-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrest_VMHC.m
executable file
·169 lines (141 loc) · 7.51 KB
/
rest_VMHC.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
function [VMHCBrain, Header] = rest_VMHC(AllVolume, OutputName, MaskData, IsNeedDetrend, Band, TR, TemporalMask, ScrubbingMethod, ScrubbingTiming, Header,CUTNUMBER)
% [VMHCBrain, Header] = y_VMHC(AllVolume, OutputName, MaskData, IsNeedDetrend, Band, TR, TemporalMask, ScrubbingMethod, ScrubbingTiming, Header)
% Calculate VMHC
% Ref: Zuo, X.N., Kelly, C., Di Martino, A., Mennes, M., Margulies, D.S., Bangaru, S., Grzadzinski, R., Evans, A.C., Zang, Y.F., Castellanos, F.X., Milham, M.P., 2010. Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci 30, 15034-15043.
% Anderson, J.S., Druzgal, T.J., Froehlich, A., DuBray, M.B., Lange, N., Alexander, A.L., Abildskov, T., Nielsen, J.A., Cariello, A.N., Cooperrider, J.R., Bigler, E.D., Lainhart, J.E., 2011. Decreased interhemispheric functional connectivity in autism. Cerebral cortex 21, 1134-1146.
% Input:
% AllVolume - 4D data matrix (DimX*DimY*DimZ*DimTimePoints) or the directory of 3D image data file or the filename of one 4D data file
% OutputName - Output filename
% MaskData - Mask matrix (DimX*DimY*DimZ) or the mask file name
% IsNeedDetrend - 0: Dot not detrend; 1: Use Matlab's detrend
% Band - Temporal filter band: matlab's ideal filter e.g. [0.01 0.08]
% TR - The TR of scanning. (Used for filtering.)
% TemporalMask - Temporal mask for scrubbing (DimTimePoints*1)
% - Empty (blank: '' or []) means do not need scrube. Then ScrubbingMethod and ScrubbingTiming can leave blank
% ScrubbingMethod - The methods for scrubbing.
% -1. 'cut': discarding the timepoints with TemporalMask == 0
% -2. 'nearest': interpolate the timepoints with TemporalMask == 0 by Nearest neighbor interpolation
% -3. 'linear': interpolate the timepoints with TemporalMask == 0 by Linear interpolation
% -4. 'spline': interpolate the timepoints with TemporalMask == 0 by Cubic spline interpolation
% -5. 'pchip': interpolate the timepoints with TemporalMask == 0 by Piecewise cubic Hermite interpolation
% ScrubbingTiming - The timing for scrubbing.
% -1. 'BeforeFiltering': scrubbing (and interpolation, if) before detrend (if) and filtering (if).
% -2. 'AfterFiltering': scrubbing after filtering, right before extract ROI TC and FC analysis
% Header - If AllVolume is given as a 4D Brain matrix, then Header should be designated.
% CUTNUMBER - Cut the data into pieces if small RAM memory e.g. 4GB is available on PC. It can be set to 1 on server with big memory (e.g., 50GB).
% default: 10
% Output:
% VMHCBrain - The VHMC results
% Header - The NIfTI Header
% The VMHC image will be output as where OutputName specified.
%-----------------------------------------------------------
% Written by YAN Chao-Gan 120216.
% The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
% Child Mind Institute, 445 Park Avenue, New York, NY 10022, USA
% The Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, New York University Child Study Center, New York, NY 10016, USA
if ~exist('CUTNUMBER','var')
CUTNUMBER = 10;
end
theElapsedTime =cputime;
fprintf('\nComputing VMHC...');
if ~isnumeric(AllVolume)
[AllVolume,VoxelSize,theImgFileList, Header] =rest_to4d(AllVolume);
end
[nDim1 nDim2 nDim3 nDimTimePoints]=size(AllVolume);
BrainSize = [nDim1 nDim2 nDim3];
VoxelSize = sqrt(sum(Header.mat(1:3,1:3).^2));
if ischar(MaskData)
if ~isempty(MaskData)
[MaskData,MaskVox,MaskHead]=rest_readfile(MaskData);
%Make the mask symmetric
MaskData = logical(MaskData + flipdim(MaskData,1));
else
MaskData=ones(nDim1,nDim2,nDim3);
end
end
% Convert into 2D
AllVolume=reshape(AllVolume,[],nDimTimePoints)';
MaskDataOneDim=reshape(MaskData,1,[]);
MaskIndex = find(MaskDataOneDim);
AllVolume=AllVolume(:,find(MaskDataOneDim));
% Get the flipped Index
Index3D_Flipped=zeros(size(MaskDataOneDim));
Index3D_Flipped(1,MaskIndex)=MaskIndex;
Index3D_Flipped=reshape(Index3D_Flipped,nDim1, nDim2, nDim3);
Index3D_Flipped = flipdim(Index3D_Flipped,1); %This is the fliped mask with the index for 3D Brain
Index2D_Flipped_Masked = Index3D_Flipped(MaskIndex); %Only chose those within the mask, the index is still for 3D Brain
%Convert the index for 3D Brain to the index for the 2D Mask (Note: the index length is reduced for the latter)
[MaskIndexSort MaskIndexIX]=sort(MaskIndex);
[Index2D_Flipped_MaskedSort Index2D_Flipped_MaskedIX]=sort(Index2D_Flipped_Masked);
Flipped_Masked_Index_In_UnFlippedMask(Index2D_Flipped_MaskedIX)=MaskIndexIX;
% Scrubbing
if exist('TemporalMask','var') && ~isempty(TemporalMask) && ~strcmpi(ScrubbingTiming,'AfterFiltering')
if ~all(TemporalMask)
AllVolume = AllVolume(find(TemporalMask),:); %'cut'
if ~strcmpi(ScrubbingMethod,'cut')
xi=1:length(TemporalMask);
x=xi(find(TemporalMask));
AllVolume = interp1(x,AllVolume,xi,ScrubbingMethod);
end
nDimTimePoints = size(AllVolume,1);
end
end
% Detrend
if exist('IsNeedDetrend','var') && IsNeedDetrend==1
%AllVolume=detrend(AllVolume);
fprintf('\n\t Detrending...');
SegmentLength = ceil(size(AllVolume,2) / CUTNUMBER);
for iCut=1:CUTNUMBER
if iCut~=CUTNUMBER
Segment = (iCut-1)*SegmentLength+1 : iCut*SegmentLength;
else
Segment = (iCut-1)*SegmentLength+1 : size(AllVolume,2);
end
AllVolume(:,Segment) = detrend(AllVolume(:,Segment));
fprintf('.');
end
end
% Filtering
if exist('Band','var') && ~isempty(Band)
fprintf('\n\t Filtering...');
SegmentLength = ceil(size(AllVolume,2) / CUTNUMBER);
for iCut=1:CUTNUMBER
if iCut~=CUTNUMBER
Segment = (iCut-1)*SegmentLength+1 : iCut*SegmentLength;
else
Segment = (iCut-1)*SegmentLength+1 : size(AllVolume,2);
end
AllVolume(:,Segment) = rest_IdealFilter(AllVolume(:,Segment), TR, Band);
fprintf('.');
end
end
% Scrubbing after filtering
if exist('TemporalMask','var') && ~isempty(TemporalMask) && strcmpi(ScrubbingTiming,'AfterFiltering')
if ~all(TemporalMask)
AllVolume = AllVolume(find(TemporalMask),:); %'cut'
if ~strcmpi(ScrubbingMethod,'cut')
xi=1:length(TemporalMask);
x=xi(find(TemporalMask));
AllVolume = interp1(x,AllVolume,xi,ScrubbingMethod);
end
nDimTimePoints = size(AllVolume,1);
end
end
% ZeroMeanOneStd
AllVolume = (AllVolume-repmat(mean(AllVolume),size(AllVolume,1),1))./repmat(std(AllVolume),size(AllVolume,1),1); %Zero mean and one std
AllVolume(isnan(AllVolume))=0;
AllVolume_Flipped = AllVolume(:,Flipped_Masked_Index_In_UnFlippedMask);
VMHC = zeros(length(MaskIndex),1);
for iVoxel=1:length(MaskIndex)
VMHC(iVoxel) = AllVolume(:,iVoxel)' * AllVolume_Flipped(:,iVoxel) / (nDimTimePoints - 1);
end
VMHCBrain=zeros(size(MaskDataOneDim));
VMHCBrain(1,find(MaskDataOneDim))=VMHC;
VMHCBrain=reshape(VMHCBrain,nDim1, nDim2, nDim3);
VMHCBrain(fix(nDim1/2) + 1,:,:) = 0; %Added by YAN Chao-Gan, 130611. Put the midline voxels to zero.
Header.pinfo = [1;0;0];
Header.dt =[16,0];
rest_WriteNiftiImage(VMHCBrain,Header,OutputName);
theElapsedTime = cputime - theElapsedTime;
fprintf('\nVMHC compution over, elapsed time: %g seconds.\n', theElapsedTime);