All the accuracy (ACC) are the trained models do inference on un-seen validation data, not the training accuracy.
Dataset | Model | Epochs | Optimizer | Top-1 ACC | Top-5 ACC | Pretrain | Augmentation type |
---|---|---|---|---|---|---|---|
FOOD2K | PRENet-ResNet50 | N/A | ongoing |
83.03 | 97.21 | ongoing |
ongoing |
FOOD2K | Inception V4 | N/A | ongoing |
82.02 | 96.45 | ongoing |
ongoing |
FOOD2K | VGG16 | N/A | ongoing |
78.96 | 95.26 | ongoing |
ongoing |
Dataset | Model | Epochs | Optimizer | Top-1 ACC | Top-5 ACC | Pretrain | Augmentation type |
---|---|---|---|---|---|---|---|
Taiwanese Food-101 | MobileFormer_508M | 100 | AdamW | 95.15 | 99.52 | imagenet-1k | Basic |
Taiwanese Food-101 | PRENet-ResNet50 | 100 | SGD | 94.59 | 99.49 | food2K | Basic |
Taiwanese Food-101 | PVTv2-B2-Linear | 100 | AdamW | 94.51 | 99.45 | imagenet-1k | Basic |
Taiwanese Food-101 | ConvNeXtv2_nano | 100 | AdamW | 94.04 | 99.29 | imagenet-1k | Basic |
Taiwanese Food-101 | ResNet50 | 100 | AdamW | 93.96 | 99.58 | imagenet-1k | Basic |
Taiwanese Food-101 | ConvNeXtv2_femto | 100 | AdamW | 93.21 | 99.19 | imagenet-1k | Basic |
Taiwanese Food-101 | MobileFormer_96M | 100 | AdamW | 93.01 | 99.25 | imagenet-1k | Basic |
Taiwanese Food-101 | Inception V4 | 100 | SGD | 92.14 | 99.01 | imagenet-1k | Basic |
Taiwanese Food-101 | mobilenetv3_large_100 | 100 | AdamW | 91.66 | 98.97 | imagenet-1k | Basic |
Taiwanese Food-101 | mobileViT v2 | 100 | AdamW | 89.98 | 98.46 | imagenet-1k | Basic |
Taiwanese Food-101 | efficientNetv3 Large | 100 | AdamW | 84.89 | 96.40 | imagenet-1k | Basic |
Taiwanese Food-101 | efficient ViT_MIT | 100 | AdamW | 82.32 | 95.78 | imagenet-1k | Basic |
Taiwanese Food-101 | RepViT_m2.3 | 100 | AdamW | 76.53 | 93.80 | imagenet-1k | Basic |
Taiwanese Food-101 | RepViT_m0.9 | 100 | AdamW | 75.01 | 93.49 | imagenet-1k | Basic |
Taiwanese Food-101 | VGG16 | N/A | SGD | 67.65 | 89.33 | imagenet-1k | Basic |
Dataset | Model | Epochs | Optimizer | Top-1 ACC | Top-5 ACC | Pretrain | Augmentation type |
---|---|---|---|---|---|---|---|
FOOD2K-TW | PRENet-ResNet50 | N/A | ongoing |
ongoing |
ongoing |
ongoing |
ongoing |
FOOD2K-TW | Inception V4 | 100 | SGD | 81.43 | 96.28 | imagenet-1k | Basic |
FOOD2K-TW | VGG16 | N/A | ongoing |
ongoing |
ongoing |
ongoing |
ongoing |
Dataset | Model | Epochs | Optimizer | Top-1 ACC | Top-5 ACC | Pretrain | Augmentation type |
---|---|---|---|---|---|---|---|
Taiwanese Food-101 | convnextv2_huge.fcmae_ft_in1k | 15 | AdamW | 1.02 | 0.99 | imagenet-1k | Normal |
Type | Detail |
---|---|
Basic | RandomHorizontalFlip(p=0.5) + RandomRotation(degrees=15) + ColorJitter(brightness=0.126, saturation=0.5) + Resize((550, 550)) + RandomCrop(448) |
Dataset | Classes/Images | paper | dataset | Data Aviliable? |
---|---|---|---|---|
Taiwanese-Food-101 | 101/20,200 | N/A (only master Thesis) | dataset | Yes |
UEC Food256 | 256/25,088 | paper | dataset | Yes |
ETH Food-101 | 101/101,000 | paper | dataset | Yes |
Vireo Food-172 | 172/110,241 | paper | dataset | Need to email |
Food524DB | 524/247,636 | paper | dataset | Yes, but .mat format |
CNFOOD-241 | 241/191,811 | paper | dataset | Yes |
ChineseFoodNet | 208/192,000 | paper | dataset | Link is dead, email didnot response |
Sushi-50 | 50/3,963 | paper | dataset | Yes |
ISIA Food-500 | 500/399,726 | paper | dataset | Yes |
Food2K | 2,000/1,036,564 | paper | dataset | Need to email. Yes |
TaiwaneseFood101 https://www.kaggle.com/datasets/kuantinglai/taiwanese-food-101/data
https://arxiv.org/abs/2301.10936 https://www.kaggle.com/datasets/zachaluza/cnfood-241 https://universe.roboflow.com/search?q=class%3Adumpling https://universe.roboflow.com/search?q=class%253Apork&p=1 https://ieeexplore.ieee.org/document/9214438 https://www.researchgate.net/publication/372133738_Deep_Learning_for_Food_Image_Recognition_and_Nutrition_Analysis_Towards_Chronic_Diseases_Monitoring_A_Systematic_Review https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22111NYPI0294006%22.&searchmode=basic