-
Notifications
You must be signed in to change notification settings - Fork 0
/
fre_filter.cpp
421 lines (362 loc) · 9.77 KB
/
fre_filter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#include <iostream>
#include <string>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/core/types_c.h>
#include <opencv2/core/core_c.h>
#include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp>
using namespace std;
using namespace cv;
Mat DFT(Mat I)
{
Mat padded;
int m = getOptimalDFTSize(I.rows);
int n = getOptimalDFTSize(I.cols);
copyMakeBorder(I, padded, 0, m - I.rows, 0, n - I.cols, BORDER_CONSTANT, Scalar::all(0));
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexI;
merge(planes, 2, complexI);
dft(complexI, complexI);
split(complexI, planes);
magnitude(planes[0], planes[1], planes[0]);
Mat magI = planes[0];
magI += Scalar::all(1);
log(magI, magI);
magI = magI(Rect(0, 0, magI.cols & -2, magI.rows & -2));
//重新排列傅立叶图像的象限,使其位于图像中心
int cx = magI.cols / 2;
int cy = magI.rows / 2;
Mat q0(magI, Rect(0, 0, cx, cy)); //左上角
Mat q1(magI, Rect(cx, 0, cx, cy)); //右上角
Mat q2(magI, Rect(0, cy, cx, cy)); //左下角
Mat q3(magI, Rect(cx, cy, cx, cy)); //右下角
//变换左上角和右下角
Mat tmp;
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
//变换右上和左下
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
//归一化处理
normalize(magI, magI, 0, 1, 32);
return magI;
}
void test7()
{
Mat image, res;
image = imread("demo.jpg", 0); // Read the file
imshow("原图", image);
res = DFT(image);
imshow("频谱图", res);
waitKey(0);
destroyAllWindows();
return;
}
int DFTAndIDFT()
{
Mat input = imread("demo.jpg", 0);
imshow("input", input);
int w = getOptimalDFTSize(input.cols);
int h = getOptimalDFTSize(input.rows);
Mat padded;
copyMakeBorder(input, padded, 0, h - input.rows, 0, w - input.cols, BORDER_CONSTANT, Scalar::all(0));
Mat plane[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexIm;
merge(plane, 2, complexIm);
dft(complexIm, complexIm);
split(complexIm, plane);
magnitude(plane[0], plane[1], plane[0]);
int cx = padded.cols / 2;
int cy = padded.rows / 2;
Mat temp;
Mat part1(plane[0], Rect(0, 0, cx, cy));
Mat part2(plane[0], Rect(cx, 0, cx, cy));
Mat part3(plane[0], Rect(0, cy, cx, cy));
Mat part4(plane[0], Rect(cx, cy, cx, cy));
part1.copyTo(temp);
part4.copyTo(part1);
temp.copyTo(part4);
part2.copyTo(temp);
part3.copyTo(part2);
temp.copyTo(part3);
Mat _complexim;
complexIm.copyTo(_complexim);
Mat iDft[] = {Mat::zeros(plane[0].size(), CV_32F), Mat::zeros(plane[0].size(), CV_32F)};
idft(_complexim, _complexim);
split(_complexim, iDft);
magnitude(iDft[0], iDft[1], iDft[0]);
normalize(iDft[0], iDft[0], 1, 0, CV_MINMAX);
imshow("idft", iDft[0]);
plane[0] += Scalar::all(1);
log(plane[0], plane[0]);
normalize(plane[0], plane[0], 1, 0, CV_MINMAX);
imshow("dft", plane[0]);
waitKey(0);
destroyAllWindows();
return 0;
}
void ideal_Low_Pass_Filter(double D0 = 60)
{
Mat src, fourier, res;
src = imread("demo.jpg", 0); // Read the file
imshow("原图", src);
Mat img = src.clone();
//调整图像大小
int M = getOptimalDFTSize(img.rows);
int N = getOptimalDFTSize(img.cols);
Mat padded;
copyMakeBorder(img, padded, 0, M - img.rows, 0, N - img.cols, BORDER_CONSTANT, Scalar::all(0));
//记录实部和虚部
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexImg;
merge(planes, 2, complexImg);
//傅立叶变换
dft(complexImg, complexImg);
//获取图像
Mat mag = complexImg;
mag = mag(Rect(0, 0, mag.cols & -2, mag.rows & -2));
//��ʵ��Ϊ�˰��к��б��ż�� -2�Ķ�������11111111.......10 ���һλ��0
//获取中心点
int cx = mag.cols / 2;
int cy = mag.rows / 2;
//调整频域
Mat tmp;
Mat q0(mag, Rect(0, 0, cx, cy));
Mat q1(mag, Rect(cx, 0, cx, cy));
Mat q2(mag, Rect(0, cy, cx, cy));
Mat q3(mag, Rect(cx, cy, cx, cy));
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
//按公式保留中心位置
for (int y = 0; y < mag.rows; y++)
{
double *data = mag.ptr<double>(y);
for (int x = 0; x < mag.cols; x++)
{
double d = sqrt(pow((y - cy), 2) + pow((x - cx), 2));
if (d <= D0)
{
}
else
{
data[x] = 0;
}
}
}
//调整频域
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
//逆变换
Mat invDFT, invDFTcvt;
idft(mag, invDFT, DFT_SCALE | DFT_REAL_OUTPUT); // Applying IDFT
invDFT.convertTo(invDFTcvt, CV_8U);
imshow("低通滤波器", invDFTcvt);
waitKey(0);
destroyAllWindows();
return;
}
void ideal_High_Pass_Filter(double D0 = 60)
{
Mat src, fourier, res;
src = imread("demo.jpg", 0); // Read the file
imshow("原图", src);
Mat img = src.clone();
int M = getOptimalDFTSize(img.rows);
int N = getOptimalDFTSize(img.cols);
Mat padded;
copyMakeBorder(img, padded, 0, M - img.rows, 0, N - img.cols, BORDER_CONSTANT, Scalar::all(0));
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexImg;
merge(planes, 2, complexImg);
dft(complexImg, complexImg);
Mat mag = complexImg;
mag = mag(Rect(0, 0, mag.cols & -2, mag.rows & -2));
int cx = mag.cols / 2;
int cy = mag.rows / 2;
Mat tmp;
Mat q0(mag, Rect(0, 0, cx, cy));
Mat q1(mag, Rect(cx, 0, cx, cy));
Mat q2(mag, Rect(0, cy, cx, cy));
Mat q3(mag, Rect(cx, cy, cx, cy));
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
for (int y = 0; y < mag.rows; y++)
{
double *data = mag.ptr<double>(y);
for (int x = 0; x < mag.cols; x++)
{
double d = sqrt(pow((y - cy), 2) + pow((x - cx), 2));
if (d <= D0)
{
data[x] = 0;
}
else
{
}
}
}
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
Mat invDFT, invDFTcvt;
idft(mag, invDFT, DFT_SCALE | DFT_REAL_OUTPUT); // Applying IDFT
invDFT.convertTo(invDFTcvt, CV_8U);
imshow("�����ͨ�˲���", invDFTcvt);
waitKey(0);
destroyAllWindows();
return;
}
void Butterworth_Low_Paass_Filter(double D0 = 60, int n = 2)
{
Mat src, fourier, res;
src = imread("demo.jpg", 0); // Read the file
imshow("原图", src);
//H = 1 / (1+(D/D0)^2n)
Mat img = src.clone();
//cvtColor(src, img, CV_BGR2GRAY);
int M = getOptimalDFTSize(img.rows);
int N = getOptimalDFTSize(img.cols);
Mat padded;
copyMakeBorder(img, padded, 0, M - img.rows, 0, N - img.cols, BORDER_CONSTANT, Scalar::all(0));
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexImg;
merge(planes, 2, complexImg);
dft(complexImg, complexImg);
Mat mag = complexImg;
mag = mag(Rect(0, 0, mag.cols & -2, mag.rows & -2));
int cx = mag.cols / 2;
int cy = mag.rows / 2;
Mat tmp;
Mat q0(mag, Rect(0, 0, cx, cy));
Mat q1(mag, Rect(cx, 0, cx, cy));
Mat q2(mag, Rect(0, cy, cx, cy));
Mat q3(mag, Rect(cx, cy, cx, cy));
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
for (int y = 0; y < mag.rows; y++)
{
double *data = mag.ptr<double>(y);
for (int x = 0; x < mag.cols; x++)
{
//cout << data[x] << endl;
double d = sqrt(pow((y - cy), 2) + pow((x - cx), 2));
//cout << d << endl;
double h = 1.0 / (1 + pow(d / D0, 2 * n));
if (h <= 0.5)
{
data[x] = 0;
}
else
{
//data[x] = data[x]*0.5;
//cout << h << endl;
}
//cout << data[x] << endl;
}
}
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
//��任
Mat invDFT, invDFTcvt;
idft(complexImg, invDFT, DFT_SCALE | DFT_REAL_OUTPUT); // Applying IDFT
invDFT.convertTo(invDFTcvt, CV_8U);
imshow("巴特沃斯高通滤波器", invDFTcvt);
waitKey(0);
destroyAllWindows();
return;
}
void Butterworth_High_Paass_Filter(double D0 = 60, int n = 2)
{
Mat src, fourier, res;
src = imread("demo.jpg", 0); // Read the file
imshow("原图", src);
Mat img = src.clone();
int M = getOptimalDFTSize(img.rows);
int N = getOptimalDFTSize(img.cols);
Mat padded;
copyMakeBorder(img, padded, 0, M - img.rows, 0, N - img.cols, BORDER_CONSTANT, Scalar::all(0));
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexImg;
merge(planes, 2, complexImg);
dft(complexImg, complexImg);
Mat mag = complexImg;
mag = mag(Rect(0, 0, mag.cols & -2, mag.rows & -2));
int cx = mag.cols / 2;
int cy = mag.rows / 2;
Mat tmp;
Mat q0(mag, Rect(0, 0, cx, cy));
Mat q1(mag, Rect(cx, 0, cx, cy));
Mat q2(mag, Rect(0, cy, cx, cy));
Mat q3(mag, Rect(cx, cy, cx, cy));
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
for (int y = 0; y < mag.rows; y++)
{
double *data = mag.ptr<double>(y);
for (int x = 0; x < mag.cols; x++)
{
double d = sqrt(pow((y - cy), 2) + pow((x - cx), 2));
double h = 1.0 / (1 + pow(D0 / d, 2 * n));
if (h <= 0.5)
{
data[x] = 0;
}
else
{
}
}
}
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
Mat invDFT, invDFTcvt;
idft(complexImg, invDFT, DFT_SCALE | DFT_REAL_OUTPUT); // Applying IDFT
invDFT.convertTo(invDFTcvt, CV_8U);
imshow("巴特沃斯高通滤波器", invDFTcvt);
waitKey(0);
destroyAllWindows();
return;
}
int fifth_main()
{
DFTAndIDFT();
ideal_Low_Pass_Filter(40.0);
ideal_High_Pass_Filter(40.0);
Butterworth_Low_Paass_Filter(40, 2);
Butterworth_High_Paass_Filter(40, 2);
return 0;
}