forked from OpenGVLab/InternImage
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mask_rcnn_internimage_b_fpn_3x_coco.py
92 lines (92 loc) · 3.43 KB
/
mask_rcnn_internimage_b_fpn_3x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# --------------------------------------------------------
# InternImage
# Copyright (c) 2022 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
_base_ = [
'../_base_/models/mask_rcnn_r50_fpn.py',
'../_base_/datasets/coco_instance.py',
'../_base_/schedules/schedule_3x.py',
'../_base_/default_runtime.py'
]
pretrained = 'https://huggingface.co/OpenGVLab/InternImage/resolve/main/internimage_b_1k_224.pth'
model = dict(
backbone=dict(
_delete_=True,
type='InternImage',
core_op='DCNv3',
channels=112,
depths=[4, 4, 21, 4],
groups=[7, 14, 28, 56],
mlp_ratio=4.,
drop_path_rate=0.4,
norm_layer='LN',
layer_scale=1.0,
offset_scale=1.0,
post_norm=True,
with_cp=False,
out_indices=(0, 1, 2, 3),
init_cfg=dict(type='Pretrained', checkpoint=pretrained)),
neck=dict(
type='FPN',
in_channels=[112, 224, 448, 896],
out_channels=256,
num_outs=5))
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
# augmentation strategy originates from DETR / Sparse RCNN
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='AutoAugment',
policies=[
[
dict(type='Resize',
img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333),
(608, 1333), (640, 1333), (672, 1333), (704, 1333),
(736, 1333), (768, 1333), (800, 1333)],
multiscale_mode='value',
keep_ratio=True)
],
[
dict(type='Resize',
img_scale=[(400, 1333), (500, 1333), (600, 1333)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomCrop',
crop_type='absolute_range',
crop_size=(384, 600),
allow_negative_crop=True),
dict(type='Resize',
img_scale=[(480, 1333), (512, 1333), (544, 1333),
(576, 1333), (608, 1333), (640, 1333),
(672, 1333), (704, 1333), (736, 1333),
(768, 1333), (800, 1333)],
multiscale_mode='value',
override=True,
keep_ratio=True)
]
]),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
# By default, models are trained on 8 GPUs with 2 images per GPU
data = dict(
samples_per_gpu=2,
train=dict(pipeline=train_pipeline))
optimizer = dict(
_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.05,
constructor='CustomLayerDecayOptimizerConstructor',
paramwise_cfg=dict(num_layers=33, layer_decay_rate=1.0,
depths=[4, 4, 21, 4]))
optimizer_config = dict(grad_clip=None)
# fp16 = dict(loss_scale=dict(init_scale=512))
evaluation = dict(save_best='auto')
checkpoint_config = dict(
interval=1,
max_keep_ckpts=3,
save_last=True,
)