intersections(ii,4:6)=[nan nan nan];
id=find(~isnan(intersections(:,1)),1);
end
if ~isempty(id)
n=n+1;
punti(n,:)=intersections(id,1:3);
n=n+1;
punti(n,:)=intersections(id,4:6);
intersections(id,4:6)=[nan nan nan];
end
end
shell{1,w} = [punti; nan nan nan];
w=w+1;
else
shell{1,w}={};
w=w+1;
end
end