-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
438 lines (375 loc) · 18.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
from PIL import Image
from os.path import join
import imageio
from torch import nn
from torch.nn.modules.linear import Linear
from torch.utils.data import Dataset
from tqdm import tqdm
import numpy as np
import os,sys,os.path
import pandas as pd
import pickle
import pydicom
import collections
import pprint
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms.functional as TF
import warnings
import tarfile
import zipfile
import random
from skimage.io import imread, imsave
from skimage.transform import resize
import time
import math
from sklearn.cluster import KMeans
import scipy
import torch.optim as optim
import copy
from scipy.optimize import linear_sum_assignment as linear_assignment
import torchvision.transforms as transforms
from tensorboardX import SummaryWriter
import hashlib
import argparse
# import models and data from code
# from option import args_parser
from utils import Accuracy,GenData,ConcatDataset,getLocalMeans_global,getLocalMeans, getLocalMean, reparameterize,save_decoded_image, LocalGenerate,DatasetSplit
from models import CIFAR_CNN,CIFAR_VAE,FMNIST_CNN,FMNIST_VAE
from sampling import LocalDataset, LocalDataloaders, average_weights,partition_data,partition_data_FMNIST, partition_data_cifar100, LocalDataloaders_sample,partition_data
from Localupdate import LocalUpdate
torch.set_default_dtype(torch.float64)
torch.cuda.is_available()
os.environ['CUDA_VISIBLE_DEVICES'] = '4,5,6,7'
device = torch.device(f'cuda:{4}' if torch.cuda.is_available() else 'cpu')
np.set_printoptions(threshold=np.inf)
parser = argparse.ArgumentParser()
#Data specifc paremeters
parser.add_argument('--dataset', type=str, default='CIFAR10',
help='CIFAR10, CIFAR100, FMNIST')
#Training specifc parameters
parser.add_argument('--log_frq', type=int, default=5,
help='frequency of logging')
parser.add_argument('--batch_size', type=int, default=64,
help='minibatch size')
parser.add_argument('--num_epochs', type=int, default=50,
help='number of epochs')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate')
parser.add_argument('--lr_sh_rate', type=int, default=10,
help='number of steps to drop the lr')
parser.add_argument('--dropout_rate', type=float, default=0.2,
help='drop out rate for training')
parser.add_argument('--tag', type=str, default='centralized',
help='centralized, federated')
parser.add_argument('--num_users', type=int, default=10,
help='number of local models')
parser.add_argument('--update_frac', type=float, default=1,
help='frac of local models to update')
parser.add_argument('--local_ep', type=int, default=5,
help='iterations of local updating')
parser.add_argument('--beta', type=float, default=0.5,
help='beta for non-iid distribution')
parser.add_argument('--seed', type=int,default=0,
help='random seed for generating datasets')
parser.add_argument('--mini', type=float, default=1,
help='sample rate of each local data')
parser.add_argument('--moon_mu', type=int, default=5,
help='weight for moon term')
parser.add_argument('--moon_temp', type=float, default=0.5,
help='temperture for moon')
parser.add_argument('--prox_mu', type=float, default=0.001,
help='weight for prox term')
parser.add_argument('--pretrain', type=int, default=20,
help='pretrain epochs for vae')
parser.add_argument('--gen_num', type=int, default=50,
help='number of generating images')
parser.add_argument('--std', type=int, default=4,
help='std for generating means')
parser.add_argument('--inputsize', type=int, default=32,
help='input size')
parser.add_argument('--inputchannel', type=int, default=3,
help='input channel')
parser.add_argument('--classes', type=int, default=10,
help='number of classes')
parser.add_argument('--code_len', type=int,default=32,
help='length of code')
parser.add_argument('--alg', type=str, default='FedAvg',
help='FedAvg, FedProx, Moon, FedVAE, DPMS, FedMix')
parser.add_argument('--eval_only',action="store_true", default=False,help='evaluate the model')
parser.add_argument('--vae_mu',type=float, default=0.05,
help='parameter for vae term')
parser.add_argument('--fedmix_lam',type=float, default=0.05,
help='parameter for fedmix lambda')
args = parser.parse_args()
# args = args_parser()
args.tag = 'federated'
args_hash = ''
for k,v in vars(args).items():
if k == 'eval_only':
continue
args_hash += str(k)+str(v)
args_hash = hashlib.sha256(args_hash.encode()).hexdigest()
if args.dataset == 'CIFAR10':
train_dataset,testset, dict_users, traindata_cls_counts = partition_data(n_users = args.num_users, alpha=args.beta,rand_seed = args.seed)
args.inputsize = 32
args.inputchannel = 3
args.classes = 10
elif args.dataset == 'CIFAR100':
train_dataset,testset, dict_users, traindata_cls_counts = partition_data_cifar100(n_users = args.num_users, alpha=args.beta,rand_seed = args.seed)
args.inputsize = 32
args.inputchannel = 3
args.classes = 100
elif args.dataset == 'FMNIST':
train_dataset,testset, dict_users, traindata_cls_counts = partition_data_FMNIST(n_users = args.num_users, alpha=args.beta,rand_seed = args.seed)
args.inputsize = 28
args.inputchannel = 1
args.classes = 10
Loaders_train = LocalDataloaders_sample(train_dataset,dict_users,args.batch_size,ShuffleorNot = True, mini=args.mini)
Major_need_classes = []
Major_classes = []
Total_classes = []
if args.dataset == 'CIFAR10' or args.dataset == 'FMNIST':
for idx in range(args.num_users):
counts = [0]*10
for batch_idx,(X,y) in enumerate(Loaders_train[idx]):
batch = len(y)
y = np.array(y)
for i in range(batch):
counts[int(y[i])] += 1
counts = np.array(counts)
major_need_classes = counts.argsort()[::-1][7:]
major_classes = counts.argsort()[::-1][0:3]
Total_classes.append(counts/np.sum(counts))
Major_need_classes.append(major_need_classes)
Major_classes.append(major_classes)
if args.dataset == 'CIFAR100':
for idx in range(args.num_users):
counts = [0]*100
for batch_idx,(X,y) in enumerate(Loaders_train[idx]):
batch = len(y)
y = np.array(y)
for i in range(batch):
counts[int(y[i])] += 1
counts = np.array(counts)
major_need_classes = counts.argsort()[::-1][90:]
major_classes = counts.argsort()[::-1][0:10]
Total_classes.append(counts/np.sum(counts))
Major_need_classes.append(major_need_classes)
Major_classes.append(major_classes)
if args.alg == 'FedMix':
images_means, labels_means = torch.Tensor().to(device), torch.Tensor().to(device)
for idx in range(args.num_users):
local_gen = LocalGenerate(args=args, dataset=train_dataset, idxs=dict_users[idx],device = device)
images_mean, labels_mean = local_gen.generate()
images_means = torch.cat([images_means, images_mean], dim=0)
labels_means = torch.cat([labels_means, labels_mean], dim=0)
L2D = np.zeros((args.num_users,args.num_users))
for i in range(args.num_users):
for j in range(args.num_users):
common = np.intersect1d(Major_need_classes[i], Major_classes[j])
L2D[i,j] = len(common)
if args.alg == 'FedAvg' or args.alg == 'FedProx' or args.alg == 'Moon' or args.alg == 'FedMix':
if args.dataset == 'FMNIST':
global_model = FMNIST_CNN(in_channels=args.inputchannel,input_shape=[args.inputsize,args.inputsize],code_length=args.code_len, classes = args.classes,drop_rate=args.dropout_rate)
else:
global_model = CIFAR_CNN(in_channels=args.inputchannel,input_shape=[args.inputsize,args.inputsize],code_length=args.code_len, classes = args.classes,drop_rate=args.dropout_rate)
elif args.alg == 'FedVAE' or args.alg == 'DPMS':
if args.dataset == 'FMNIST':
global_model = FMNIST_VAE(in_channels=args.inputchannel,input_shape=[args.inputsize,args.inputsize],code_length=args.code_len, classes = args.classes,drop_rate=args.dropout_rate,decoder = True)
else:
global_model = CIFAR_VAE(in_channels=args.inputchannel,input_shape=[args.inputsize,args.inputsize],code_length=args.code_len, classes = args.classes,drop_rate=args.dropout_rate,decoder = True)
print('# model parameters:', sum(param.numel() for param in global_model.parameters()))
# use multi-GPU to train parallelly
global_model = nn.DataParallel(global_model, device_ids = [4,5,6,7])
global_model.to(device)
for m in global_model.modules():
if isinstance(m, (nn.Conv2d, nn.Linear)):
nn.init.xavier_uniform_(m.weight, gain=nn.init.calculate_gain('relu'))
logger = SummaryWriter('./logs')
checkpoint_dir = './checkpoint/'+args.tag+'/'+args.dataset+'/'
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
# training:
global_weights = global_model.state_dict()
loader_test = torch.utils.data.DataLoader(testset, batch_size=64,shuffle=True, num_workers=2)
ACC = []
metrics = {'accuracy':ACC, 'max_accuracy':0, 'time':0}
start_time = time.time()
print(args)
if not args.eval_only:
if args.alg == 'DPMS':
# pre-training
Local_models = []
for idx in range(args.num_users):
Local_models.append(copy.deepcopy(global_model))
for epoch in tqdm(range(args.pretrain)):
local_weights, local_losses = [], []
print(f'\n | Global Training Round : {epoch+1} |\n')
global_model.train()
m = max(int(args.update_frac * args.num_users), 1)
idxs_users = np.random.choice(range(args.num_users), m, replace=False)
for idx in idxs_users:
local_model = LocalUpdate(args,Loaders_train[idx], idxs=dict_users[idx], logger=logger)
w, loss = local_model.update_weights(
model=Local_models[idx], global_round=epoch, u=args.vae_mu, device=device)
local_weights.append(copy.deepcopy(w))
local_losses.append(copy.deepcopy(loss))
# Local_Models[idx].load_state_dict(local_weights)
# update global weights
global_weights = average_weights(local_weights)
global_model.load_state_dict(global_weights)
Encoder = {}
Classifier = {}
for key,param in global_weights.items():
if 'Encoder' in key:
Encoder[key] = param
if 'Classifier' in key or 'Mu' in key or 'Var' in key:
Classifier[key] = param
for idx in range(args.num_users):
local_Encoder = Encoder.copy()
local_Classifier = Classifier.copy()
local_Decoder = {}
for key,param in Local_models[idx].state_dict().items():
if 'Decoder' in key:
local_Decoder[key] = param
local_Encoder.update(local_Decoder)
local_Encoder.update(local_Classifier)
Local_models[idx].load_state_dict(local_Encoder)
accuracy = 0
count = 0
global_model.eval()
for cnt, (X,y) in enumerate(loader_test):
X = X.to(device)
m = torch.nn.Sigmoid()
X = m(X)
y = y.double().to(device)
mu,logVar,p,_X = global_model(X)
y_pred = p.argmax(1)
accuracy += Accuracy(y,y_pred)
count += 1
print("accuracy of test at this round:",accuracy/count)
ACC.append(accuracy/count)
Models = []
for idx in range(args.num_users):
model = copy.deepcopy(global_model)
model.load_state_dict(local_weights[idx])
model.to(device)
Models.append(model)
print("Generate new dataset...")
Loaders_train = LocalDataloaders_sample(train_dataset,dict_users,args.batch_size,ShuffleorNot = True, mini=args.mini)
Means,Vars = getLocalMeans(copy.deepcopy(Models),Loaders_train,args.num_users,Major_classes,device)
# Means,Vars = getLocalMeans_global(copy.deepcopy(global_model),Loaders_train,args.num_users,Major_classes,device)
loaders_gen = []
for idx in range(args.num_users):
match_index = np.argmax(L2D[idx])
gen_num = args.gen_num
std = args.std
dataset_gen = GenData(args, copy.deepcopy(global_model),copy.deepcopy(Models[match_index]),Means[match_index],Vars[match_index],Major_classes[match_index],gen_num,std,device,idx)
# dataset_gen = GenData(args, copy.deepcopy(global_model),copy.deepcopy(global_model),Means[match_index],Vars[match_index],Major_classes[match_index],gen_num,std,device,idx)
loader_gen = torch.utils.data.DataLoader(
dataset_gen,
batch_size=args.batch_size,
shuffle =True)
loaders_gen.append(loader_gen)
print("Generation done...")
Merge_loaders = []
for idx in range(args.num_users):
merge_dataset = ConcatDataset(Loaders_train[idx],loaders_gen[idx],device)
merge_loader = torch.utils.data.DataLoader(merge_dataset, batch_size=args.batch_size,shuffle=True)
Merge_loaders.append(merge_loader)
global_model.module.setDecoder(False)
for param in global_model.module.Decoder.parameters():
param.requires_grad = False
# training
for epoch in tqdm(range(args.pretrain,args.num_epochs)):
local_weights, local_losses = [], []
print(f'\n | Global Training Round : {epoch+1} |\n')
global_model.train()
m = max(int(args.update_frac * args.num_users), 1)
idxs_users = np.random.choice(range(args.num_users), m, replace=False)
for idx in idxs_users:
local_model = LocalUpdate(args, Merge_loaders[idx], idxs=dict_users[idx], logger=logger)
w, loss = local_model.update_weights_VAEtoCNN(
model=copy.deepcopy(global_model), global_round=epoch, u=args.vae_mu, device=device)
local_weights.append(copy.deepcopy(w))
local_losses.append(copy.deepcopy(loss))
# update global weights
global_weights = average_weights(local_weights)
# update global weights
global_model.load_state_dict(global_weights)
accuracy = 0
count = 0
global_model.eval()
for cnt, (X,y) in enumerate(loader_test):
X = X.to(device)
m = torch.nn.Sigmoid()
X = m(X)
y = y.double().to(device)
p = global_model(X)
y_pred = p.argmax(1)
accuracy += Accuracy(y,y_pred)
count += 1
print("accuracy of test at this round:",accuracy/count)
ACC.append(accuracy/count)
else:
Local_Weights = []
for epoch in tqdm(range(args.num_epochs)):
local_weights, local_losses = [], []
print(f'\n | Global Training Round : {epoch+1} |\n')
global_model.train()
m = max(int(args.update_frac * args.num_users), 1)
idxs_users = np.random.choice(range(args.num_users), m, replace=False)
for idx in idxs_users:
local_model = LocalUpdate(args,Loaders_train[idx], idxs=dict_users[idx], logger=logger)
if args.alg == 'FedAvg':
w, loss = local_model.update_weights_CNN(model=copy.deepcopy(global_model), global_round=epoch, device=device)
if args.alg == 'FedProx':
w, loss = local_model.update_weights_prox(model=copy.deepcopy(global_model), global_round=epoch, mu = args.prox_mu, device=device)
if args.alg == 'Moon':
if len(Local_Weights)== 0:
w, loss = local_model.update_weights_CNN(model=copy.deepcopy(global_model), global_round=epoch, device=device)
else:
w, loss = local_model.update_weights_moon(
model=copy.deepcopy(global_model),previous_model_weight=copy.deepcopy(Local_Weights[epoch-1][idx]),temperature = args.moon_temp , global_round=epoch, mu = args.moon_mu, device=device)
if args.alg == 'FedVAE':
w, loss = local_model.update_weights(model=copy.deepcopy(global_model), global_round=epoch, u=args.vae_mu,device=device)
if args.alg == 'FedMix':
w, loss = local_model.update_weights_fedmix(model=copy.deepcopy(global_model), global_round=epoch, images_means=images_means, labels_means=labels_means,lam = args.fedmix_lam, device=device)
local_weights.append(copy.deepcopy(w))
local_losses.append(copy.deepcopy(loss))
Local_Weights.append(local_weights)
# update global weights
global_weights = average_weights(local_weights)
# update global weights
global_model.load_state_dict(global_weights)
accuracy = 0
cnt = 0
global_model.eval()
for cnt, (X,y) in enumerate(loader_test):
X = X.to(device)
y = y.double().to(device)
if args.alg == 'FedAvg' or args.alg == 'Moon' or args.alg == 'FedProx' or args.alg == 'FedMix':
p = global_model(X)
else:
m = torch.nn.Sigmoid()
X = m(X)
mu,logVar,p,_X = global_model(X)
y_pred = p.argmax(1).double()
accuracy += Accuracy(y,y_pred)
cnt += 1
print("accuracy of test at this round:",accuracy/cnt)
ACC.append(accuracy/cnt)
max_acc = max(ACC)
end_time = time.time()
print('max accuracy:', max_acc)
print('running time: ', end_time - start_time)
metrics['max_accuracy'] = max_acc
metrics['time'] = end_time - start_time
torch.save(global_model.state_dict(),checkpoint_dir+args_hash+'_model.pth')
with open(checkpoint_dir+args_hash+'_metrics.pkl', 'wb') as fp:
pickle.dump(metrics, fp)
else:
metrics = pickle.load(open(checkpoint_dir+args_hash+'_metrics.pkl', 'rb'))
print(metrics)