forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
common.hpp
327 lines (284 loc) · 14 KB
/
common.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#ifndef YOLOV5_COMMON_H_
#define YOLOV5_COMMON_H_
#include <fstream>
#include <map>
#include <sstream>
#include <vector>
#include <opencv2/opencv.hpp>
#include "NvInfer.h"
#include "yololayer.h"
using namespace nvinfer1;
cv::Rect get_rect(cv::Mat& img, float bbox[4]) {
float l, r, t, b;
float r_w = Yolo::INPUT_W / (img.cols * 1.0);
float r_h = Yolo::INPUT_H / (img.rows * 1.0);
if (r_h > r_w) {
l = bbox[0] - bbox[2] / 2.f;
r = bbox[0] + bbox[2] / 2.f;
t = bbox[1] - bbox[3] / 2.f - (Yolo::INPUT_H - r_w * img.rows) / 2;
b = bbox[1] + bbox[3] / 2.f - (Yolo::INPUT_H - r_w * img.rows) / 2;
l = l / r_w;
r = r / r_w;
t = t / r_w;
b = b / r_w;
} else {
l = bbox[0] - bbox[2] / 2.f - (Yolo::INPUT_W - r_h * img.cols) / 2;
r = bbox[0] + bbox[2] / 2.f - (Yolo::INPUT_W - r_h * img.cols) / 2;
t = bbox[1] - bbox[3] / 2.f;
b = bbox[1] + bbox[3] / 2.f;
l = l / r_h;
r = r / r_h;
t = t / r_h;
b = b / r_h;
}
return cv::Rect(round(l), round(t), round(r - l), round(b - t));
}
float iou(float lbox[4], float rbox[4]) {
float interBox[] = {
(std::max)(lbox[0] - lbox[2] / 2.f , rbox[0] - rbox[2] / 2.f), //left
(std::min)(lbox[0] + lbox[2] / 2.f , rbox[0] + rbox[2] / 2.f), //right
(std::max)(lbox[1] - lbox[3] / 2.f , rbox[1] - rbox[3] / 2.f), //top
(std::min)(lbox[1] + lbox[3] / 2.f , rbox[1] + rbox[3] / 2.f), //bottom
};
if (interBox[2] > interBox[3] || interBox[0] > interBox[1])
return 0.0f;
float interBoxS = (interBox[1] - interBox[0])*(interBox[3] - interBox[2]);
return interBoxS / (lbox[2] * lbox[3] + rbox[2] * rbox[3] - interBoxS);
}
bool cmp(const Yolo::Detection& a, const Yolo::Detection& b) {
return a.conf > b.conf;
}
void nms(std::vector<Yolo::Detection>& res, float *output, float conf_thresh, float nms_thresh = 0.5) {
int det_size = sizeof(Yolo::Detection) / sizeof(float);
std::map<float, std::vector<Yolo::Detection>> m;
for (int i = 0; i < output[0] && i < Yolo::MAX_OUTPUT_BBOX_COUNT; i++) {
if (output[1 + det_size * i + 4] <= conf_thresh) continue;
Yolo::Detection det;
memcpy(&det, &output[1 + det_size * i], det_size * sizeof(float));
if (m.count(det.class_id) == 0) m.emplace(det.class_id, std::vector<Yolo::Detection>());
m[det.class_id].push_back(det);
}
for (auto it = m.begin(); it != m.end(); it++) {
//std::cout << it->second[0].class_id << " --- " << std::endl;
auto& dets = it->second;
std::sort(dets.begin(), dets.end(), cmp);
for (size_t m = 0; m < dets.size(); ++m) {
auto& item = dets[m];
res.push_back(item);
for (size_t n = m + 1; n < dets.size(); ++n) {
if (iou(item.bbox, dets[n].bbox) > nms_thresh) {
dets.erase(dets.begin() + n);
--n;
}
}
}
}
}
// TensorRT weight files have a simple space delimited format:
// [type] [size] <data x size in hex>
std::map<std::string, Weights> loadWeights(const std::string file) {
std::cout << "Loading weights: " << file << std::endl;
std::map<std::string, Weights> weightMap;
// Open weights file
std::ifstream input(file);
assert(input.is_open() && "Unable to load weight file. please check if the .wts file path is right!!!!!!");
// Read number of weight blobs
int32_t count;
input >> count;
assert(count > 0 && "Invalid weight map file.");
while (count--)
{
Weights wt{ DataType::kFLOAT, nullptr, 0 };
uint32_t size;
// Read name and type of blob
std::string name;
input >> name >> std::dec >> size;
wt.type = DataType::kFLOAT;
// Load blob
uint32_t* val = reinterpret_cast<uint32_t*>(malloc(sizeof(val) * size));
for (uint32_t x = 0, y = size; x < y; ++x)
{
input >> std::hex >> val[x];
}
wt.values = val;
wt.count = size;
weightMap[name] = wt;
}
return weightMap;
}
IScaleLayer* addBatchNorm2d(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, std::string lname, float eps) {
float *gamma = (float*)weightMap[lname + ".weight"].values;
float *beta = (float*)weightMap[lname + ".bias"].values;
float *mean = (float*)weightMap[lname + ".running_mean"].values;
float *var = (float*)weightMap[lname + ".running_var"].values;
int len = weightMap[lname + ".running_var"].count;
float *scval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
scval[i] = gamma[i] / sqrt(var[i] + eps);
}
Weights scale{ DataType::kFLOAT, scval, len };
float *shval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
shval[i] = beta[i] - mean[i] * gamma[i] / sqrt(var[i] + eps);
}
Weights shift{ DataType::kFLOAT, shval, len };
float *pval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
pval[i] = 1.0;
}
Weights power{ DataType::kFLOAT, pval, len };
weightMap[lname + ".scale"] = scale;
weightMap[lname + ".shift"] = shift;
weightMap[lname + ".power"] = power;
IScaleLayer* scale_1 = network->addScale(input, ScaleMode::kCHANNEL, shift, scale, power);
assert(scale_1);
return scale_1;
}
ILayer* convBlock(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int outch, int ksize, int s, int g, std::string lname) {
Weights emptywts{ DataType::kFLOAT, nullptr, 0 };
int p = ksize / 3;
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{ ksize, ksize }, weightMap[lname + ".conv.weight"], emptywts);
assert(conv1);
conv1->setStrideNd(DimsHW{ s, s });
conv1->setPaddingNd(DimsHW{ p, p });
conv1->setNbGroups(g);
IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + ".bn", 1e-3);
// silu = x * sigmoid
auto sig = network->addActivation(*bn1->getOutput(0), ActivationType::kSIGMOID);
assert(sig);
auto ew = network->addElementWise(*bn1->getOutput(0), *sig->getOutput(0), ElementWiseOperation::kPROD);
assert(ew);
return ew;
}
ILayer* focus(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int inch, int outch, int ksize, std::string lname) {
ISliceLayer *s1 = network->addSlice(input, Dims3{ 0, 0, 0 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 });
ISliceLayer *s2 = network->addSlice(input, Dims3{ 0, 1, 0 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 });
ISliceLayer *s3 = network->addSlice(input, Dims3{ 0, 0, 1 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 });
ISliceLayer *s4 = network->addSlice(input, Dims3{ 0, 1, 1 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 });
ITensor* inputTensors[] = { s1->getOutput(0), s2->getOutput(0), s3->getOutput(0), s4->getOutput(0) };
auto cat = network->addConcatenation(inputTensors, 4);
auto conv = convBlock(network, weightMap, *cat->getOutput(0), outch, ksize, 1, 1, lname + ".conv");
return conv;
}
ILayer* bottleneck(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, bool shortcut, int g, float e, std::string lname) {
auto cv1 = convBlock(network, weightMap, input, (int)((float)c2 * e), 1, 1, 1, lname + ".cv1");
auto cv2 = convBlock(network, weightMap, *cv1->getOutput(0), c2, 3, 1, g, lname + ".cv2");
if (shortcut && c1 == c2) {
auto ew = network->addElementWise(input, *cv2->getOutput(0), ElementWiseOperation::kSUM);
return ew;
}
return cv2;
}
ILayer* bottleneckCSP(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, int n, bool shortcut, int g, float e, std::string lname) {
Weights emptywts{ DataType::kFLOAT, nullptr, 0 };
int c_ = (int)((float)c2 * e);
auto cv1 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv1");
auto cv2 = network->addConvolutionNd(input, c_, DimsHW{ 1, 1 }, weightMap[lname + ".cv2.weight"], emptywts);
ITensor *y1 = cv1->getOutput(0);
for (int i = 0; i < n; i++) {
auto b = bottleneck(network, weightMap, *y1, c_, c_, shortcut, g, 1.0, lname + ".m." + std::to_string(i));
y1 = b->getOutput(0);
}
auto cv3 = network->addConvolutionNd(*y1, c_, DimsHW{ 1, 1 }, weightMap[lname + ".cv3.weight"], emptywts);
ITensor* inputTensors[] = { cv3->getOutput(0), cv2->getOutput(0) };
auto cat = network->addConcatenation(inputTensors, 2);
IScaleLayer* bn = addBatchNorm2d(network, weightMap, *cat->getOutput(0), lname + ".bn", 1e-4);
auto lr = network->addActivation(*bn->getOutput(0), ActivationType::kLEAKY_RELU);
lr->setAlpha(0.1);
auto cv4 = convBlock(network, weightMap, *lr->getOutput(0), c2, 1, 1, 1, lname + ".cv4");
return cv4;
}
ILayer* C3(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, int n, bool shortcut, int g, float e, std::string lname) {
int c_ = (int)((float)c2 * e);
auto cv1 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv1");
auto cv2 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv2");
ITensor *y1 = cv1->getOutput(0);
for (int i = 0; i < n; i++) {
auto b = bottleneck(network, weightMap, *y1, c_, c_, shortcut, g, 1.0, lname + ".m." + std::to_string(i));
y1 = b->getOutput(0);
}
ITensor* inputTensors[] = { y1, cv2->getOutput(0) };
auto cat = network->addConcatenation(inputTensors, 2);
auto cv3 = convBlock(network, weightMap, *cat->getOutput(0), c2, 1, 1, 1, lname + ".cv3");
return cv3;
}
ILayer* SPP(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, int k1, int k2, int k3, std::string lname) {
int c_ = c1 / 2;
auto cv1 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv1");
auto pool1 = network->addPoolingNd(*cv1->getOutput(0), PoolingType::kMAX, DimsHW{ k1, k1 });
pool1->setPaddingNd(DimsHW{ k1 / 2, k1 / 2 });
pool1->setStrideNd(DimsHW{ 1, 1 });
auto pool2 = network->addPoolingNd(*cv1->getOutput(0), PoolingType::kMAX, DimsHW{ k2, k2 });
pool2->setPaddingNd(DimsHW{ k2 / 2, k2 / 2 });
pool2->setStrideNd(DimsHW{ 1, 1 });
auto pool3 = network->addPoolingNd(*cv1->getOutput(0), PoolingType::kMAX, DimsHW{ k3, k3 });
pool3->setPaddingNd(DimsHW{ k3 / 2, k3 / 2 });
pool3->setStrideNd(DimsHW{ 1, 1 });
ITensor* inputTensors[] = { cv1->getOutput(0), pool1->getOutput(0), pool2->getOutput(0), pool3->getOutput(0) };
auto cat = network->addConcatenation(inputTensors, 4);
auto cv2 = convBlock(network, weightMap, *cat->getOutput(0), c2, 1, 1, 1, lname + ".cv2");
return cv2;
}
ILayer* SPPF(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, int k, std::string lname) {
int c_ = c1 / 2;
auto cv1 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv1");
auto pool1 = network->addPoolingNd(*cv1->getOutput(0), PoolingType::kMAX, DimsHW{ k, k });
pool1->setPaddingNd(DimsHW{ k / 2, k / 2 });
pool1->setStrideNd(DimsHW{ 1, 1 });
auto pool2 = network->addPoolingNd(*pool1->getOutput(0), PoolingType::kMAX, DimsHW{ k, k });
pool2->setPaddingNd(DimsHW{ k / 2, k / 2 });
pool2->setStrideNd(DimsHW{ 1, 1 });
auto pool3 = network->addPoolingNd(*pool2->getOutput(0), PoolingType::kMAX, DimsHW{ k, k });
pool3->setPaddingNd(DimsHW{ k / 2, k / 2 });
pool3->setStrideNd(DimsHW{ 1, 1 });
ITensor* inputTensors[] = { cv1->getOutput(0), pool1->getOutput(0), pool2->getOutput(0), pool3->getOutput(0) };
auto cat = network->addConcatenation(inputTensors, 4);
auto cv2 = convBlock(network, weightMap, *cat->getOutput(0), c2, 1, 1, 1, lname + ".cv2");
return cv2;
}
std::vector<std::vector<float>> getAnchors(std::map<std::string, Weights>& weightMap, std::string lname) {
std::vector<std::vector<float>> anchors;
Weights wts = weightMap[lname + ".anchor_grid"];
int anchor_len = Yolo::CHECK_COUNT * 2;
for (int i = 0; i < wts.count / anchor_len; i++) {
auto *p = (const float*)wts.values + i * anchor_len;
std::vector<float> anchor(p, p + anchor_len);
anchors.push_back(anchor);
}
return anchors;
}
IPluginV2Layer* addYoLoLayer(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, std::string lname, std::vector<IConvolutionLayer*> dets) {
auto creator = getPluginRegistry()->getPluginCreator("YoloLayer_TRT", "1");
auto anchors = getAnchors(weightMap, lname);
PluginField plugin_fields[2];
int netinfo[4] = {Yolo::CLASS_NUM, Yolo::INPUT_W, Yolo::INPUT_H, Yolo::MAX_OUTPUT_BBOX_COUNT};
plugin_fields[0].data = netinfo;
plugin_fields[0].length = 4;
plugin_fields[0].name = "netinfo";
plugin_fields[0].type = PluginFieldType::kFLOAT32;
int scale = 8;
std::vector<Yolo::YoloKernel> kernels;
for (size_t i = 0; i < anchors.size(); i++) {
Yolo::YoloKernel kernel;
kernel.width = Yolo::INPUT_W / scale;
kernel.height = Yolo::INPUT_H / scale;
memcpy(kernel.anchors, &anchors[i][0], anchors[i].size() * sizeof(float));
kernels.push_back(kernel);
scale *= 2;
}
plugin_fields[1].data = &kernels[0];
plugin_fields[1].length = kernels.size();
plugin_fields[1].name = "kernels";
plugin_fields[1].type = PluginFieldType::kFLOAT32;
PluginFieldCollection plugin_data;
plugin_data.nbFields = 2;
plugin_data.fields = plugin_fields;
IPluginV2 *plugin_obj = creator->createPlugin("yololayer", &plugin_data);
std::vector<ITensor*> input_tensors;
for (auto det: dets) {
input_tensors.push_back(det->getOutput(0));
}
auto yolo = network->addPluginV2(&input_tensors[0], input_tensors.size(), *plugin_obj);
return yolo;
}
#endif