-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathreho.m
executable file
·316 lines (282 loc) · 16.4 KB
/
reho.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
function [ReHoBrain, Header] = reho(AllVolume, NVoxel, AMaskFilename, AResultFilename, IsNeedDetrend, Band, TR, TemporalMask, ScrubbingMethod, ScrubbingTiming, Header, CUTNUMBER)
% Calculate regional homogeneity (i.e. ReHo) from the 3D EPI images.
% FORMAT [ReHoBrain, Header] = y_reho(AllVolume, NVoxel, AMaskFilename, AResultFilename, IsNeedDetrend, Band, TR, TemporalMask, ScrubbingMethod, ScrubbingTiming, Header, CUTNUMBER)
% Input:
% AllVolume - 4D data matrix (DimX*DimY*DimZ*DimTimePoints) or the directory of 3D image data file or the filename of one 4D data file
% NVoxel The number of the voxel for a given cluster during calculating the KCC (e.g. 27, 19, or 7); Recommand: NVoxel=27;
% AMaskFilename the mask file name, I only compute the point within the mask
% AResultFilename the output filename
% IsNeedDetrend 0: Dot not detrend; 1: Use Matlab's detrend
% Band Temporal filter band: matlab's ideal filter e.g. [0.01 0.08]
% TR The TR of scanning. (Used for filtering.)
% TemporalMask - Temporal mask for scrubbing (DimTimePoints*1)
% - Empty (blank: '' or []) means do not need scrube. Then ScrubbingMethod and ScrubbingTiming can leave blank
% ScrubbingMethod - The methods for scrubbing.
% -1. 'cut': discarding the timepoints with TemporalMask == 0
% -2. 'nearest': interpolate the timepoints with TemporalMask == 0 by Nearest neighbor interpolation
% -3. 'linear': interpolate the timepoints with TemporalMask == 0 by Linear interpolation
% -4. 'spline': interpolate the timepoints with TemporalMask == 0 by Cubic spline interpolation
% -5. 'pchip': interpolate the timepoints with TemporalMask == 0 by Piecewise cubic Hermite interpolation
% ScrubbingTiming - The timing for scrubbing.
% -1. 'BeforeFiltering': scrubbing (and interpolation, if) before detrend (if) and filtering (if).
% -2. 'AfterFiltering': scrubbing after filtering, right before extract ROI TC and FC analysis
% Header - If AllVolume is given as a 4D Brain matrix, then Header should be designated.
% CUTNUMBER Cut the data into pieces if small RAM memory e.g. 4GB is available on PC. It can be set to 1 on server with big memory (e.g., 50GB).
% default: 10
% Output:
% ReHoBrain - The ReHo results
% Header - The NIfTI Header
% AResultFilename the filename of ReHo result
% Written by Yong He, April,2004
% Medical Imaging and Computing Group (MIC), National Laboratory of Pattern Recognition (NLPR),
% Chinese Academy of Sciences (CAS), China.
% E-mail: [email protected]
% Copywrite (c) 2004,
% Info on the approach based on the reho:
% Zang YF, Jiang TZ, Lu YL, He Y and Tian LX, Regional Homogeneity Approach
% to fMRI Data Analysis. NeuroImage, Vol.22, No.1, 2004, 394-400.
% Info on the interesting and potential applications about the reho:
% He Y, Zang YF, Jiang TZ, Lu YL and Weng XC, Detection of Functional Networks
% in the Resting Brain. 2nd IEEE International Symposium on Biomedical Imaging:
% From Nano to Macro (ISBI'04), April 15-18, 2004, Arlington, USA.
% Info on the above can be found in:
% http://www.nlpr.ia.ac.cn/english/mic/YongHe
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
%Revised by Xiaowei Song, 20070421
%1.Add another parameter to allow user defined mask, so change some in code of selecting mask
% user defined mask has priority
% And delete the old parameter 'bMask', if the AMaskFilename is null(bMask=0) or 'Default'(bMask=1), then I would use 'ones mask' or 'default mask'
%2.Add waitbar for gui waiting and progress showing
%Revised by Xiaowei Song 20070903
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
% Revised by YAN Chao-Gan 080610: NIFTI compatible
% Revised by YAN Chao-Gan 080808: also support NIFTI images.
% Revised by YAN Chao-Gan, 090321. Result data will be saved in the format 'single'.
% Revised by YAN Chao-Gan, 090419. 1. Add Parameters: ADataDir and AResultFilename; Remove the old parameter 'NVolume'. 2. Fixed the bug of computing ReHo with 7 voxels or 19 voxels in a cluster.
% Algorithm re-written by YAN Chao-Gan, 090422. The algorithm has been re-written to speed up the calculation of ReHo.
% Revised by YAN Chao-Gan, 090717: Also calculate the ReHo value of the voxels near the border of the brain mask, users should be cautious when discussing the results near the border.
% Revised by YAN Chao-Gan, 120328: Re-Written to avoid cutting pieces to hard drive. And no longer change into uint16 format.
if ~exist('CUTNUMBER','var')
CUTNUMBER = 10;
end
theElapsedTime =cputime;
% Examine the Nvoxel
% --------------------------------------------------------------------------
if NVoxel ~= 27 & NVoxel ~= 19 & NVoxel ~= 7
error('The second parameter should be 7, 19 or 27. Please re-exmamin it.');
end
% Read the functional images
% -------------------------------------------------------------------------
fprintf('\n\t Read these 3D EPI functional images.\twait...');
if ~isnumeric(AllVolume)
[AllVolume,vsize,theImgFileList, Header] =rest_to4d(AllVolume);
end
[nDim1 nDim2 nDim3 nDimTimePoints]=size(AllVolume);
M=nDim1;N=nDim2;O=nDim3;
isize = [nDim1 nDim2 nDim3];
vsize = sqrt(sum(Header.mat(1:3,1:3).^2));
mask=rest_loadmask(nDim1, nDim2, nDim3, AMaskFilename);
%Algorithm re-written by YAN Chao-Gan, 090422. Speed up the calculation of ReHo.
%rank the 3d+time functional images voxel by voxel
% -------------------------------------------------------------------------
AllVolume=reshape(AllVolume,[],nDimTimePoints)';
% Scrubbing
if exist('TemporalMask','var') && ~isempty(TemporalMask) && ~strcmpi(ScrubbingTiming,'AfterFiltering')
if ~all(TemporalMask)
AllVolume = AllVolume(find(TemporalMask),:); %'cut'
if ~strcmpi(ScrubbingMethod,'cut')
xi=1:length(TemporalMask);
x=xi(find(TemporalMask));
AllVolume = interp1(x,AllVolume,xi,ScrubbingMethod);
end
nDimTimePoints = size(AllVolume,1);
end
end
% Detrend
if exist('IsNeedDetrend','var') && IsNeedDetrend==1
%AllVolume=detrend(AllVolume);
fprintf('\n\t Detrending...');
SegmentLength = ceil(size(AllVolume,2) / CUTNUMBER);
for iCut=1:CUTNUMBER
if iCut~=CUTNUMBER
Segment = (iCut-1)*SegmentLength+1 : iCut*SegmentLength;
else
Segment = (iCut-1)*SegmentLength+1 : size(AllVolume,2);
end
AllVolume(:,Segment) = detrend(AllVolume(:,Segment));
fprintf('.');
end
end
% Filtering
if exist('Band','var') && ~isempty(Band)
fprintf('\n\t Filtering...');
SegmentLength = ceil(size(AllVolume,2) / CUTNUMBER);
for iCut=1:CUTNUMBER
if iCut~=CUTNUMBER
Segment = (iCut-1)*SegmentLength+1 : iCut*SegmentLength;
else
Segment = (iCut-1)*SegmentLength+1 : size(AllVolume,2);
end
AllVolume(:,Segment) = rest_IdealFilter(AllVolume(:,Segment), TR, Band);
fprintf('.');
end
end
% Scrubbing after filtering
if exist('TemporalMask','var') && ~isempty(TemporalMask) && strcmpi(ScrubbingTiming,'AfterFiltering')
if ~all(TemporalMask)
AllVolume = AllVolume(find(TemporalMask),:); %'cut'
if ~strcmpi(ScrubbingMethod,'cut')
xi=1:length(TemporalMask);
x=xi(find(TemporalMask));
AllVolume = interp1(x,AllVolume,xi,ScrubbingMethod);
end
nDimTimePoints = size(AllVolume,1);
end
end
% Calcualte the rank
fprintf('\n\t Rank calculating...');
%YAN Chao-Gan, 120328. No longer change to uint16 type.
Ranks_AllVolume = repmat(zeros(1,size(AllVolume,2)), [size(AllVolume,1), 1]);
%Ranks_AllVolume = repmat(uint16(zeros(1,size(AllVolume,2))), [size(AllVolume,1), 1]);
SegmentLength = ceil(size(AllVolume,2) / CUTNUMBER);
for iCut=1:CUTNUMBER
if iCut~=CUTNUMBER
Segment = (iCut-1)*SegmentLength+1 : iCut*SegmentLength;
else
Segment = (iCut-1)*SegmentLength+1 : size(AllVolume,2);
end
AllVolume_Piece = AllVolume(:,Segment);
nVoxels_Piece = size(AllVolume_Piece,2);
[AllVolume_Piece,SortIndex] = sort(AllVolume_Piece,1);
db=diff(AllVolume_Piece,1,1);
db = db == 0;
sumdb=sum(db,1);
%YAN Chao-Gan, 120328. No longer change to uint16 type.
SortedRanks = repmat([1:nDimTimePoints]',[1,nVoxels_Piece]);
%SortedRanks = repmat(uint16([1:nDimTimePoints]'),[1,nVoxels_Piece]);
% For those have the same values at the current time point and previous time point (ties)
if any(sumdb(:))
TieAdjustIndex=find(sumdb);
for i=1:length(TieAdjustIndex)
ranks=SortedRanks(:,TieAdjustIndex(i));
ties=db(:,TieAdjustIndex(i));
tieloc = [find(ties); nDimTimePoints+2];
maxTies = numel(tieloc);
tiecount = 1;
while (tiecount < maxTies)
tiestart = tieloc(tiecount);
ntied = 2;
while(tieloc(tiecount+1) == tieloc(tiecount)+1)
tiecount = tiecount+1;
ntied = ntied+1;
end
% Compute mean of tied ranks
ranks(tiestart:tiestart+ntied-1) = ...
sum(ranks(tiestart:tiestart+ntied-1)) / ntied;
tiecount = tiecount + 1;
end
SortedRanks(:,TieAdjustIndex(i))=ranks;
end
end
clear db sumdb;
SortIndexBase = repmat([0:nVoxels_Piece-1].*nDimTimePoints,[nDimTimePoints,1]);
SortIndex=SortIndex+SortIndexBase;
clear SortIndexBase;
Ranks_Piece = zeros(nDimTimePoints,nVoxels_Piece);
Ranks_Piece(SortIndex)=SortedRanks;
clear SortIndex SortedRanks;
%YAN Chao-Gan, 120328. No longer change to uint16 type.
%Ranks_Piece=uint16(Ranks_Piece); % Change to uint16 to get the same results of previous version.
Ranks_AllVolume(:,Segment) = Ranks_Piece;
fprintf('.');
end
Ranks_AllVolume = reshape(Ranks_AllVolume,[nDimTimePoints,nDim1 nDim2 nDim3]);
% calulate the kcc for the data set
% ------------------------------------------------------------------------
fprintf('\n\t Calculate the kcc on voxel by voxel for the data set.');
K = zeros(M,N,O);
switch NVoxel
case 27
for i = 2:M-1
for j = 2:N-1
for k = 2:O-1
block = Ranks_AllVolume(:,i-1:i+1,j-1:j+1,k-1:k+1);
mask_block = mask(i-1:i+1,j-1:j+1,k-1:k+1);
if mask_block(2,2,2)~=0
%YAN Chao-Gan 090717, We also calculate the ReHo value of the voxels near the border of the brain mask, users should be cautious when dicussing the results near the border. %if all(mask_block(:))
R_block=reshape(block,[],27); %Revised by YAN Chao-Gan, 090420. Speed up the calculation.
mask_R_block = R_block(:,reshape(mask_block,1,27) > 0);
K(i,j,k) = f_kendall(mask_R_block);
end %end if
end%end k
end% end j
fprintf('.');
end%end i
fprintf('\t The reho of the data set was finished.\n');
rest_writefile(single(K),AResultFilename,isize,vsize,Header, 'single'); %Revised by YAN Chao-Gan, 090321. Result data will be stored in 'single' format. %'double');
case 19
mask_cluster_19=ones(3,3,3);
mask_cluster_19(1,1,1) = 0; mask_cluster_19(1,3,1) = 0; mask_cluster_19(3,1,1) = 0; mask_cluster_19(3,3,1) = 0;
mask_cluster_19(1,1,3) = 0; mask_cluster_19(1,3,3) = 0; mask_cluster_19(3,1,3) = 0; mask_cluster_19(3,3,3) = 0;
%Revised by YAN Chao-Gan, 090420. The element in the mask could be 1 other than 127. Fixed the bug of computing ReHo with 7 voxels or 19 voxels.
for i = 2:M-1
for j = 2:N-1
for k = 2:O-1
block = Ranks_AllVolume(:,i-1:i+1,j-1:j+1,k-1:k+1);
mask_block = mask(i-1:i+1,j-1:j+1,k-1:k+1);
if mask_block(2,2,2)~=0
%YAN Chao-Gan 090717, We also calculate the ReHo value of the voxels near the border of the brain mask, users should be cautious when dicussing the results near the border. %if all(mask_block(:))
mask_block=mask_block.*mask_cluster_19;
%Revised by YAN Chao-Gan, 090419. The element in the mask could be 1 other than 127. Fixed the bug of computing ReHo with 7 voxels or 19 voxels.
R_block=reshape(block,[],27); %Revised by YAN Chao-Gan, 090420. Speed up the calculation.
mask_R_block = R_block(:,reshape(mask_block,1,27) > 0); %Revised by YAN Chao-Gan, 090419. The element in the mask could be 1 other than 127. Fixed the bug of computing ReHo with 7 voxels or 19 voxels. %> 2);
K(i,j,k) = f_kendall(mask_R_block);
end%end if
end%end k
end%end j
fprintf('.');
end%end i
fprintf('\t The reho of the data set was finished.\n');
rest_writefile(single(K),AResultFilename,isize,vsize,Header, 'single'); %Revised by YAN Chao-Gan, 090321. Result data will be stored in 'single' format. %'double');
case 7
mask_cluster_7=ones(3,3,3);
mask_cluster_7(1,1,1) = 0; mask_cluster_7(1,2,1) = 0; mask_cluster_7(1,3,1) = 0; mask_cluster_7(1,1,2) = 0;
mask_cluster_7(1,3,2) = 0; mask_cluster_7(1,1,3) = 0; mask_cluster_7(1,2,3) = 0; mask_cluster_7(1,3,3) = 0;
mask_cluster_7(2,1,1) = 0; mask_cluster_7(2,3,1) = 0; mask_cluster_7(2,1,3) = 0; mask_cluster_7(2,3,3) = 0;
mask_cluster_7(3,1,1) = 0; mask_cluster_7(3,2,1) = 0; mask_cluster_7(3,3,1) = 0; mask_cluster_7(3,1,2) = 0;
mask_cluster_7(3,3,2) = 0; mask_cluster_7(3,1,3) = 0; mask_cluster_7(3,2,3) = 0; mask_cluster_7(3,3,3) = 0;
%Revised by YAN Chao-Gan, 090420. The element in the mask could be 1 other than 127. Fixed the bug of computing ReHo with 7 voxels or 19 voxels.
for i = 2:M-1
for j = 2:N-1
for k = 2:O-1
block = Ranks_AllVolume(:,i-1:i+1,j-1:j+1,k-1:k+1);
mask_block = mask(i-1:i+1,j-1:j+1,k-1:k+1);
if mask_block(2,2,2)~=0
%YAN Chao-Gan 090717, We also calculate the ReHo value of the voxels near the border of the brain mask, users should be cautious when dicussing the results near the border. %if all(mask_block(:))
mask_block=mask_block.*mask_cluster_7;
%Revised by YAN Chao-Gan, 090419. The element in the mask could be 1 other than 127. Fixed the bug of computing ReHo with 7 voxels or 19 voxels.
R_block=reshape(block,[],27); %Revised by YAN Chao-Gan, 090420. Speed up the calculation.
mask_R_block = R_block(:,reshape(mask_block,1,27) > 0); %Revised by YAN Chao-Gan, 090419. The element in the mask could be 1 other than 127. Fixed the bug of computing ReHo with 7 voxels or 19 voxels. %> 2);
K(i,j,k) = f_kendall(mask_R_block);
end%end if
end%end k
end%end j
fprintf('.');
end%end i
fprintf('\t The reho of the data set was finished.\n');
rest_writefile(single(K),AResultFilename,isize,vsize,Header,'single'); %Revised by YAN Chao-Gan, 090321. Result data will be stored in 'single' format. %'double');
otherwise
error('The second parameter should be 7, 19 or 27. Please re-exmamin it.');
end %end switch
ReHoBrain = K;
Header.pinfo = [1;0;0];
Header.dt =[16,0];
theElapsedTime =cputime - theElapsedTime;
fprintf('\n\tRegional Homogeneity computation over, elapsed time: %g seconds\n', theElapsedTime);
% calculate kcc for a time series
%---------------------------------------------------------------------------
function B = f_kendall(A)
nk = size(A); n = nk(1); k = nk(2);
SR = sum(A,2); SRBAR = mean(SR);
S = sum(SR.^2) - n*SRBAR^2;
B = 12*S/k^2/(n^3-n);