-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_CUB_resnet50.py
182 lines (152 loc) · 7.1 KB
/
train_CUB_resnet50.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import json
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets
from tqdm import tqdm
from model_Resnet50 import CPML as model
import matplotlib.pyplot as plt
import torch.nn.functional as F
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def main():
print("using {} device.".format(device))
data_transform = {
"train": transforms.Compose([
transforms.Resize(512),
transforms.RandomResizedCrop(448),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
"val": transforms.Compose([transforms.Resize(512),
transforms.CenterCrop(448),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}
train_dataset = datasets.ImageFolder(root="./dataset/CUB_200_2011/dataset/train",
transform=data_transform["train"])
train_num = len(train_dataset)
bird_list = train_dataset.class_to_idx
cla_dict = dict((val, key) for key, val in bird_list.items())
# write dict into json file
json_str = json.dumps(cla_dict, indent=4)
with open('class_indices_CUB200.json', 'w') as json_file:
json_file.write(json_str)
batch_size = 8
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
print('Using {} dataloader workers every process'.format(nw))
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size, shuffle=True,
num_workers=nw)
validate_dataset = datasets.ImageFolder(root="./dataset/CUB_200_2011/dataset/test",
transform=data_transform["val"])
val_num = len(validate_dataset)
validate_loader = torch.utils.data.DataLoader(validate_dataset,
batch_size=batch_size, shuffle=False,
num_workers=nw)
print("using {} images for training, {} images fot validation.".format(train_num,
val_num))
net = model(num_classes=200)
net = net.to(device)
loss_function = nn.CrossEntropyLoss().to(device)
loss_kl = nn.KLDivLoss(reduction='batchmean')
optimizer = optim.SGD(net.parameters(), lr=0.002, weight_decay=0.00005, momentum=0.9)
epochs = 128
best_acc = 0.0
save_path = './result/CUB200/best_model_resnet50_CPML.pth'
train_steps = len(train_loader)
val_accuracy_list = []
train_accuracy_list = []
epochs_list = []
train_loss_list = []
val_loss_list = []
for epoch in range(epochs):
# train
net.train()
if (epoch == 20): #20,0.001
optimizer = optim.SGD(net.parameters(), lr=0.001, weight_decay=0.00005, momentum=0.9)
elif (epoch == 30): #30,0.0005
optimizer = optim.SGD(net.parameters(), lr=0.0005, weight_decay=0.00005, momentum=0.9)
elif (epoch == 50): #50,0.0001
optimizer = optim.SGD(net.parameters(), lr=0.0001, weight_decay=0.00005, momentum=0.9)
elif (epoch == 90): #50,0.0001
optimizer = optim.SGD(net.parameters(), lr=0.00005, weight_decay=0.00005, momentum=0.9)
train_bar = tqdm(train_loader)
train_acc = 0.0
train_loss = 0.0
train_steps = 0
for step, data in enumerate(train_bar):
train_steps += 1
images, labels = data
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
x, logits_r = net(images, flag="train")
loss = loss_function(x, labels) + loss_function(logits_r, labels) + loss_kl(F.log_softmax(x, dim=1),
F.softmax(logits_r, dim=1)) + loss_kl(F.log_softmax(logits_r, dim=1), F.softmax(x, dim=1))
train_predict = torch.max(x.data, dim=1)[1]
train_acc += torch.eq(train_predict, labels.to(device)).sum().item()
train_loss += loss.item()
loss.backward()
optimizer.step()
train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1, epochs, loss)
# validate
net.eval()
val_acc = 0.0
# train_acc = 0.0
val_loss = 0.0
# train_loss = 0.0
with torch.no_grad():
val_bar = tqdm(validate_loader)
val_steps = 0
for val_data in val_bar:
val_steps += 1
val_images, val_labels = val_data
val_outputs, _ = net(val_images.to(device), flag="val")
tmp_val_loss = loss_function(val_outputs, val_labels.to(device))
val_predict = torch.max(val_outputs, dim=1)[1]
val_acc += torch.eq(val_predict, val_labels.to(device)).sum().item()
val_loss += tmp_val_loss.item()
val_bar.desc = "valid in val_dataset epoch[{}/{}]".format(epoch + 1, epochs)
train_accurate = train_acc / train_num
val_accurate = val_acc / val_num
if (val_accurate > best_acc):
best_acc = val_accurate
torch.save(net.state_dict(), save_path)
print('[epoch %d] train_loss: %.3f train_acc: %.3f val_loss:%.3f val_acc: %.3f'
% (epoch + 1, train_loss / train_steps, train_accurate, val_loss / val_steps, val_accurate))
# 构造各个参数的列表,准备画图
val_accuracy_list.append(val_accurate)
train_accuracy_list.append(train_accurate)
train_loss_list.append(train_loss / train_num)
val_loss_list.append(val_loss / val_num)
epochs_list.append(epoch + 1)
# train_acc && val_loss
plt.figure()
plt.plot(epochs_list, val_accuracy_list, color="red", label="val_acc")
plt.plot(epochs_list, train_accuracy_list, color="green", label="train_acc")
plt.xlabel("epochs")
plt.ylabel("Acc")
plt.title('ResNet50 in CUB200')
plt.xticks([i for i in range(0, len(epochs_list), 20)])
acc_gap = [i * 0.2 for i in range(0, min(int(len(epochs_list) / 2 + 1), 6))]
acc_gap.append(max(val_accuracy_list))
acc_gap.append(max(train_accuracy_list))
plt.yticks(acc_gap)
plt.grid()
plt.legend()
plt.savefig("./result/CUB200/Acc_resnet50_CPML.jpg")
# train_loss && val_loss
plt.figure()
plt.plot(epochs_list, train_loss_list, color="red", label="train_loss")
plt.plot(epochs_list, val_loss_list, color="green", label="val_loss")
plt.xlabel('epochs')
plt.ylabel('Loss')
plt.title('ResNet50 in CUB200')
plt.xticks([i for i in range(0, len(epochs_list), 20)])
plt.grid()
plt.legend()
plt.savefig("./result/CUB200/Loss_resnet50_CPML.jpg")
print('Finished Training')
print("the best val_accuracy is : {}".format(best_acc))
if __name__ == '__main__':
main()