From d7e135a03056e1f8b240f1c8ff5616774b8c3198 Mon Sep 17 00:00:00 2001 From: Andrew Krieger Date: Fri, 17 Jan 2025 09:21:22 -0800 Subject: [PATCH] Commit zstd source and license to notices zstd copied from commit c8243b472479ae4d64c5b684cd8abe1984588597 of https://github.com/facebook/zstd --- LICENSE.txt | 33 + src/third-party/zstd/BUCK | 232 + src/third-party/zstd/LICENSE | 30 + src/third-party/zstd/README.md | 241 + src/third-party/zstd/common/allocations.h | 55 + src/third-party/zstd/common/bits.h | 208 + src/third-party/zstd/common/bitstream.h | 449 + src/third-party/zstd/common/compiler.h | 477 + src/third-party/zstd/common/cpu.h | 249 + src/third-party/zstd/common/debug.c | 30 + src/third-party/zstd/common/debug.h | 107 + src/third-party/zstd/common/entropy_common.c | 340 + src/third-party/zstd/common/error_private.c | 64 + src/third-party/zstd/common/error_private.h | 158 + src/third-party/zstd/common/fse.h | 625 ++ src/third-party/zstd/common/fse_decompress.c | 315 + src/third-party/zstd/common/huf.h | 277 + src/third-party/zstd/common/mem.h | 422 + src/third-party/zstd/common/pool.c | 371 + src/third-party/zstd/common/pool.h | 81 + .../zstd/common/portability_macros.h | 158 + src/third-party/zstd/common/threading.c | 182 + src/third-party/zstd/common/threading.h | 142 + src/third-party/zstd/common/xxhash.c | 18 + src/third-party/zstd/common/xxhash.h | 7094 +++++++++++++++ src/third-party/zstd/common/zstd_common.c | 48 + src/third-party/zstd/common/zstd_deps.h | 123 + src/third-party/zstd/common/zstd_internal.h | 324 + src/third-party/zstd/common/zstd_trace.h | 156 + src/third-party/zstd/compress/clevels.h | 134 + src/third-party/zstd/compress/fse_compress.c | 625 ++ src/third-party/zstd/compress/hist.c | 191 + src/third-party/zstd/compress/hist.h | 82 + src/third-party/zstd/compress/huf_compress.c | 1464 +++ src/third-party/zstd/compress/zstd_compress.c | 7837 +++++++++++++++++ .../zstd/compress/zstd_compress_internal.h | 1636 ++++ .../zstd/compress/zstd_compress_literals.c | 235 + .../zstd/compress/zstd_compress_literals.h | 39 + .../zstd/compress/zstd_compress_sequences.c | 442 + .../zstd/compress/zstd_compress_sequences.h | 55 + .../zstd/compress/zstd_compress_superblock.c | 688 ++ .../zstd/compress/zstd_compress_superblock.h | 32 + src/third-party/zstd/compress/zstd_cwksp.h | 765 ++ .../zstd/compress/zstd_double_fast.c | 778 ++ .../zstd/compress/zstd_double_fast.h | 42 + src/third-party/zstd/compress/zstd_fast.c | 985 +++ src/third-party/zstd/compress/zstd_fast.h | 30 + src/third-party/zstd/compress/zstd_lazy.c | 2199 +++++ src/third-party/zstd/compress/zstd_lazy.h | 193 + src/third-party/zstd/compress/zstd_ldm.c | 731 ++ src/third-party/zstd/compress/zstd_ldm.h | 109 + .../zstd/compress/zstd_ldm_geartab.h | 106 + src/third-party/zstd/compress/zstd_opt.c | 1580 ++++ src/third-party/zstd/compress/zstd_opt.h | 72 + src/third-party/zstd/compress/zstd_preSplit.c | 238 + src/third-party/zstd/compress/zstd_preSplit.h | 33 + .../zstd/compress/zstdmt_compress.c | 1882 ++++ .../zstd/compress/zstdmt_compress.h | 102 + .../zstd/decompress/huf_decompress.c | 1944 ++++ .../zstd/decompress/huf_decompress_amd64.S | 595 ++ src/third-party/zstd/decompress/zstd_ddict.c | 244 + src/third-party/zstd/decompress/zstd_ddict.h | 44 + .../zstd/decompress/zstd_decompress.c | 2409 +++++ .../zstd/decompress/zstd_decompress_block.c | 2215 +++++ .../zstd/decompress/zstd_decompress_block.h | 73 + .../decompress/zstd_decompress_internal.h | 240 + src/third-party/zstd/zdict.h | 481 + src/third-party/zstd/zstd.h | 3198 +++++++ src/third-party/zstd/zstd_errors.h | 107 + 69 files changed, 47864 insertions(+) create mode 100644 src/third-party/zstd/BUCK create mode 100644 src/third-party/zstd/LICENSE create mode 100644 src/third-party/zstd/README.md create mode 100644 src/third-party/zstd/common/allocations.h create mode 100644 src/third-party/zstd/common/bits.h create mode 100644 src/third-party/zstd/common/bitstream.h create mode 100644 src/third-party/zstd/common/compiler.h create mode 100644 src/third-party/zstd/common/cpu.h create mode 100644 src/third-party/zstd/common/debug.c create mode 100644 src/third-party/zstd/common/debug.h create mode 100644 src/third-party/zstd/common/entropy_common.c create mode 100644 src/third-party/zstd/common/error_private.c create mode 100644 src/third-party/zstd/common/error_private.h create mode 100644 src/third-party/zstd/common/fse.h create mode 100644 src/third-party/zstd/common/fse_decompress.c create mode 100644 src/third-party/zstd/common/huf.h create mode 100644 src/third-party/zstd/common/mem.h create mode 100644 src/third-party/zstd/common/pool.c create mode 100644 src/third-party/zstd/common/pool.h create mode 100644 src/third-party/zstd/common/portability_macros.h create mode 100644 src/third-party/zstd/common/threading.c create mode 100644 src/third-party/zstd/common/threading.h create mode 100644 src/third-party/zstd/common/xxhash.c create mode 100644 src/third-party/zstd/common/xxhash.h create mode 100644 src/third-party/zstd/common/zstd_common.c create mode 100644 src/third-party/zstd/common/zstd_deps.h create mode 100644 src/third-party/zstd/common/zstd_internal.h create mode 100644 src/third-party/zstd/common/zstd_trace.h create mode 100644 src/third-party/zstd/compress/clevels.h create mode 100644 src/third-party/zstd/compress/fse_compress.c create mode 100644 src/third-party/zstd/compress/hist.c create mode 100644 src/third-party/zstd/compress/hist.h create mode 100644 src/third-party/zstd/compress/huf_compress.c create mode 100644 src/third-party/zstd/compress/zstd_compress.c create mode 100644 src/third-party/zstd/compress/zstd_compress_internal.h create mode 100644 src/third-party/zstd/compress/zstd_compress_literals.c create mode 100644 src/third-party/zstd/compress/zstd_compress_literals.h create mode 100644 src/third-party/zstd/compress/zstd_compress_sequences.c create mode 100644 src/third-party/zstd/compress/zstd_compress_sequences.h create mode 100644 src/third-party/zstd/compress/zstd_compress_superblock.c create mode 100644 src/third-party/zstd/compress/zstd_compress_superblock.h create mode 100644 src/third-party/zstd/compress/zstd_cwksp.h create mode 100644 src/third-party/zstd/compress/zstd_double_fast.c create mode 100644 src/third-party/zstd/compress/zstd_double_fast.h create mode 100644 src/third-party/zstd/compress/zstd_fast.c create mode 100644 src/third-party/zstd/compress/zstd_fast.h create mode 100644 src/third-party/zstd/compress/zstd_lazy.c create mode 100644 src/third-party/zstd/compress/zstd_lazy.h create mode 100644 src/third-party/zstd/compress/zstd_ldm.c create mode 100644 src/third-party/zstd/compress/zstd_ldm.h create mode 100644 src/third-party/zstd/compress/zstd_ldm_geartab.h create mode 100644 src/third-party/zstd/compress/zstd_opt.c create mode 100644 src/third-party/zstd/compress/zstd_opt.h create mode 100644 src/third-party/zstd/compress/zstd_preSplit.c create mode 100644 src/third-party/zstd/compress/zstd_preSplit.h create mode 100644 src/third-party/zstd/compress/zstdmt_compress.c create mode 100644 src/third-party/zstd/compress/zstdmt_compress.h create mode 100644 src/third-party/zstd/decompress/huf_decompress.c create mode 100644 src/third-party/zstd/decompress/huf_decompress_amd64.S create mode 100644 src/third-party/zstd/decompress/zstd_ddict.c create mode 100644 src/third-party/zstd/decompress/zstd_ddict.h create mode 100644 src/third-party/zstd/decompress/zstd_decompress.c create mode 100644 src/third-party/zstd/decompress/zstd_decompress_block.c create mode 100644 src/third-party/zstd/decompress/zstd_decompress_block.h create mode 100644 src/third-party/zstd/decompress/zstd_decompress_internal.h create mode 100644 src/third-party/zstd/zdict.h create mode 100644 src/third-party/zstd/zstd.h create mode 100644 src/third-party/zstd/zstd_errors.h diff --git a/LICENSE.txt b/LICENSE.txt index 3781899b7671e..8f0b3df803a90 100644 --- a/LICENSE.txt +++ b/LICENSE.txt @@ -45,3 +45,36 @@ libbacktrace is licensed under a BSD license (https://github.com/ianlancetaylor/ # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING # IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. + +zstd is licensed under a BSD license. The full license text is as follows: + +BSD License + +For Zstandard software + +Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the name Facebook, nor Meta, nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/src/third-party/zstd/BUCK b/src/third-party/zstd/BUCK new file mode 100644 index 0000000000000..60c6bbb54d912 --- /dev/null +++ b/src/third-party/zstd/BUCK @@ -0,0 +1,232 @@ +cxx_library( + name='zstd', + header_namespace='', + exported_headers=['zstd.h'], + visibility=['PUBLIC'], + deps=[ + ':common', + ':compress', + ':decompress', + ':deprecated', + ], +) + +cxx_library( + name='compress', + header_namespace='', + visibility=['PUBLIC'], + exported_headers=subdir_glob([ + ('compress', 'zstd*.h'), + ]), + srcs=glob(['compress/zstd*.c', 'compress/hist.c']), + deps=[':common'], +) + +cxx_library( + name='decompress', + header_namespace='', + visibility=['PUBLIC'], + headers=subdir_glob([ + ('decompress', '*_impl.h'), + ]), + srcs=glob(['decompress/zstd*.c']), + deps=[ + ':common', + ':legacy', + ], +) + +cxx_library( + name='deprecated', + header_namespace='', + visibility=['PUBLIC'], + exported_headers=subdir_glob([ + ('deprecated', '*.h'), + ]), + srcs=glob(['deprecated/*.c']), + deps=[':common'], +) + +cxx_library( + name='legacy', + header_namespace='', + visibility=['PUBLIC'], + exported_headers=subdir_glob([ + ('legacy', '*.h'), + ]), + srcs=glob(['legacy/*.c']), + deps=[':common'], + exported_preprocessor_flags=[ + '-DZSTD_LEGACY_SUPPORT=4', + ], +) + +cxx_library( + name='zdict', + header_namespace='', + visibility=['PUBLIC'], + exported_headers=['zdict.h'], + headers=subdir_glob([ + ('dictBuilder', 'divsufsort.h'), + ('dictBuilder', 'cover.h'), + ]), + srcs=glob(['dictBuilder/*.c']), + deps=[':common'], +) + +cxx_library( + name='compiler', + header_namespace='', + visibility=['PUBLIC'], + exported_headers=subdir_glob([ + ('common', 'compiler.h'), + ]), +) + +cxx_library( + name='cpu', + header_namespace='', + visibility=['PUBLIC'], + exported_headers=subdir_glob([ + ('common', 'cpu.h'), + ]), +) + +cxx_library( + name='bitstream', + header_namespace='', + visibility=['PUBLIC'], + exported_headers=subdir_glob([ + ('common', 'bitstream.h'), + ]), +) + +cxx_library( + name='entropy', + header_namespace='', + visibility=['PUBLIC'], + exported_headers=subdir_glob([ + ('common', 'fse.h'), + ('common', 'huf.h'), + ]), + srcs=[ + 'common/entropy_common.c', + 'common/fse_decompress.c', + 'compress/fse_compress.c', + 'compress/huf_compress.c', + 'decompress/huf_decompress.c', + ], + deps=[ + ':debug', + ':bitstream', + ':compiler', + ':errors', + ':mem', + ], +) + +cxx_library( + name='errors', + header_namespace='', + visibility=['PUBLIC'], + exported_headers=[ + 'zstd_errors.h', + 'common/error_private.h', + ] + srcs=['common/error_private.c'], +) + +cxx_library( + name='mem', + header_namespace='', + visibility=['PUBLIC'], + exported_headers=subdir_glob([ + ('common', 'mem.h'), + ]), +) + +cxx_library( + name='pool', + header_namespace='', + visibility=['PUBLIC'], + exported_headers=subdir_glob([ + ('common', 'pool.h'), + ]), + srcs=['common/pool.c'], + deps=[ + ':threading', + ':zstd_common', + ], +) + +cxx_library( + name='threading', + header_namespace='', + visibility=['PUBLIC'], + exported_headers=subdir_glob([ + ('common', 'threading.h'), + ]), + srcs=['common/threading.c'], + exported_preprocessor_flags=[ + '-DZSTD_MULTITHREAD', + ], + exported_linker_flags=[ + '-pthread', + ], +) + +cxx_library( + name='xxhash', + header_namespace='', + visibility=['PUBLIC'], + exported_headers=subdir_glob([ + ('common', 'xxhash.h'), + ]), + srcs=['common/xxhash.c'], + exported_preprocessor_flags=[ + '-DXXH_NAMESPACE=ZSTD_', + ], +) + +cxx_library( + name='zstd_common', + header_namespace='', + visibility=['PUBLIC'], + exported_headers=subdir_glob([ + ('', 'zstd.h'), + ('common', 'zstd_internal.h'), + ]), + srcs=['common/zstd_common.c'], + deps=[ + ':compiler', + ':errors', + ':mem', + ], +) + +cxx_library( + name='debug', + header_namespace='', + visibility=['PUBLIC'], + exported_headers=subdir_glob([ + ('common', 'debug.h'), + ]), + srcs=['common/debug.c'], +) + +cxx_library( + name='common', + deps=[ + ':debug', + ':bitstream', + ':compiler', + ':cpu', + ':entropy', + ':errors', + ':mem', + ':pool', + ':threading', + ':xxhash', + ':zstd_common', + ] +) diff --git a/src/third-party/zstd/LICENSE b/src/third-party/zstd/LICENSE new file mode 100644 index 0000000000000..75800288cc243 --- /dev/null +++ b/src/third-party/zstd/LICENSE @@ -0,0 +1,30 @@ +BSD License + +For Zstandard software + +Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the name Facebook, nor Meta, nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/src/third-party/zstd/README.md b/src/third-party/zstd/README.md new file mode 100644 index 0000000000000..0f6c647455010 --- /dev/null +++ b/src/third-party/zstd/README.md @@ -0,0 +1,241 @@ +Zstandard library files +================================ + +The __lib__ directory is split into several sub-directories, +in order to make it easier to select or exclude features. + + +#### Building + +`Makefile` script is provided, supporting [Makefile conventions](https://www.gnu.org/prep/standards/html_node/Makefile-Conventions.html#Makefile-Conventions), +including commands variables, staged install, directory variables and standard targets. +- `make` : generates both static and dynamic libraries +- `make install` : install libraries and headers in target system directories + +`libzstd` default scope is pretty large, including compression, decompression, dictionary builder, +and support for decoding legacy formats >= v0.5.0. +The scope can be reduced on demand (see paragraph _modular build_). + + +#### Multithreading support + +When building with `make`, by default the dynamic library is multithreaded and static library is single-threaded (for compatibility reasons). + +Enabling multithreading requires 2 conditions : +- set build macro `ZSTD_MULTITHREAD` (`-DZSTD_MULTITHREAD` for `gcc`) +- for POSIX systems : compile with pthread (`-pthread` compilation flag for `gcc`) + +For convenience, we provide a build target to generate multi and single threaded libraries: +- Force enable multithreading on both dynamic and static libraries by appending `-mt` to the target, e.g. `make lib-mt`. + Note that the `.pc` generated on calling `make lib-mt` will already include the require Libs and Cflags. +- Force disable multithreading on both dynamic and static libraries by appending `-nomt` to the target, e.g. `make lib-nomt`. +- By default, as mentioned before, dynamic library is multithreaded, and static library is single-threaded, e.g. `make lib`. + +When linking a POSIX program with a multithreaded version of `libzstd`, +note that it's necessary to invoke the `-pthread` flag during link stage. + +The `.pc` generated from `make install` or `make install-pc` always assume a single-threaded static library +is compiled. To correctly generate a `.pc` for the multi-threaded static library, set `MT=1` as ENV variable. + +Multithreading capabilities are exposed +via the [advanced API defined in `lib/zstd.h`](https://github.com/facebook/zstd/blob/v1.4.3/lib/zstd.h#L351). + + +#### API + +Zstandard's stable API is exposed within [lib/zstd.h](zstd.h). + + +#### Advanced API + +Optional advanced features are exposed via : + +- `lib/zstd_errors.h` : translates `size_t` function results + into a `ZSTD_ErrorCode`, for accurate error handling. + +- `ZSTD_STATIC_LINKING_ONLY` : if this macro is defined _before_ including `zstd.h`, + it unlocks access to the experimental API, + exposed in the second part of `zstd.h`. + All definitions in the experimental APIs are unstable, + they may still change in the future, or even be removed. + As a consequence, experimental definitions shall ___never be used with dynamic library___ ! + Only static linking is allowed. + + +#### Modular build + +It's possible to compile only a limited set of features within `libzstd`. +The file structure is designed to make this selection manually achievable for any build system : + +- Directory `lib/common` is always required, for all variants. + +- Compression source code lies in `lib/compress` + +- Decompression source code lies in `lib/decompress` + +- It's possible to include only `compress` or only `decompress`, they don't depend on each other. + +- `lib/dictBuilder` : makes it possible to generate dictionaries from a set of samples. + The API is exposed in `lib/dictBuilder/zdict.h`. + This module depends on both `lib/common` and `lib/compress` . + +- `lib/legacy` : makes it possible to decompress legacy zstd formats, starting from `v0.1.0`. + This module depends on `lib/common` and `lib/decompress`. + To enable this feature, define `ZSTD_LEGACY_SUPPORT` during compilation. + Specifying a number limits versions supported to that version onward. + For example, `ZSTD_LEGACY_SUPPORT=2` means : "support legacy formats >= v0.2.0". + Conversely, `ZSTD_LEGACY_SUPPORT=0` means "do __not__ support legacy formats". + By default, this build macro is set as `ZSTD_LEGACY_SUPPORT=5`. + Decoding supported legacy format is a transparent capability triggered within decompression functions. + It's also allowed to invoke legacy API directly, exposed in `lib/legacy/zstd_legacy.h`. + Each version does also provide its own set of advanced API. + For example, advanced API for version `v0.4` is exposed in `lib/legacy/zstd_v04.h` . + +- While invoking `make libzstd`, it's possible to define build macros + `ZSTD_LIB_COMPRESSION`, `ZSTD_LIB_DECOMPRESSION`, `ZSTD_LIB_DICTBUILDER`, + and `ZSTD_LIB_DEPRECATED` as `0` to forgo compilation of the + corresponding features. This will also disable compilation of all + dependencies (e.g. `ZSTD_LIB_COMPRESSION=0` will also disable + dictBuilder). + +- There are a number of options that can help minimize the binary size of + `libzstd`. + + The first step is to select the components needed (using the above-described + `ZSTD_LIB_COMPRESSION` etc.). + + The next step is to set `ZSTD_LIB_MINIFY` to `1` when invoking `make`. This + disables various optional components and changes the compilation flags to + prioritize space-saving. + + Detailed options: Zstandard's code and build environment is set up by default + to optimize above all else for performance. In pursuit of this goal, Zstandard + makes significant trade-offs in code size. For example, Zstandard often has + more than one implementation of a particular component, with each + implementation optimized for different scenarios. For example, the Huffman + decoder has complementary implementations that decode the stream one symbol at + a time or two symbols at a time. Zstd normally includes both (and dispatches + between them at runtime), but by defining `HUF_FORCE_DECOMPRESS_X1` or + `HUF_FORCE_DECOMPRESS_X2`, you can force the use of one or the other, avoiding + compilation of the other. Similarly, `ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT` + and `ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG` force the compilation and use of + only one or the other of two decompression implementations. The smallest + binary is achieved by using `HUF_FORCE_DECOMPRESS_X1` and + `ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT` (implied by `ZSTD_LIB_MINIFY`). + + On the compressor side, Zstd's compression levels map to several internal + strategies. In environments where the higher compression levels aren't used, + it is possible to exclude all but the fastest strategy with + `ZSTD_LIB_EXCLUDE_COMPRESSORS_DFAST_AND_UP=1`. (Note that this will change + the behavior of the default compression level.) Or if you want to retain the + default compressor as well, you can set + `ZSTD_LIB_EXCLUDE_COMPRESSORS_GREEDY_AND_UP=1`, at the cost of an additional + ~20KB or so. + + For squeezing the last ounce of size out, you can also define + `ZSTD_NO_INLINE`, which disables inlining, and `ZSTD_STRIP_ERROR_STRINGS`, + which removes the error messages that are otherwise returned by + `ZSTD_getErrorName` (implied by `ZSTD_LIB_MINIFY`). + + Finally, when integrating into your application, make sure you're doing link- + time optimization and unused symbol garbage collection (via some combination of, + e.g., `-flto`, `-ffat-lto-objects`, `-fuse-linker-plugin`, + `-ffunction-sections`, `-fdata-sections`, `-fmerge-all-constants`, + `-Wl,--gc-sections`, `-Wl,-z,norelro`, and an archiver that understands + the compiler's intermediate representation, e.g., `AR=gcc-ar`). Consult your + compiler's documentation. + +- While invoking `make libzstd`, the build macro `ZSTD_LEGACY_MULTITHREADED_API=1` + will expose the deprecated `ZSTDMT` API exposed by `zstdmt_compress.h` in + the shared library, which is now hidden by default. + +- The build macro `DYNAMIC_BMI2` can be set to 1 or 0 in order to generate binaries + which can detect at runtime the presence of BMI2 instructions, and use them only if present. + These instructions contribute to better performance, notably on the decoder side. + By default, this feature is automatically enabled on detecting + the right instruction set (x64) and compiler (clang or gcc >= 5). + It's obviously disabled for different cpus, + or when BMI2 instruction set is _required_ by the compiler command line + (in this case, only the BMI2 code path is generated). + Setting this macro will either force to generate the BMI2 dispatcher (1) + or prevent it (0). It overrides automatic detection. + +- The build macro `ZSTD_NO_UNUSED_FUNCTIONS` can be defined to hide the definitions of functions + that zstd does not use. Not all unused functions are hidden, but they can be if needed. + Currently, this macro will hide function definitions in FSE and HUF that use an excessive + amount of stack space. + +- The build macro `ZSTD_NO_INTRINSICS` can be defined to disable all explicit intrinsics. + Compiler builtins are still used. + +- The build macro `ZSTD_DECODER_INTERNAL_BUFFER` can be set to control + the amount of extra memory used during decompression to store literals. + This defaults to 64kB. Reducing this value reduces the memory footprint of + `ZSTD_DCtx` decompression contexts, + but might also result in a small decompression speed cost. + +- The C compiler macros `ZSTDLIB_VISIBLE`, `ZSTDERRORLIB_VISIBLE` and `ZDICTLIB_VISIBLE` + can be overridden to control the visibility of zstd's API. Additionally, + `ZSTDLIB_STATIC_API` and `ZDICTLIB_STATIC_API` can be overridden to control the visibility + of zstd's static API. Specifically, it can be set to `ZSTDLIB_HIDDEN` to hide the symbols + from the shared library. These macros default to `ZSTDLIB_VISIBILITY`, + `ZSTDERRORLIB_VSIBILITY`, and `ZDICTLIB_VISIBILITY` if unset, for backwards compatibility + with the old macro names. + +- The C compiler macro `HUF_DISABLE_FAST_DECODE` disables the newer Huffman fast C + and assembly decoding loops. You may want to use this macro if these loops are + slower on your platform. + +#### Windows : using MinGW+MSYS to create DLL + +DLL can be created using MinGW+MSYS with the `make libzstd` command. +This command creates `dll\libzstd.dll` and the import library `dll\libzstd.lib`. +The import library is only required with Visual C++. +The header file `zstd.h` and the dynamic library `dll\libzstd.dll` are required to +compile a project using gcc/MinGW. +The dynamic library has to be added to linking options. +It means that if a project that uses ZSTD consists of a single `test-dll.c` +file it should be linked with `dll\libzstd.dll`. For example: +``` + gcc $(CFLAGS) -Iinclude/ test-dll.c -o test-dll dll\libzstd.dll +``` +The compiled executable will require ZSTD DLL which is available at `dll\libzstd.dll`. + + +#### Advanced Build options + +The build system requires a hash function in order to +separate object files created with different compilation flags. +By default, it tries to use `md5sum` or equivalent. +The hash function can be manually switched by setting the `HASH` variable. +For example : `make HASH=xxhsum` +The hash function needs to generate at least 64-bit using hexadecimal format. +When no hash function is found, +the Makefile just generates all object files into the same default directory, +irrespective of compilation flags. +This functionality only matters if `libzstd` is compiled multiple times +with different build flags. + +The build directory, where object files are stored +can also be manually controlled using variable `BUILD_DIR`, +for example `make BUILD_DIR=objectDir/v1`. +In which case, the hash function doesn't matter. + + +#### Deprecated API + +Obsolete API on their way out are stored in directory `lib/deprecated`. +At this stage, it contains older streaming prototypes, in `lib/deprecated/zbuff.h`. +These prototypes will be removed in some future version. +Consider migrating code towards supported streaming API exposed in `zstd.h`. + + +#### Miscellaneous + +The other files are not source code. There are : + + - `BUCK` : support for `buck` build system (https://buckbuild.com/) + - `Makefile` : `make` script to build and install zstd library (static and dynamic) + - `README.md` : this file + - `dll/` : resources directory for Windows compilation + - `libzstd.pc.in` : script for `pkg-config` (used in `make install`) diff --git a/src/third-party/zstd/common/allocations.h b/src/third-party/zstd/common/allocations.h new file mode 100644 index 0000000000000..5e8995501090f --- /dev/null +++ b/src/third-party/zstd/common/allocations.h @@ -0,0 +1,55 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/* This file provides custom allocation primitives + */ + +#define ZSTD_DEPS_NEED_MALLOC +#include "zstd_deps.h" /* ZSTD_malloc, ZSTD_calloc, ZSTD_free, ZSTD_memset */ + +#include "compiler.h" /* MEM_STATIC */ +#define ZSTD_STATIC_LINKING_ONLY +#include "../zstd.h" /* ZSTD_customMem */ + +#ifndef ZSTD_ALLOCATIONS_H +#define ZSTD_ALLOCATIONS_H + +/* custom memory allocation functions */ + +MEM_STATIC void* ZSTD_customMalloc(size_t size, ZSTD_customMem customMem) +{ + if (customMem.customAlloc) + return customMem.customAlloc(customMem.opaque, size); + return ZSTD_malloc(size); +} + +MEM_STATIC void* ZSTD_customCalloc(size_t size, ZSTD_customMem customMem) +{ + if (customMem.customAlloc) { + /* calloc implemented as malloc+memset; + * not as efficient as calloc, but next best guess for custom malloc */ + void* const ptr = customMem.customAlloc(customMem.opaque, size); + ZSTD_memset(ptr, 0, size); + return ptr; + } + return ZSTD_calloc(1, size); +} + +MEM_STATIC void ZSTD_customFree(void* ptr, ZSTD_customMem customMem) +{ + if (ptr!=NULL) { + if (customMem.customFree) + customMem.customFree(customMem.opaque, ptr); + else + ZSTD_free(ptr); + } +} + +#endif /* ZSTD_ALLOCATIONS_H */ diff --git a/src/third-party/zstd/common/bits.h b/src/third-party/zstd/common/bits.h new file mode 100644 index 0000000000000..992cc6925bafd --- /dev/null +++ b/src/third-party/zstd/common/bits.h @@ -0,0 +1,208 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_BITS_H +#define ZSTD_BITS_H + +#include "mem.h" + +MEM_STATIC unsigned ZSTD_countTrailingZeros32_fallback(U32 val) +{ + assert(val != 0); + { + static const U32 DeBruijnBytePos[32] = {0, 1, 28, 2, 29, 14, 24, 3, + 30, 22, 20, 15, 25, 17, 4, 8, + 31, 27, 13, 23, 21, 19, 16, 7, + 26, 12, 18, 6, 11, 5, 10, 9}; + return DeBruijnBytePos[((U32) ((val & -(S32) val) * 0x077CB531U)) >> 27]; + } +} + +MEM_STATIC unsigned ZSTD_countTrailingZeros32(U32 val) +{ + assert(val != 0); +# if defined(_MSC_VER) +# if STATIC_BMI2 == 1 + return (unsigned)_tzcnt_u32(val); +# else + if (val != 0) { + unsigned long r; + _BitScanForward(&r, val); + return (unsigned)r; + } else { + /* Should not reach this code path */ + __assume(0); + } +# endif +# elif defined(__GNUC__) && (__GNUC__ >= 4) + return (unsigned)__builtin_ctz(val); +# elif defined(__ICCARM__) + return (unsigned)__builtin_ctz(val); +# else + return ZSTD_countTrailingZeros32_fallback(val); +# endif +} + +MEM_STATIC unsigned ZSTD_countLeadingZeros32_fallback(U32 val) { + assert(val != 0); + { + static const U32 DeBruijnClz[32] = {0, 9, 1, 10, 13, 21, 2, 29, + 11, 14, 16, 18, 22, 25, 3, 30, + 8, 12, 20, 28, 15, 17, 24, 7, + 19, 27, 23, 6, 26, 5, 4, 31}; + val |= val >> 1; + val |= val >> 2; + val |= val >> 4; + val |= val >> 8; + val |= val >> 16; + return 31 - DeBruijnClz[(val * 0x07C4ACDDU) >> 27]; + } +} + +MEM_STATIC unsigned ZSTD_countLeadingZeros32(U32 val) +{ + assert(val != 0); +# if defined(_MSC_VER) +# if STATIC_BMI2 == 1 + return (unsigned)_lzcnt_u32(val); +# else + if (val != 0) { + unsigned long r; + _BitScanReverse(&r, val); + return (unsigned)(31 - r); + } else { + /* Should not reach this code path */ + __assume(0); + } +# endif +# elif defined(__GNUC__) && (__GNUC__ >= 4) + return (unsigned)__builtin_clz(val); +# elif defined(__ICCARM__) + return (unsigned)__builtin_clz(val); +# else + return ZSTD_countLeadingZeros32_fallback(val); +# endif +} + +MEM_STATIC unsigned ZSTD_countTrailingZeros64(U64 val) +{ + assert(val != 0); +# if defined(_MSC_VER) && defined(_WIN64) +# if STATIC_BMI2 == 1 + return (unsigned)_tzcnt_u64(val); +# else + if (val != 0) { + unsigned long r; + _BitScanForward64(&r, val); + return (unsigned)r; + } else { + /* Should not reach this code path */ + __assume(0); + } +# endif +# elif defined(__GNUC__) && (__GNUC__ >= 4) && defined(__LP64__) + return (unsigned)__builtin_ctzll(val); +# elif defined(__ICCARM__) + return (unsigned)__builtin_ctzll(val); +# else + { + U32 mostSignificantWord = (U32)(val >> 32); + U32 leastSignificantWord = (U32)val; + if (leastSignificantWord == 0) { + return 32 + ZSTD_countTrailingZeros32(mostSignificantWord); + } else { + return ZSTD_countTrailingZeros32(leastSignificantWord); + } + } +# endif +} + +MEM_STATIC unsigned ZSTD_countLeadingZeros64(U64 val) +{ + assert(val != 0); +# if defined(_MSC_VER) && defined(_WIN64) +# if STATIC_BMI2 == 1 + return (unsigned)_lzcnt_u64(val); +# else + if (val != 0) { + unsigned long r; + _BitScanReverse64(&r, val); + return (unsigned)(63 - r); + } else { + /* Should not reach this code path */ + __assume(0); + } +# endif +# elif defined(__GNUC__) && (__GNUC__ >= 4) + return (unsigned)(__builtin_clzll(val)); +# elif defined(__ICCARM__) + return (unsigned)(__builtin_clzll(val)); +# else + { + U32 mostSignificantWord = (U32)(val >> 32); + U32 leastSignificantWord = (U32)val; + if (mostSignificantWord == 0) { + return 32 + ZSTD_countLeadingZeros32(leastSignificantWord); + } else { + return ZSTD_countLeadingZeros32(mostSignificantWord); + } + } +# endif +} + +MEM_STATIC unsigned ZSTD_NbCommonBytes(size_t val) +{ + if (MEM_isLittleEndian()) { + if (MEM_64bits()) { + return ZSTD_countTrailingZeros64((U64)val) >> 3; + } else { + return ZSTD_countTrailingZeros32((U32)val) >> 3; + } + } else { /* Big Endian CPU */ + if (MEM_64bits()) { + return ZSTD_countLeadingZeros64((U64)val) >> 3; + } else { + return ZSTD_countLeadingZeros32((U32)val) >> 3; + } + } +} + +MEM_STATIC unsigned ZSTD_highbit32(U32 val) /* compress, dictBuilder, decodeCorpus */ +{ + assert(val != 0); + return 31 - ZSTD_countLeadingZeros32(val); +} + +/* ZSTD_rotateRight_*(): + * Rotates a bitfield to the right by "count" bits. + * https://en.wikipedia.org/w/index.php?title=Circular_shift&oldid=991635599#Implementing_circular_shifts + */ +MEM_STATIC +U64 ZSTD_rotateRight_U64(U64 const value, U32 count) { + assert(count < 64); + count &= 0x3F; /* for fickle pattern recognition */ + return (value >> count) | (U64)(value << ((0U - count) & 0x3F)); +} + +MEM_STATIC +U32 ZSTD_rotateRight_U32(U32 const value, U32 count) { + assert(count < 32); + count &= 0x1F; /* for fickle pattern recognition */ + return (value >> count) | (U32)(value << ((0U - count) & 0x1F)); +} + +MEM_STATIC +U16 ZSTD_rotateRight_U16(U16 const value, U32 count) { + assert(count < 16); + count &= 0x0F; /* for fickle pattern recognition */ + return (value >> count) | (U16)(value << ((0U - count) & 0x0F)); +} + +#endif /* ZSTD_BITS_H */ diff --git a/src/third-party/zstd/common/bitstream.h b/src/third-party/zstd/common/bitstream.h new file mode 100644 index 0000000000000..a1dac889d3a22 --- /dev/null +++ b/src/third-party/zstd/common/bitstream.h @@ -0,0 +1,449 @@ +/* ****************************************************************** + * bitstream + * Part of FSE library + * Copyright (c) Meta Platforms, Inc. and affiliates. + * + * You can contact the author at : + * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. +****************************************************************** */ +#ifndef BITSTREAM_H_MODULE +#define BITSTREAM_H_MODULE + +/* +* This API consists of small unitary functions, which must be inlined for best performance. +* Since link-time-optimization is not available for all compilers, +* these functions are defined into a .h to be included. +*/ + +/*-**************************************** +* Dependencies +******************************************/ +#include "mem.h" /* unaligned access routines */ +#include "compiler.h" /* UNLIKELY() */ +#include "debug.h" /* assert(), DEBUGLOG(), RAWLOG() */ +#include "error_private.h" /* error codes and messages */ +#include "bits.h" /* ZSTD_highbit32 */ + +/*========================================= +* Target specific +=========================================*/ +#ifndef ZSTD_NO_INTRINSICS +# if (defined(__BMI__) || defined(__BMI2__)) && defined(__GNUC__) +# include /* support for bextr (experimental)/bzhi */ +# elif defined(__ICCARM__) +# include +# endif +#endif + +#define STREAM_ACCUMULATOR_MIN_32 25 +#define STREAM_ACCUMULATOR_MIN_64 57 +#define STREAM_ACCUMULATOR_MIN ((U32)(MEM_32bits() ? STREAM_ACCUMULATOR_MIN_32 : STREAM_ACCUMULATOR_MIN_64)) + + +/*-****************************************** +* bitStream encoding API (write forward) +********************************************/ +/* bitStream can mix input from multiple sources. + * A critical property of these streams is that they encode and decode in **reverse** direction. + * So the first bit sequence you add will be the last to be read, like a LIFO stack. + */ +typedef struct { + size_t bitContainer; + unsigned bitPos; + char* startPtr; + char* ptr; + char* endPtr; +} BIT_CStream_t; + +MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* dstBuffer, size_t dstCapacity); +MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits); +MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC); +MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC); + +/* Start with initCStream, providing the size of buffer to write into. +* bitStream will never write outside of this buffer. +* `dstCapacity` must be >= sizeof(bitD->bitContainer), otherwise @return will be an error code. +* +* bits are first added to a local register. +* Local register is size_t, hence 64-bits on 64-bits systems, or 32-bits on 32-bits systems. +* Writing data into memory is an explicit operation, performed by the flushBits function. +* Hence keep track how many bits are potentially stored into local register to avoid register overflow. +* After a flushBits, a maximum of 7 bits might still be stored into local register. +* +* Avoid storing elements of more than 24 bits if you want compatibility with 32-bits bitstream readers. +* +* Last operation is to close the bitStream. +* The function returns the final size of CStream in bytes. +* If data couldn't fit into `dstBuffer`, it will return a 0 ( == not storable) +*/ + + +/*-******************************************** +* bitStream decoding API (read backward) +**********************************************/ +typedef size_t BitContainerType; +typedef struct { + BitContainerType bitContainer; + unsigned bitsConsumed; + const char* ptr; + const char* start; + const char* limitPtr; +} BIT_DStream_t; + +typedef enum { BIT_DStream_unfinished = 0, /* fully refilled */ + BIT_DStream_endOfBuffer = 1, /* still some bits left in bitstream */ + BIT_DStream_completed = 2, /* bitstream entirely consumed, bit-exact */ + BIT_DStream_overflow = 3 /* user requested more bits than present in bitstream */ + } BIT_DStream_status; /* result of BIT_reloadDStream() */ + +MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize); +MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits); +MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD); +MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD); + + +/* Start by invoking BIT_initDStream(). +* A chunk of the bitStream is then stored into a local register. +* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (BitContainerType). +* You can then retrieve bitFields stored into the local register, **in reverse order**. +* Local register is explicitly reloaded from memory by the BIT_reloadDStream() method. +* A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BIT_DStream_unfinished. +* Otherwise, it can be less than that, so proceed accordingly. +* Checking if DStream has reached its end can be performed with BIT_endOfDStream(). +*/ + + +/*-**************************************** +* unsafe API +******************************************/ +MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits); +/* faster, but works only if value is "clean", meaning all high bits above nbBits are 0 */ + +MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC); +/* unsafe version; does not check buffer overflow */ + +MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits); +/* faster, but works only if nbBits >= 1 */ + +/*===== Local Constants =====*/ +static const unsigned BIT_mask[] = { + 0, 1, 3, 7, 0xF, 0x1F, + 0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, + 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0x1FFFF, + 0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF, + 0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF, 0x7FFFFFF, 0xFFFFFFF, 0x1FFFFFFF, + 0x3FFFFFFF, 0x7FFFFFFF}; /* up to 31 bits */ +#define BIT_MASK_SIZE (sizeof(BIT_mask) / sizeof(BIT_mask[0])) + +/*-************************************************************** +* bitStream encoding +****************************************************************/ +/*! BIT_initCStream() : + * `dstCapacity` must be > sizeof(size_t) + * @return : 0 if success, + * otherwise an error code (can be tested using ERR_isError()) */ +MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, + void* startPtr, size_t dstCapacity) +{ + bitC->bitContainer = 0; + bitC->bitPos = 0; + bitC->startPtr = (char*)startPtr; + bitC->ptr = bitC->startPtr; + bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer); + if (dstCapacity <= sizeof(bitC->bitContainer)) return ERROR(dstSize_tooSmall); + return 0; +} + +FORCE_INLINE_TEMPLATE size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits) +{ +#if defined(STATIC_BMI2) && STATIC_BMI2 == 1 && !defined(ZSTD_NO_INTRINSICS) + return _bzhi_u64(bitContainer, nbBits); +#else + assert(nbBits < BIT_MASK_SIZE); + return bitContainer & BIT_mask[nbBits]; +#endif +} + +/*! BIT_addBits() : + * can add up to 31 bits into `bitC`. + * Note : does not check for register overflow ! */ +MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, + size_t value, unsigned nbBits) +{ + DEBUG_STATIC_ASSERT(BIT_MASK_SIZE == 32); + assert(nbBits < BIT_MASK_SIZE); + assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8); + bitC->bitContainer |= BIT_getLowerBits(value, nbBits) << bitC->bitPos; + bitC->bitPos += nbBits; +} + +/*! BIT_addBitsFast() : + * works only if `value` is _clean_, + * meaning all high bits above nbBits are 0 */ +MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, + size_t value, unsigned nbBits) +{ + assert((value>>nbBits) == 0); + assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8); + bitC->bitContainer |= value << bitC->bitPos; + bitC->bitPos += nbBits; +} + +/*! BIT_flushBitsFast() : + * assumption : bitContainer has not overflowed + * unsafe version; does not check buffer overflow */ +MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC) +{ + size_t const nbBytes = bitC->bitPos >> 3; + assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8); + assert(bitC->ptr <= bitC->endPtr); + MEM_writeLEST(bitC->ptr, bitC->bitContainer); + bitC->ptr += nbBytes; + bitC->bitPos &= 7; + bitC->bitContainer >>= nbBytes*8; +} + +/*! BIT_flushBits() : + * assumption : bitContainer has not overflowed + * safe version; check for buffer overflow, and prevents it. + * note : does not signal buffer overflow. + * overflow will be revealed later on using BIT_closeCStream() */ +MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC) +{ + size_t const nbBytes = bitC->bitPos >> 3; + assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8); + assert(bitC->ptr <= bitC->endPtr); + MEM_writeLEST(bitC->ptr, bitC->bitContainer); + bitC->ptr += nbBytes; + if (bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr; + bitC->bitPos &= 7; + bitC->bitContainer >>= nbBytes*8; +} + +/*! BIT_closeCStream() : + * @return : size of CStream, in bytes, + * or 0 if it could not fit into dstBuffer */ +MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC) +{ + BIT_addBitsFast(bitC, 1, 1); /* endMark */ + BIT_flushBits(bitC); + if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */ + return (bitC->ptr - bitC->startPtr) + (bitC->bitPos > 0); +} + + +/*-******************************************************** +* bitStream decoding +**********************************************************/ +/*! BIT_initDStream() : + * Initialize a BIT_DStream_t. + * `bitD` : a pointer to an already allocated BIT_DStream_t structure. + * `srcSize` must be the *exact* size of the bitStream, in bytes. + * @return : size of stream (== srcSize), or an errorCode if a problem is detected + */ +MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize) +{ + if (srcSize < 1) { ZSTD_memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); } + + bitD->start = (const char*)srcBuffer; + bitD->limitPtr = bitD->start + sizeof(bitD->bitContainer); + + if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */ + bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer); + bitD->bitContainer = MEM_readLEST(bitD->ptr); + { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1]; + bitD->bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0; /* ensures bitsConsumed is always set */ + if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ } + } else { + bitD->ptr = bitD->start; + bitD->bitContainer = *(const BYTE*)(bitD->start); + switch(srcSize) + { + case 7: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16); + ZSTD_FALLTHROUGH; + + case 6: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24); + ZSTD_FALLTHROUGH; + + case 5: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32); + ZSTD_FALLTHROUGH; + + case 4: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[3]) << 24; + ZSTD_FALLTHROUGH; + + case 3: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[2]) << 16; + ZSTD_FALLTHROUGH; + + case 2: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[1]) << 8; + ZSTD_FALLTHROUGH; + + default: break; + } + { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1]; + bitD->bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0; + if (lastByte == 0) return ERROR(corruption_detected); /* endMark not present */ + } + bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8; + } + + return srcSize; +} + +FORCE_INLINE_TEMPLATE size_t BIT_getUpperBits(BitContainerType bitContainer, U32 const start) +{ + return bitContainer >> start; +} + +FORCE_INLINE_TEMPLATE size_t BIT_getMiddleBits(BitContainerType bitContainer, U32 const start, U32 const nbBits) +{ + U32 const regMask = sizeof(bitContainer)*8 - 1; + /* if start > regMask, bitstream is corrupted, and result is undefined */ + assert(nbBits < BIT_MASK_SIZE); + /* x86 transform & ((1 << nbBits) - 1) to bzhi instruction, it is better + * than accessing memory. When bmi2 instruction is not present, we consider + * such cpus old (pre-Haswell, 2013) and their performance is not of that + * importance. + */ +#if defined(__x86_64__) || defined(_M_X64) + return (bitContainer >> (start & regMask)) & ((((U64)1) << nbBits) - 1); +#else + return (bitContainer >> (start & regMask)) & BIT_mask[nbBits]; +#endif +} + +/*! BIT_lookBits() : + * Provides next n bits from local register. + * local register is not modified. + * On 32-bits, maxNbBits==24. + * On 64-bits, maxNbBits==56. + * @return : value extracted */ +FORCE_INLINE_TEMPLATE size_t BIT_lookBits(const BIT_DStream_t* bitD, U32 nbBits) +{ + /* arbitrate between double-shift and shift+mask */ +#if 1 + /* if bitD->bitsConsumed + nbBits > sizeof(bitD->bitContainer)*8, + * bitstream is likely corrupted, and result is undefined */ + return BIT_getMiddleBits(bitD->bitContainer, (sizeof(bitD->bitContainer)*8) - bitD->bitsConsumed - nbBits, nbBits); +#else + /* this code path is slower on my os-x laptop */ + U32 const regMask = sizeof(bitD->bitContainer)*8 - 1; + return ((bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> 1) >> ((regMask-nbBits) & regMask); +#endif +} + +/*! BIT_lookBitsFast() : + * unsafe version; only works if nbBits >= 1 */ +MEM_STATIC size_t BIT_lookBitsFast(const BIT_DStream_t* bitD, U32 nbBits) +{ + U32 const regMask = sizeof(bitD->bitContainer)*8 - 1; + assert(nbBits >= 1); + return (bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> (((regMask+1)-nbBits) & regMask); +} + +FORCE_INLINE_TEMPLATE void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits) +{ + bitD->bitsConsumed += nbBits; +} + +/*! BIT_readBits() : + * Read (consume) next n bits from local register and update. + * Pay attention to not read more than nbBits contained into local register. + * @return : extracted value. */ +FORCE_INLINE_TEMPLATE size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits) +{ + size_t const value = BIT_lookBits(bitD, nbBits); + BIT_skipBits(bitD, nbBits); + return value; +} + +/*! BIT_readBitsFast() : + * unsafe version; only works if nbBits >= 1 */ +MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits) +{ + size_t const value = BIT_lookBitsFast(bitD, nbBits); + assert(nbBits >= 1); + BIT_skipBits(bitD, nbBits); + return value; +} + +/*! BIT_reloadDStream_internal() : + * Simple variant of BIT_reloadDStream(), with two conditions: + * 1. bitstream is valid : bitsConsumed <= sizeof(bitD->bitContainer)*8 + * 2. look window is valid after shifted down : bitD->ptr >= bitD->start + */ +MEM_STATIC BIT_DStream_status BIT_reloadDStream_internal(BIT_DStream_t* bitD) +{ + assert(bitD->bitsConsumed <= sizeof(bitD->bitContainer)*8); + bitD->ptr -= bitD->bitsConsumed >> 3; + assert(bitD->ptr >= bitD->start); + bitD->bitsConsumed &= 7; + bitD->bitContainer = MEM_readLEST(bitD->ptr); + return BIT_DStream_unfinished; +} + +/*! BIT_reloadDStreamFast() : + * Similar to BIT_reloadDStream(), but with two differences: + * 1. bitsConsumed <= sizeof(bitD->bitContainer)*8 must hold! + * 2. Returns BIT_DStream_overflow when bitD->ptr < bitD->limitPtr, at this + * point you must use BIT_reloadDStream() to reload. + */ +MEM_STATIC BIT_DStream_status BIT_reloadDStreamFast(BIT_DStream_t* bitD) +{ + if (UNLIKELY(bitD->ptr < bitD->limitPtr)) + return BIT_DStream_overflow; + return BIT_reloadDStream_internal(bitD); +} + +/*! BIT_reloadDStream() : + * Refill `bitD` from buffer previously set in BIT_initDStream() . + * This function is safe, it guarantees it will not never beyond src buffer. + * @return : status of `BIT_DStream_t` internal register. + * when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */ +FORCE_INLINE_TEMPLATE BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD) +{ + /* note : once in overflow mode, a bitstream remains in this mode until it's reset */ + if (UNLIKELY(bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8))) { + static const BitContainerType zeroFilled = 0; + bitD->ptr = (const char*)&zeroFilled; /* aliasing is allowed for char */ + /* overflow detected, erroneous scenario or end of stream: no update */ + return BIT_DStream_overflow; + } + + assert(bitD->ptr >= bitD->start); + + if (bitD->ptr >= bitD->limitPtr) { + return BIT_reloadDStream_internal(bitD); + } + if (bitD->ptr == bitD->start) { + /* reached end of bitStream => no update */ + if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer; + return BIT_DStream_completed; + } + /* start < ptr < limitPtr => cautious update */ + { U32 nbBytes = bitD->bitsConsumed >> 3; + BIT_DStream_status result = BIT_DStream_unfinished; + if (bitD->ptr - nbBytes < bitD->start) { + nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */ + result = BIT_DStream_endOfBuffer; + } + bitD->ptr -= nbBytes; + bitD->bitsConsumed -= nbBytes*8; + bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD->bitContainer), otherwise bitD->ptr == bitD->start */ + return result; + } +} + +/*! BIT_endOfDStream() : + * @return : 1 if DStream has _exactly_ reached its end (all bits consumed). + */ +MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream) +{ + return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8)); +} + +#endif /* BITSTREAM_H_MODULE */ diff --git a/src/third-party/zstd/common/compiler.h b/src/third-party/zstd/common/compiler.h new file mode 100644 index 0000000000000..2a8002288aca6 --- /dev/null +++ b/src/third-party/zstd/common/compiler.h @@ -0,0 +1,477 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_COMPILER_H +#define ZSTD_COMPILER_H + +#include + +#include "portability_macros.h" + +/*-******************************************************* +* Compiler specifics +*********************************************************/ +/* force inlining */ + +#if !defined(ZSTD_NO_INLINE) +#if (defined(__GNUC__) && !defined(__STRICT_ANSI__)) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ +# define INLINE_KEYWORD inline +#else +# define INLINE_KEYWORD +#endif + +#if defined(__GNUC__) || defined(__IAR_SYSTEMS_ICC__) +# define FORCE_INLINE_ATTR __attribute__((always_inline)) +#elif defined(_MSC_VER) +# define FORCE_INLINE_ATTR __forceinline +#else +# define FORCE_INLINE_ATTR +#endif + +#else + +#define INLINE_KEYWORD +#define FORCE_INLINE_ATTR + +#endif + +/** + On MSVC qsort requires that functions passed into it use the __cdecl calling conversion(CC). + This explicitly marks such functions as __cdecl so that the code will still compile + if a CC other than __cdecl has been made the default. +*/ +#if defined(_MSC_VER) +# define WIN_CDECL __cdecl +#else +# define WIN_CDECL +#endif + +/* UNUSED_ATTR tells the compiler it is okay if the function is unused. */ +#if defined(__GNUC__) || defined(__IAR_SYSTEMS_ICC__) +# define UNUSED_ATTR __attribute__((unused)) +#else +# define UNUSED_ATTR +#endif + +/** + * FORCE_INLINE_TEMPLATE is used to define C "templates", which take constant + * parameters. They must be inlined for the compiler to eliminate the constant + * branches. + */ +#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR UNUSED_ATTR +/** + * HINT_INLINE is used to help the compiler generate better code. It is *not* + * used for "templates", so it can be tweaked based on the compilers + * performance. + * + * gcc-4.8 and gcc-4.9 have been shown to benefit from leaving off the + * always_inline attribute. + * + * clang up to 5.0.0 (trunk) benefit tremendously from the always_inline + * attribute. + */ +#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ >= 4 && __GNUC_MINOR__ >= 8 && __GNUC__ < 5 +# define HINT_INLINE static INLINE_KEYWORD +#else +# define HINT_INLINE FORCE_INLINE_TEMPLATE +#endif + +/* "soft" inline : + * The compiler is free to select if it's a good idea to inline or not. + * The main objective is to silence compiler warnings + * when a defined function in included but not used. + * + * Note : this macro is prefixed `MEM_` because it used to be provided by `mem.h` unit. + * Updating the prefix is probably preferable, but requires a fairly large codemod, + * since this name is used everywhere. + */ +#ifndef MEM_STATIC /* already defined in Linux Kernel mem.h */ +#if defined(__GNUC__) +# define MEM_STATIC static __inline UNUSED_ATTR +#elif defined(__IAR_SYSTEMS_ICC__) +# define MEM_STATIC static inline UNUSED_ATTR +#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) +# define MEM_STATIC static inline +#elif defined(_MSC_VER) +# define MEM_STATIC static __inline +#else +# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ +#endif +#endif + +/* force no inlining */ +#ifdef _MSC_VER +# define FORCE_NOINLINE static __declspec(noinline) +#else +# if defined(__GNUC__) || defined(__IAR_SYSTEMS_ICC__) +# define FORCE_NOINLINE static __attribute__((__noinline__)) +# else +# define FORCE_NOINLINE static +# endif +#endif + + +/* target attribute */ +#if defined(__GNUC__) || defined(__IAR_SYSTEMS_ICC__) +# define TARGET_ATTRIBUTE(target) __attribute__((__target__(target))) +#else +# define TARGET_ATTRIBUTE(target) +#endif + +/* Target attribute for BMI2 dynamic dispatch. + * Enable lzcnt, bmi, and bmi2. + * We test for bmi1 & bmi2. lzcnt is included in bmi1. + */ +#define BMI2_TARGET_ATTRIBUTE TARGET_ATTRIBUTE("lzcnt,bmi,bmi2") + +/* prefetch + * can be disabled, by declaring NO_PREFETCH build macro */ +#if defined(NO_PREFETCH) +# define PREFETCH_L1(ptr) do { (void)(ptr); } while (0) /* disabled */ +# define PREFETCH_L2(ptr) do { (void)(ptr); } while (0) /* disabled */ +#else +# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) && !defined(_M_ARM64EC) /* _mm_prefetch() is not defined outside of x86/x64 */ +# include /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ +# define PREFETCH_L1(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0) +# define PREFETCH_L2(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T1) +# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) +# define PREFETCH_L1(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) +# define PREFETCH_L2(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 2 /* locality */) +# elif defined(__aarch64__) +# define PREFETCH_L1(ptr) do { __asm__ __volatile__("prfm pldl1keep, %0" ::"Q"(*(ptr))); } while (0) +# define PREFETCH_L2(ptr) do { __asm__ __volatile__("prfm pldl2keep, %0" ::"Q"(*(ptr))); } while (0) +# else +# define PREFETCH_L1(ptr) do { (void)(ptr); } while (0) /* disabled */ +# define PREFETCH_L2(ptr) do { (void)(ptr); } while (0) /* disabled */ +# endif +#endif /* NO_PREFETCH */ + +#define CACHELINE_SIZE 64 + +#define PREFETCH_AREA(p, s) \ + do { \ + const char* const _ptr = (const char*)(p); \ + size_t const _size = (size_t)(s); \ + size_t _pos; \ + for (_pos=0; _pos<_size; _pos+=CACHELINE_SIZE) { \ + PREFETCH_L2(_ptr + _pos); \ + } \ + } while (0) + +/* vectorization + * older GCC (pre gcc-4.3 picked as the cutoff) uses a different syntax, + * and some compilers, like Intel ICC and MCST LCC, do not support it at all. */ +#if !defined(__INTEL_COMPILER) && !defined(__clang__) && defined(__GNUC__) && !defined(__LCC__) +# if (__GNUC__ == 4 && __GNUC_MINOR__ > 3) || (__GNUC__ >= 5) +# define DONT_VECTORIZE __attribute__((optimize("no-tree-vectorize"))) +# else +# define DONT_VECTORIZE _Pragma("GCC optimize(\"no-tree-vectorize\")") +# endif +#else +# define DONT_VECTORIZE +#endif + +/* Tell the compiler that a branch is likely or unlikely. + * Only use these macros if it causes the compiler to generate better code. + * If you can remove a LIKELY/UNLIKELY annotation without speed changes in gcc + * and clang, please do. + */ +#if defined(__GNUC__) +#define LIKELY(x) (__builtin_expect((x), 1)) +#define UNLIKELY(x) (__builtin_expect((x), 0)) +#else +#define LIKELY(x) (x) +#define UNLIKELY(x) (x) +#endif + +#if __has_builtin(__builtin_unreachable) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))) +# define ZSTD_UNREACHABLE do { assert(0), __builtin_unreachable(); } while (0) +#else +# define ZSTD_UNREACHABLE do { assert(0); } while (0) +#endif + +/* disable warnings */ +#ifdef _MSC_VER /* Visual Studio */ +# include /* For Visual 2005 */ +# pragma warning(disable : 4100) /* disable: C4100: unreferenced formal parameter */ +# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ +# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ +# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */ +# pragma warning(disable : 4324) /* disable: C4324: padded structure */ +#endif + +/*Like DYNAMIC_BMI2 but for compile time determination of BMI2 support*/ +#ifndef STATIC_BMI2 +# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) +# ifdef __AVX2__ //MSVC does not have a BMI2 specific flag, but every CPU that supports AVX2 also supports BMI2 +# define STATIC_BMI2 1 +# endif +# elif defined(__BMI2__) && defined(__x86_64__) && defined(__GNUC__) +# define STATIC_BMI2 1 +# endif +#endif + +#ifndef STATIC_BMI2 + #define STATIC_BMI2 0 +#endif + +/* compile time determination of SIMD support */ +#if !defined(ZSTD_NO_INTRINSICS) +# if defined(__AVX2__) +# define ZSTD_ARCH_X86_AVX2 +# endif +# if defined(__SSE2__) || defined(_M_AMD64) || (defined (_M_IX86) && defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) +# define ZSTD_ARCH_X86_SSE2 +# endif +# if defined(__ARM_NEON) || defined(_M_ARM64) +# define ZSTD_ARCH_ARM_NEON +# endif +# +# if defined(ZSTD_ARCH_X86_AVX2) +# include +# endif +# if defined(ZSTD_ARCH_X86_SSE2) +# include +# elif defined(ZSTD_ARCH_ARM_NEON) +# include +# endif +#endif + +/* C-language Attributes are added in C23. */ +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute) +# define ZSTD_HAS_C_ATTRIBUTE(x) __has_c_attribute(x) +#else +# define ZSTD_HAS_C_ATTRIBUTE(x) 0 +#endif + +/* Only use C++ attributes in C++. Some compilers report support for C++ + * attributes when compiling with C. + */ +#if defined(__cplusplus) && defined(__has_cpp_attribute) +# define ZSTD_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) +#else +# define ZSTD_HAS_CPP_ATTRIBUTE(x) 0 +#endif + +/* Define ZSTD_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute. + * - C23: https://en.cppreference.com/w/c/language/attributes/fallthrough + * - CPP17: https://en.cppreference.com/w/cpp/language/attributes/fallthrough + * - Else: __attribute__((__fallthrough__)) + */ +#ifndef ZSTD_FALLTHROUGH +# if ZSTD_HAS_C_ATTRIBUTE(fallthrough) +# define ZSTD_FALLTHROUGH [[fallthrough]] +# elif ZSTD_HAS_CPP_ATTRIBUTE(fallthrough) +# define ZSTD_FALLTHROUGH [[fallthrough]] +# elif __has_attribute(__fallthrough__) +/* Leading semicolon is to satisfy gcc-11 with -pedantic. Without the semicolon + * gcc complains about: a label can only be part of a statement and a declaration is not a statement. + */ +# define ZSTD_FALLTHROUGH ; __attribute__((__fallthrough__)) +# else +# define ZSTD_FALLTHROUGH +# endif +#endif + +/*-************************************************************** +* Alignment +*****************************************************************/ + +/* @return 1 if @u is a 2^n value, 0 otherwise + * useful to check a value is valid for alignment restrictions */ +MEM_STATIC int ZSTD_isPower2(size_t u) { + return (u & (u-1)) == 0; +} + +/* this test was initially positioned in mem.h, + * but this file is removed (or replaced) for linux kernel + * so it's now hosted in compiler.h, + * which remains valid for both user & kernel spaces. + */ + +#ifndef ZSTD_ALIGNOF +# if defined(__GNUC__) || defined(_MSC_VER) +/* covers gcc, clang & MSVC */ +/* note : this section must come first, before C11, + * due to a limitation in the kernel source generator */ +# define ZSTD_ALIGNOF(T) __alignof(T) + +# elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) +/* C11 support */ +# include +# define ZSTD_ALIGNOF(T) alignof(T) + +# else +/* No known support for alignof() - imperfect backup */ +# define ZSTD_ALIGNOF(T) (sizeof(void*) < sizeof(T) ? sizeof(void*) : sizeof(T)) + +# endif +#endif /* ZSTD_ALIGNOF */ + +#ifndef ZSTD_ALIGNED +/* C90-compatible alignment macro (GCC/Clang). Adjust for other compilers if needed. */ +# if defined(__GNUC__) +# define ZSTD_ALIGNED(a) __attribute__((aligned(a))) +# elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */ +# define ZSTD_ALIGNED(a) alignas(a) +# else + /* this compiler will require its own alignment instruction */ +# define ZSTD_ALIGNED(...) +# endif +#endif /* ZSTD_ALIGNED */ + + +/*-************************************************************** +* Sanitizer +*****************************************************************/ + +/** + * Zstd relies on pointer overflow in its decompressor. + * We add this attribute to functions that rely on pointer overflow. + */ +#ifndef ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +# if __has_attribute(no_sanitize) +# if !defined(__clang__) && defined(__GNUC__) && __GNUC__ < 8 + /* gcc < 8 only has signed-integer-overlow which triggers on pointer overflow */ +# define ZSTD_ALLOW_POINTER_OVERFLOW_ATTR __attribute__((no_sanitize("signed-integer-overflow"))) +# else + /* older versions of clang [3.7, 5.0) will warn that pointer-overflow is ignored. */ +# define ZSTD_ALLOW_POINTER_OVERFLOW_ATTR __attribute__((no_sanitize("pointer-overflow"))) +# endif +# else +# define ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +# endif +#endif + +/** + * Helper function to perform a wrapped pointer difference without triggering + * UBSAN. + * + * @returns lhs - rhs with wrapping + */ +MEM_STATIC +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +ptrdiff_t ZSTD_wrappedPtrDiff(unsigned char const* lhs, unsigned char const* rhs) +{ + return lhs - rhs; +} + +/** + * Helper function to perform a wrapped pointer add without triggering UBSAN. + * + * @return ptr + add with wrapping + */ +MEM_STATIC +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +unsigned char const* ZSTD_wrappedPtrAdd(unsigned char const* ptr, ptrdiff_t add) +{ + return ptr + add; +} + +/** + * Helper function to perform a wrapped pointer subtraction without triggering + * UBSAN. + * + * @return ptr - sub with wrapping + */ +MEM_STATIC +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +unsigned char const* ZSTD_wrappedPtrSub(unsigned char const* ptr, ptrdiff_t sub) +{ + return ptr - sub; +} + +/** + * Helper function to add to a pointer that works around C's undefined behavior + * of adding 0 to NULL. + * + * @returns `ptr + add` except it defines `NULL + 0 == NULL`. + */ +MEM_STATIC +unsigned char* ZSTD_maybeNullPtrAdd(unsigned char* ptr, ptrdiff_t add) +{ + return add > 0 ? ptr + add : ptr; +} + +/* Issue #3240 reports an ASAN failure on an llvm-mingw build. Out of an + * abundance of caution, disable our custom poisoning on mingw. */ +#ifdef __MINGW32__ +#ifndef ZSTD_ASAN_DONT_POISON_WORKSPACE +#define ZSTD_ASAN_DONT_POISON_WORKSPACE 1 +#endif +#ifndef ZSTD_MSAN_DONT_POISON_WORKSPACE +#define ZSTD_MSAN_DONT_POISON_WORKSPACE 1 +#endif +#endif + +#if ZSTD_MEMORY_SANITIZER && !defined(ZSTD_MSAN_DONT_POISON_WORKSPACE) +/* Not all platforms that support msan provide sanitizers/msan_interface.h. + * We therefore declare the functions we need ourselves, rather than trying to + * include the header file... */ +#include /* size_t */ +#define ZSTD_DEPS_NEED_STDINT +#include "zstd_deps.h" /* intptr_t */ + +/* Make memory region fully initialized (without changing its contents). */ +void __msan_unpoison(const volatile void *a, size_t size); + +/* Make memory region fully uninitialized (without changing its contents). + This is a legacy interface that does not update origin information. Use + __msan_allocated_memory() instead. */ +void __msan_poison(const volatile void *a, size_t size); + +/* Returns the offset of the first (at least partially) poisoned byte in the + memory range, or -1 if the whole range is good. */ +intptr_t __msan_test_shadow(const volatile void *x, size_t size); + +/* Print shadow and origin for the memory range to stderr in a human-readable + format. */ +void __msan_print_shadow(const volatile void *x, size_t size); +#endif + +#if ZSTD_ADDRESS_SANITIZER && !defined(ZSTD_ASAN_DONT_POISON_WORKSPACE) +/* Not all platforms that support asan provide sanitizers/asan_interface.h. + * We therefore declare the functions we need ourselves, rather than trying to + * include the header file... */ +#include /* size_t */ + +/** + * Marks a memory region ([addr, addr+size)) as unaddressable. + * + * This memory must be previously allocated by your program. Instrumented + * code is forbidden from accessing addresses in this region until it is + * unpoisoned. This function is not guaranteed to poison the entire region - + * it could poison only a subregion of [addr, addr+size) due to ASan + * alignment restrictions. + * + * \note This function is not thread-safe because no two threads can poison or + * unpoison memory in the same memory region simultaneously. + * + * \param addr Start of memory region. + * \param size Size of memory region. */ +void __asan_poison_memory_region(void const volatile *addr, size_t size); + +/** + * Marks a memory region ([addr, addr+size)) as addressable. + * + * This memory must be previously allocated by your program. Accessing + * addresses in this region is allowed until this region is poisoned again. + * This function could unpoison a super-region of [addr, addr+size) due + * to ASan alignment restrictions. + * + * \note This function is not thread-safe because no two threads can + * poison or unpoison memory in the same memory region simultaneously. + * + * \param addr Start of memory region. + * \param size Size of memory region. */ +void __asan_unpoison_memory_region(void const volatile *addr, size_t size); +#endif + +#endif /* ZSTD_COMPILER_H */ diff --git a/src/third-party/zstd/common/cpu.h b/src/third-party/zstd/common/cpu.h new file mode 100644 index 0000000000000..3f15d560f0ccf --- /dev/null +++ b/src/third-party/zstd/common/cpu.h @@ -0,0 +1,249 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_COMMON_CPU_H +#define ZSTD_COMMON_CPU_H + +/** + * Implementation taken from folly/CpuId.h + * https://github.com/facebook/folly/blob/master/folly/CpuId.h + */ + +#include "mem.h" + +#ifdef _MSC_VER +#include +#endif + +typedef struct { + U32 f1c; + U32 f1d; + U32 f7b; + U32 f7c; +} ZSTD_cpuid_t; + +MEM_STATIC ZSTD_cpuid_t ZSTD_cpuid(void) { + U32 f1c = 0; + U32 f1d = 0; + U32 f7b = 0; + U32 f7c = 0; +#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) +#if !defined(_M_X64) || !defined(__clang__) || __clang_major__ >= 16 + int reg[4]; + __cpuid((int*)reg, 0); + { + int const n = reg[0]; + if (n >= 1) { + __cpuid((int*)reg, 1); + f1c = (U32)reg[2]; + f1d = (U32)reg[3]; + } + if (n >= 7) { + __cpuidex((int*)reg, 7, 0); + f7b = (U32)reg[1]; + f7c = (U32)reg[2]; + } + } +#else + /* Clang compiler has a bug (fixed in https://reviews.llvm.org/D101338) in + * which the `__cpuid` intrinsic does not save and restore `rbx` as it needs + * to due to being a reserved register. So in that case, do the `cpuid` + * ourselves. Clang supports inline assembly anyway. + */ + U32 n; + __asm__( + "pushq %%rbx\n\t" + "cpuid\n\t" + "popq %%rbx\n\t" + : "=a"(n) + : "a"(0) + : "rcx", "rdx"); + if (n >= 1) { + U32 f1a; + __asm__( + "pushq %%rbx\n\t" + "cpuid\n\t" + "popq %%rbx\n\t" + : "=a"(f1a), "=c"(f1c), "=d"(f1d) + : "a"(1) + :); + } + if (n >= 7) { + __asm__( + "pushq %%rbx\n\t" + "cpuid\n\t" + "movq %%rbx, %%rax\n\t" + "popq %%rbx" + : "=a"(f7b), "=c"(f7c) + : "a"(7), "c"(0) + : "rdx"); + } +#endif +#elif defined(__i386__) && defined(__PIC__) && !defined(__clang__) && defined(__GNUC__) + /* The following block like the normal cpuid branch below, but gcc + * reserves ebx for use of its pic register so we must specially + * handle the save and restore to avoid clobbering the register + */ + U32 n; + __asm__( + "pushl %%ebx\n\t" + "cpuid\n\t" + "popl %%ebx\n\t" + : "=a"(n) + : "a"(0) + : "ecx", "edx"); + if (n >= 1) { + U32 f1a; + __asm__( + "pushl %%ebx\n\t" + "cpuid\n\t" + "popl %%ebx\n\t" + : "=a"(f1a), "=c"(f1c), "=d"(f1d) + : "a"(1)); + } + if (n >= 7) { + __asm__( + "pushl %%ebx\n\t" + "cpuid\n\t" + "movl %%ebx, %%eax\n\t" + "popl %%ebx" + : "=a"(f7b), "=c"(f7c) + : "a"(7), "c"(0) + : "edx"); + } +#elif defined(__x86_64__) || defined(_M_X64) || defined(__i386__) + U32 n; + __asm__("cpuid" : "=a"(n) : "a"(0) : "ebx", "ecx", "edx"); + if (n >= 1) { + U32 f1a; + __asm__("cpuid" : "=a"(f1a), "=c"(f1c), "=d"(f1d) : "a"(1) : "ebx"); + } + if (n >= 7) { + U32 f7a; + __asm__("cpuid" + : "=a"(f7a), "=b"(f7b), "=c"(f7c) + : "a"(7), "c"(0) + : "edx"); + } +#endif + { + ZSTD_cpuid_t cpuid; + cpuid.f1c = f1c; + cpuid.f1d = f1d; + cpuid.f7b = f7b; + cpuid.f7c = f7c; + return cpuid; + } +} + +#define X(name, r, bit) \ + MEM_STATIC int ZSTD_cpuid_##name(ZSTD_cpuid_t const cpuid) { \ + return ((cpuid.r) & (1U << bit)) != 0; \ + } + +/* cpuid(1): Processor Info and Feature Bits. */ +#define C(name, bit) X(name, f1c, bit) + C(sse3, 0) + C(pclmuldq, 1) + C(dtes64, 2) + C(monitor, 3) + C(dscpl, 4) + C(vmx, 5) + C(smx, 6) + C(eist, 7) + C(tm2, 8) + C(ssse3, 9) + C(cnxtid, 10) + C(fma, 12) + C(cx16, 13) + C(xtpr, 14) + C(pdcm, 15) + C(pcid, 17) + C(dca, 18) + C(sse41, 19) + C(sse42, 20) + C(x2apic, 21) + C(movbe, 22) + C(popcnt, 23) + C(tscdeadline, 24) + C(aes, 25) + C(xsave, 26) + C(osxsave, 27) + C(avx, 28) + C(f16c, 29) + C(rdrand, 30) +#undef C +#define D(name, bit) X(name, f1d, bit) + D(fpu, 0) + D(vme, 1) + D(de, 2) + D(pse, 3) + D(tsc, 4) + D(msr, 5) + D(pae, 6) + D(mce, 7) + D(cx8, 8) + D(apic, 9) + D(sep, 11) + D(mtrr, 12) + D(pge, 13) + D(mca, 14) + D(cmov, 15) + D(pat, 16) + D(pse36, 17) + D(psn, 18) + D(clfsh, 19) + D(ds, 21) + D(acpi, 22) + D(mmx, 23) + D(fxsr, 24) + D(sse, 25) + D(sse2, 26) + D(ss, 27) + D(htt, 28) + D(tm, 29) + D(pbe, 31) +#undef D + +/* cpuid(7): Extended Features. */ +#define B(name, bit) X(name, f7b, bit) + B(bmi1, 3) + B(hle, 4) + B(avx2, 5) + B(smep, 7) + B(bmi2, 8) + B(erms, 9) + B(invpcid, 10) + B(rtm, 11) + B(mpx, 14) + B(avx512f, 16) + B(avx512dq, 17) + B(rdseed, 18) + B(adx, 19) + B(smap, 20) + B(avx512ifma, 21) + B(pcommit, 22) + B(clflushopt, 23) + B(clwb, 24) + B(avx512pf, 26) + B(avx512er, 27) + B(avx512cd, 28) + B(sha, 29) + B(avx512bw, 30) + B(avx512vl, 31) +#undef B +#define C(name, bit) X(name, f7c, bit) + C(prefetchwt1, 0) + C(avx512vbmi, 1) +#undef C + +#undef X + +#endif /* ZSTD_COMMON_CPU_H */ diff --git a/src/third-party/zstd/common/debug.c b/src/third-party/zstd/common/debug.c new file mode 100644 index 0000000000000..9d0b7d229c14c --- /dev/null +++ b/src/third-party/zstd/common/debug.c @@ -0,0 +1,30 @@ +/* ****************************************************************** + * debug + * Part of FSE library + * Copyright (c) Meta Platforms, Inc. and affiliates. + * + * You can contact the author at : + * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. +****************************************************************** */ + + +/* + * This module only hosts one global variable + * which can be used to dynamically influence the verbosity of traces, + * such as DEBUGLOG and RAWLOG + */ + +#include "debug.h" + +#if !defined(ZSTD_LINUX_KERNEL) || (DEBUGLEVEL>=2) +/* We only use this when DEBUGLEVEL>=2, but we get -Werror=pedantic errors if a + * translation unit is empty. So remove this from Linux kernel builds, but + * otherwise just leave it in. + */ +int g_debuglevel = DEBUGLEVEL; +#endif diff --git a/src/third-party/zstd/common/debug.h b/src/third-party/zstd/common/debug.h new file mode 100644 index 0000000000000..4b60ddf7f51e7 --- /dev/null +++ b/src/third-party/zstd/common/debug.h @@ -0,0 +1,107 @@ +/* ****************************************************************** + * debug + * Part of FSE library + * Copyright (c) Meta Platforms, Inc. and affiliates. + * + * You can contact the author at : + * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. +****************************************************************** */ + + +/* + * The purpose of this header is to enable debug functions. + * They regroup assert(), DEBUGLOG() and RAWLOG() for run-time, + * and DEBUG_STATIC_ASSERT() for compile-time. + * + * By default, DEBUGLEVEL==0, which means run-time debug is disabled. + * + * Level 1 enables assert() only. + * Starting level 2, traces can be generated and pushed to stderr. + * The higher the level, the more verbose the traces. + * + * It's possible to dynamically adjust level using variable g_debug_level, + * which is only declared if DEBUGLEVEL>=2, + * and is a global variable, not multi-thread protected (use with care) + */ + +#ifndef DEBUG_H_12987983217 +#define DEBUG_H_12987983217 + + +/* static assert is triggered at compile time, leaving no runtime artefact. + * static assert only works with compile-time constants. + * Also, this variant can only be used inside a function. */ +#define DEBUG_STATIC_ASSERT(c) (void)sizeof(char[(c) ? 1 : -1]) + + +/* DEBUGLEVEL is expected to be defined externally, + * typically through compiler command line. + * Value must be a number. */ +#ifndef DEBUGLEVEL +# define DEBUGLEVEL 0 +#endif + + +/* recommended values for DEBUGLEVEL : + * 0 : release mode, no debug, all run-time checks disabled + * 1 : enables assert() only, no display + * 2 : reserved, for currently active debug path + * 3 : events once per object lifetime (CCtx, CDict, etc.) + * 4 : events once per frame + * 5 : events once per block + * 6 : events once per sequence (verbose) + * 7+: events at every position (*very* verbose) + * + * It's generally inconvenient to output traces > 5. + * In which case, it's possible to selectively trigger high verbosity levels + * by modifying g_debug_level. + */ + +#if (DEBUGLEVEL>=1) +# define ZSTD_DEPS_NEED_ASSERT +# include "zstd_deps.h" +#else +# ifndef assert /* assert may be already defined, due to prior #include */ +# define assert(condition) ((void)0) /* disable assert (default) */ +# endif +#endif + +#if (DEBUGLEVEL>=2) +# define ZSTD_DEPS_NEED_IO +# include "zstd_deps.h" +extern int g_debuglevel; /* the variable is only declared, + it actually lives in debug.c, + and is shared by the whole process. + It's not thread-safe. + It's useful when enabling very verbose levels + on selective conditions (such as position in src) */ + +# define RAWLOG(l, ...) \ + do { \ + if (l<=g_debuglevel) { \ + ZSTD_DEBUG_PRINT(__VA_ARGS__); \ + } \ + } while (0) + +#define STRINGIFY(x) #x +#define TOSTRING(x) STRINGIFY(x) +#define LINE_AS_STRING TOSTRING(__LINE__) + +# define DEBUGLOG(l, ...) \ + do { \ + if (l<=g_debuglevel) { \ + ZSTD_DEBUG_PRINT(__FILE__ ":" LINE_AS_STRING ": " __VA_ARGS__); \ + ZSTD_DEBUG_PRINT(" \n"); \ + } \ + } while (0) +#else +# define RAWLOG(l, ...) do { } while (0) /* disabled */ +# define DEBUGLOG(l, ...) do { } while (0) /* disabled */ +#endif + +#endif /* DEBUG_H_12987983217 */ diff --git a/src/third-party/zstd/common/entropy_common.c b/src/third-party/zstd/common/entropy_common.c new file mode 100644 index 0000000000000..e2173afb0a8b0 --- /dev/null +++ b/src/third-party/zstd/common/entropy_common.c @@ -0,0 +1,340 @@ +/* ****************************************************************** + * Common functions of New Generation Entropy library + * Copyright (c) Meta Platforms, Inc. and affiliates. + * + * You can contact the author at : + * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy + * - Public forum : https://groups.google.com/forum/#!forum/lz4c + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. +****************************************************************** */ + +/* ************************************* +* Dependencies +***************************************/ +#include "mem.h" +#include "error_private.h" /* ERR_*, ERROR */ +#define FSE_STATIC_LINKING_ONLY /* FSE_MIN_TABLELOG */ +#include "fse.h" +#include "huf.h" +#include "bits.h" /* ZSDT_highbit32, ZSTD_countTrailingZeros32 */ + + +/*=== Version ===*/ +unsigned FSE_versionNumber(void) { return FSE_VERSION_NUMBER; } + + +/*=== Error Management ===*/ +unsigned FSE_isError(size_t code) { return ERR_isError(code); } +const char* FSE_getErrorName(size_t code) { return ERR_getErrorName(code); } + +unsigned HUF_isError(size_t code) { return ERR_isError(code); } +const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); } + + +/*-************************************************************** +* FSE NCount encoding-decoding +****************************************************************/ +FORCE_INLINE_TEMPLATE +size_t FSE_readNCount_body(short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr, + const void* headerBuffer, size_t hbSize) +{ + const BYTE* const istart = (const BYTE*) headerBuffer; + const BYTE* const iend = istart + hbSize; + const BYTE* ip = istart; + int nbBits; + int remaining; + int threshold; + U32 bitStream; + int bitCount; + unsigned charnum = 0; + unsigned const maxSV1 = *maxSVPtr + 1; + int previous0 = 0; + + if (hbSize < 8) { + /* This function only works when hbSize >= 8 */ + char buffer[8] = {0}; + ZSTD_memcpy(buffer, headerBuffer, hbSize); + { size_t const countSize = FSE_readNCount(normalizedCounter, maxSVPtr, tableLogPtr, + buffer, sizeof(buffer)); + if (FSE_isError(countSize)) return countSize; + if (countSize > hbSize) return ERROR(corruption_detected); + return countSize; + } } + assert(hbSize >= 8); + + /* init */ + ZSTD_memset(normalizedCounter, 0, (*maxSVPtr+1) * sizeof(normalizedCounter[0])); /* all symbols not present in NCount have a frequency of 0 */ + bitStream = MEM_readLE32(ip); + nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */ + if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge); + bitStream >>= 4; + bitCount = 4; + *tableLogPtr = nbBits; + remaining = (1<> 1; + while (repeats >= 12) { + charnum += 3 * 12; + if (LIKELY(ip <= iend-7)) { + ip += 3; + } else { + bitCount -= (int)(8 * (iend - 7 - ip)); + bitCount &= 31; + ip = iend - 4; + } + bitStream = MEM_readLE32(ip) >> bitCount; + repeats = ZSTD_countTrailingZeros32(~bitStream | 0x80000000) >> 1; + } + charnum += 3 * repeats; + bitStream >>= 2 * repeats; + bitCount += 2 * repeats; + + /* Add the final repeat which isn't 0b11. */ + assert((bitStream & 3) < 3); + charnum += bitStream & 3; + bitCount += 2; + + /* This is an error, but break and return an error + * at the end, because returning out of a loop makes + * it harder for the compiler to optimize. + */ + if (charnum >= maxSV1) break; + + /* We don't need to set the normalized count to 0 + * because we already memset the whole buffer to 0. + */ + + if (LIKELY(ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) { + assert((bitCount >> 3) <= 3); /* For first condition to work */ + ip += bitCount>>3; + bitCount &= 7; + } else { + bitCount -= (int)(8 * (iend - 4 - ip)); + bitCount &= 31; + ip = iend - 4; + } + bitStream = MEM_readLE32(ip) >> bitCount; + } + { + int const max = (2*threshold-1) - remaining; + int count; + + if ((bitStream & (threshold-1)) < (U32)max) { + count = bitStream & (threshold-1); + bitCount += nbBits-1; + } else { + count = bitStream & (2*threshold-1); + if (count >= threshold) count -= max; + bitCount += nbBits; + } + + count--; /* extra accuracy */ + /* When it matters (small blocks), this is a + * predictable branch, because we don't use -1. + */ + if (count >= 0) { + remaining -= count; + } else { + assert(count == -1); + remaining += count; + } + normalizedCounter[charnum++] = (short)count; + previous0 = !count; + + assert(threshold > 1); + if (remaining < threshold) { + /* This branch can be folded into the + * threshold update condition because we + * know that threshold > 1. + */ + if (remaining <= 1) break; + nbBits = ZSTD_highbit32(remaining) + 1; + threshold = 1 << (nbBits - 1); + } + if (charnum >= maxSV1) break; + + if (LIKELY(ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) { + ip += bitCount>>3; + bitCount &= 7; + } else { + bitCount -= (int)(8 * (iend - 4 - ip)); + bitCount &= 31; + ip = iend - 4; + } + bitStream = MEM_readLE32(ip) >> bitCount; + } } + if (remaining != 1) return ERROR(corruption_detected); + /* Only possible when there are too many zeros. */ + if (charnum > maxSV1) return ERROR(maxSymbolValue_tooSmall); + if (bitCount > 32) return ERROR(corruption_detected); + *maxSVPtr = charnum-1; + + ip += (bitCount+7)>>3; + return ip-istart; +} + +/* Avoids the FORCE_INLINE of the _body() function. */ +static size_t FSE_readNCount_body_default( + short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr, + const void* headerBuffer, size_t hbSize) +{ + return FSE_readNCount_body(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize); +} + +#if DYNAMIC_BMI2 +BMI2_TARGET_ATTRIBUTE static size_t FSE_readNCount_body_bmi2( + short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr, + const void* headerBuffer, size_t hbSize) +{ + return FSE_readNCount_body(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize); +} +#endif + +size_t FSE_readNCount_bmi2( + short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr, + const void* headerBuffer, size_t hbSize, int bmi2) +{ +#if DYNAMIC_BMI2 + if (bmi2) { + return FSE_readNCount_body_bmi2(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize); + } +#endif + (void)bmi2; + return FSE_readNCount_body_default(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize); +} + +size_t FSE_readNCount( + short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr, + const void* headerBuffer, size_t hbSize) +{ + return FSE_readNCount_bmi2(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize, /* bmi2 */ 0); +} + + +/*! HUF_readStats() : + Read compact Huffman tree, saved by HUF_writeCTable(). + `huffWeight` is destination buffer. + `rankStats` is assumed to be a table of at least HUF_TABLELOG_MAX U32. + @return : size read from `src` , or an error Code . + Note : Needed by HUF_readCTable() and HUF_readDTableX?() . +*/ +size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats, + U32* nbSymbolsPtr, U32* tableLogPtr, + const void* src, size_t srcSize) +{ + U32 wksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; + return HUF_readStats_wksp(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, wksp, sizeof(wksp), /* flags */ 0); +} + +FORCE_INLINE_TEMPLATE size_t +HUF_readStats_body(BYTE* huffWeight, size_t hwSize, U32* rankStats, + U32* nbSymbolsPtr, U32* tableLogPtr, + const void* src, size_t srcSize, + void* workSpace, size_t wkspSize, + int bmi2) +{ + U32 weightTotal; + const BYTE* ip = (const BYTE*) src; + size_t iSize; + size_t oSize; + + if (!srcSize) return ERROR(srcSize_wrong); + iSize = ip[0]; + /* ZSTD_memset(huffWeight, 0, hwSize); *//* is not necessary, even though some analyzer complain ... */ + + if (iSize >= 128) { /* special header */ + oSize = iSize - 127; + iSize = ((oSize+1)/2); + if (iSize+1 > srcSize) return ERROR(srcSize_wrong); + if (oSize >= hwSize) return ERROR(corruption_detected); + ip += 1; + { U32 n; + for (n=0; n> 4; + huffWeight[n+1] = ip[n/2] & 15; + } } } + else { /* header compressed with FSE (normal case) */ + if (iSize+1 > srcSize) return ERROR(srcSize_wrong); + /* max (hwSize-1) values decoded, as last one is implied */ + oSize = FSE_decompress_wksp_bmi2(huffWeight, hwSize-1, ip+1, iSize, 6, workSpace, wkspSize, bmi2); + if (FSE_isError(oSize)) return oSize; + } + + /* collect weight stats */ + ZSTD_memset(rankStats, 0, (HUF_TABLELOG_MAX + 1) * sizeof(U32)); + weightTotal = 0; + { U32 n; for (n=0; n HUF_TABLELOG_MAX) return ERROR(corruption_detected); + rankStats[huffWeight[n]]++; + weightTotal += (1 << huffWeight[n]) >> 1; + } } + if (weightTotal == 0) return ERROR(corruption_detected); + + /* get last non-null symbol weight (implied, total must be 2^n) */ + { U32 const tableLog = ZSTD_highbit32(weightTotal) + 1; + if (tableLog > HUF_TABLELOG_MAX) return ERROR(corruption_detected); + *tableLogPtr = tableLog; + /* determine last weight */ + { U32 const total = 1 << tableLog; + U32 const rest = total - weightTotal; + U32 const verif = 1 << ZSTD_highbit32(rest); + U32 const lastWeight = ZSTD_highbit32(rest) + 1; + if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */ + huffWeight[oSize] = (BYTE)lastWeight; + rankStats[lastWeight]++; + } } + + /* check tree construction validity */ + if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */ + + /* results */ + *nbSymbolsPtr = (U32)(oSize+1); + return iSize+1; +} + +/* Avoids the FORCE_INLINE of the _body() function. */ +static size_t HUF_readStats_body_default(BYTE* huffWeight, size_t hwSize, U32* rankStats, + U32* nbSymbolsPtr, U32* tableLogPtr, + const void* src, size_t srcSize, + void* workSpace, size_t wkspSize) +{ + return HUF_readStats_body(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize, 0); +} + +#if DYNAMIC_BMI2 +static BMI2_TARGET_ATTRIBUTE size_t HUF_readStats_body_bmi2(BYTE* huffWeight, size_t hwSize, U32* rankStats, + U32* nbSymbolsPtr, U32* tableLogPtr, + const void* src, size_t srcSize, + void* workSpace, size_t wkspSize) +{ + return HUF_readStats_body(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize, 1); +} +#endif + +size_t HUF_readStats_wksp(BYTE* huffWeight, size_t hwSize, U32* rankStats, + U32* nbSymbolsPtr, U32* tableLogPtr, + const void* src, size_t srcSize, + void* workSpace, size_t wkspSize, + int flags) +{ +#if DYNAMIC_BMI2 + if (flags & HUF_flags_bmi2) { + return HUF_readStats_body_bmi2(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize); + } +#endif + (void)flags; + return HUF_readStats_body_default(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize); +} diff --git a/src/third-party/zstd/common/error_private.c b/src/third-party/zstd/common/error_private.c new file mode 100644 index 0000000000000..7e7f24f675653 --- /dev/null +++ b/src/third-party/zstd/common/error_private.c @@ -0,0 +1,64 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/* The purpose of this file is to have a single list of error strings embedded in binary */ + +#include "error_private.h" + +const char* ERR_getErrorString(ERR_enum code) +{ +#ifdef ZSTD_STRIP_ERROR_STRINGS + (void)code; + return "Error strings stripped"; +#else + static const char* const notErrorCode = "Unspecified error code"; + switch( code ) + { + case PREFIX(no_error): return "No error detected"; + case PREFIX(GENERIC): return "Error (generic)"; + case PREFIX(prefix_unknown): return "Unknown frame descriptor"; + case PREFIX(version_unsupported): return "Version not supported"; + case PREFIX(frameParameter_unsupported): return "Unsupported frame parameter"; + case PREFIX(frameParameter_windowTooLarge): return "Frame requires too much memory for decoding"; + case PREFIX(corruption_detected): return "Data corruption detected"; + case PREFIX(checksum_wrong): return "Restored data doesn't match checksum"; + case PREFIX(literals_headerWrong): return "Header of Literals' block doesn't respect format specification"; + case PREFIX(parameter_unsupported): return "Unsupported parameter"; + case PREFIX(parameter_combination_unsupported): return "Unsupported combination of parameters"; + case PREFIX(parameter_outOfBound): return "Parameter is out of bound"; + case PREFIX(init_missing): return "Context should be init first"; + case PREFIX(memory_allocation): return "Allocation error : not enough memory"; + case PREFIX(workSpace_tooSmall): return "workSpace buffer is not large enough"; + case PREFIX(stage_wrong): return "Operation not authorized at current processing stage"; + case PREFIX(tableLog_tooLarge): return "tableLog requires too much memory : unsupported"; + case PREFIX(maxSymbolValue_tooLarge): return "Unsupported max Symbol Value : too large"; + case PREFIX(maxSymbolValue_tooSmall): return "Specified maxSymbolValue is too small"; + case PREFIX(cannotProduce_uncompressedBlock): return "This mode cannot generate an uncompressed block"; + case PREFIX(stabilityCondition_notRespected): return "pledged buffer stability condition is not respected"; + case PREFIX(dictionary_corrupted): return "Dictionary is corrupted"; + case PREFIX(dictionary_wrong): return "Dictionary mismatch"; + case PREFIX(dictionaryCreation_failed): return "Cannot create Dictionary from provided samples"; + case PREFIX(dstSize_tooSmall): return "Destination buffer is too small"; + case PREFIX(srcSize_wrong): return "Src size is incorrect"; + case PREFIX(dstBuffer_null): return "Operation on NULL destination buffer"; + case PREFIX(noForwardProgress_destFull): return "Operation made no progress over multiple calls, due to output buffer being full"; + case PREFIX(noForwardProgress_inputEmpty): return "Operation made no progress over multiple calls, due to input being empty"; + /* following error codes are not stable and may be removed or changed in a future version */ + case PREFIX(frameIndex_tooLarge): return "Frame index is too large"; + case PREFIX(seekableIO): return "An I/O error occurred when reading/seeking"; + case PREFIX(dstBuffer_wrong): return "Destination buffer is wrong"; + case PREFIX(srcBuffer_wrong): return "Source buffer is wrong"; + case PREFIX(sequenceProducer_failed): return "Block-level external sequence producer returned an error code"; + case PREFIX(externalSequences_invalid): return "External sequences are not valid"; + case PREFIX(maxCode): + default: return notErrorCode; + } +#endif +} diff --git a/src/third-party/zstd/common/error_private.h b/src/third-party/zstd/common/error_private.h new file mode 100644 index 0000000000000..9dcc8595123cd --- /dev/null +++ b/src/third-party/zstd/common/error_private.h @@ -0,0 +1,158 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/* Note : this module is expected to remain private, do not expose it */ + +#ifndef ERROR_H_MODULE +#define ERROR_H_MODULE + +/* **************************************** +* Dependencies +******************************************/ +#include "../zstd_errors.h" /* enum list */ +#include "compiler.h" +#include "debug.h" +#include "zstd_deps.h" /* size_t */ + +/* **************************************** +* Compiler-specific +******************************************/ +#if defined(__GNUC__) +# define ERR_STATIC static __attribute__((unused)) +#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) +# define ERR_STATIC static inline +#elif defined(_MSC_VER) +# define ERR_STATIC static __inline +#else +# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ +#endif + + +/*-**************************************** +* Customization (error_public.h) +******************************************/ +typedef ZSTD_ErrorCode ERR_enum; +#define PREFIX(name) ZSTD_error_##name + + +/*-**************************************** +* Error codes handling +******************************************/ +#undef ERROR /* already defined on Visual Studio */ +#define ERROR(name) ZSTD_ERROR(name) +#define ZSTD_ERROR(name) ((size_t)-PREFIX(name)) + +ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); } + +ERR_STATIC ERR_enum ERR_getErrorCode(size_t code) { if (!ERR_isError(code)) return (ERR_enum)0; return (ERR_enum) (0-code); } + +/* check and forward error code */ +#define CHECK_V_F(e, f) \ + size_t const e = f; \ + do { \ + if (ERR_isError(e)) \ + return e; \ + } while (0) +#define CHECK_F(f) do { CHECK_V_F(_var_err__, f); } while (0) + + +/*-**************************************** +* Error Strings +******************************************/ + +const char* ERR_getErrorString(ERR_enum code); /* error_private.c */ + +ERR_STATIC const char* ERR_getErrorName(size_t code) +{ + return ERR_getErrorString(ERR_getErrorCode(code)); +} + +/** + * Ignore: this is an internal helper. + * + * This is a helper function to help force C99-correctness during compilation. + * Under strict compilation modes, variadic macro arguments can't be empty. + * However, variadic function arguments can be. Using a function therefore lets + * us statically check that at least one (string) argument was passed, + * independent of the compilation flags. + */ +static INLINE_KEYWORD UNUSED_ATTR +void _force_has_format_string(const char *format, ...) { + (void)format; +} + +/** + * Ignore: this is an internal helper. + * + * We want to force this function invocation to be syntactically correct, but + * we don't want to force runtime evaluation of its arguments. + */ +#define _FORCE_HAS_FORMAT_STRING(...) \ + do { \ + if (0) { \ + _force_has_format_string(__VA_ARGS__); \ + } \ + } while (0) + +#define ERR_QUOTE(str) #str + +/** + * Return the specified error if the condition evaluates to true. + * + * In debug modes, prints additional information. + * In order to do that (particularly, printing the conditional that failed), + * this can't just wrap RETURN_ERROR(). + */ +#define RETURN_ERROR_IF(cond, err, ...) \ + do { \ + if (cond) { \ + RAWLOG(3, "%s:%d: ERROR!: check %s failed, returning %s", \ + __FILE__, __LINE__, ERR_QUOTE(cond), ERR_QUOTE(ERROR(err))); \ + _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \ + RAWLOG(3, ": " __VA_ARGS__); \ + RAWLOG(3, "\n"); \ + return ERROR(err); \ + } \ + } while (0) + +/** + * Unconditionally return the specified error. + * + * In debug modes, prints additional information. + */ +#define RETURN_ERROR(err, ...) \ + do { \ + RAWLOG(3, "%s:%d: ERROR!: unconditional check failed, returning %s", \ + __FILE__, __LINE__, ERR_QUOTE(ERROR(err))); \ + _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \ + RAWLOG(3, ": " __VA_ARGS__); \ + RAWLOG(3, "\n"); \ + return ERROR(err); \ + } while(0) + +/** + * If the provided expression evaluates to an error code, returns that error code. + * + * In debug modes, prints additional information. + */ +#define FORWARD_IF_ERROR(err, ...) \ + do { \ + size_t const err_code = (err); \ + if (ERR_isError(err_code)) { \ + RAWLOG(3, "%s:%d: ERROR!: forwarding error in %s: %s", \ + __FILE__, __LINE__, ERR_QUOTE(err), ERR_getErrorName(err_code)); \ + _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \ + RAWLOG(3, ": " __VA_ARGS__); \ + RAWLOG(3, "\n"); \ + return err_code; \ + } \ + } while(0) + +#endif /* ERROR_H_MODULE */ diff --git a/src/third-party/zstd/common/fse.h b/src/third-party/zstd/common/fse.h new file mode 100644 index 0000000000000..b1940d9426a09 --- /dev/null +++ b/src/third-party/zstd/common/fse.h @@ -0,0 +1,625 @@ +/* ****************************************************************** + * FSE : Finite State Entropy codec + * Public Prototypes declaration + * Copyright (c) Meta Platforms, Inc. and affiliates. + * + * You can contact the author at : + * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. +****************************************************************** */ +#ifndef FSE_H +#define FSE_H + + +/*-***************************************** +* Dependencies +******************************************/ +#include "zstd_deps.h" /* size_t, ptrdiff_t */ + +/*-***************************************** +* FSE_PUBLIC_API : control library symbols visibility +******************************************/ +#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4) +# define FSE_PUBLIC_API __attribute__ ((visibility ("default"))) +#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */ +# define FSE_PUBLIC_API __declspec(dllexport) +#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1) +# define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ +#else +# define FSE_PUBLIC_API +#endif + +/*------ Version ------*/ +#define FSE_VERSION_MAJOR 0 +#define FSE_VERSION_MINOR 9 +#define FSE_VERSION_RELEASE 0 + +#define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE +#define FSE_QUOTE(str) #str +#define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str) +#define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION) + +#define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE) +FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */ + + +/*-***************************************** +* Tool functions +******************************************/ +FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */ + +/* Error Management */ +FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */ +FSE_PUBLIC_API const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */ + + +/*-***************************************** +* FSE detailed API +******************************************/ +/*! +FSE_compress() does the following: +1. count symbol occurrence from source[] into table count[] (see hist.h) +2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog) +3. save normalized counters to memory buffer using writeNCount() +4. build encoding table 'CTable' from normalized counters +5. encode the data stream using encoding table 'CTable' + +FSE_decompress() does the following: +1. read normalized counters with readNCount() +2. build decoding table 'DTable' from normalized counters +3. decode the data stream using decoding table 'DTable' + +The following API allows targeting specific sub-functions for advanced tasks. +For example, it's possible to compress several blocks using the same 'CTable', +or to save and provide normalized distribution using external method. +*/ + +/* *** COMPRESSION *** */ + +/*! FSE_optimalTableLog(): + dynamically downsize 'tableLog' when conditions are met. + It saves CPU time, by using smaller tables, while preserving or even improving compression ratio. + @return : recommended tableLog (necessarily <= 'maxTableLog') */ +FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue); + +/*! FSE_normalizeCount(): + normalize counts so that sum(count[]) == Power_of_2 (2^tableLog) + 'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1). + useLowProbCount is a boolean parameter which trades off compressed size for + faster header decoding. When it is set to 1, the compressed data will be slightly + smaller. And when it is set to 0, FSE_readNCount() and FSE_buildDTable() will be + faster. If you are compressing a small amount of data (< 2 KB) then useLowProbCount=0 + is a good default, since header deserialization makes a big speed difference. + Otherwise, useLowProbCount=1 is a good default, since the speed difference is small. + @return : tableLog, + or an errorCode, which can be tested using FSE_isError() */ +FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, + const unsigned* count, size_t srcSize, unsigned maxSymbolValue, unsigned useLowProbCount); + +/*! FSE_NCountWriteBound(): + Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'. + Typically useful for allocation purpose. */ +FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog); + +/*! FSE_writeNCount(): + Compactly save 'normalizedCounter' into 'buffer'. + @return : size of the compressed table, + or an errorCode, which can be tested using FSE_isError(). */ +FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize, + const short* normalizedCounter, + unsigned maxSymbolValue, unsigned tableLog); + +/*! Constructor and Destructor of FSE_CTable. + Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */ +typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */ + +/*! FSE_buildCTable(): + Builds `ct`, which must be already allocated, using FSE_createCTable(). + @return : 0, or an errorCode, which can be tested using FSE_isError() */ +FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); + +/*! FSE_compress_usingCTable(): + Compress `src` using `ct` into `dst` which must be already allocated. + @return : size of compressed data (<= `dstCapacity`), + or 0 if compressed data could not fit into `dst`, + or an errorCode, which can be tested using FSE_isError() */ +FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct); + +/*! +Tutorial : +---------- +The first step is to count all symbols. FSE_count() does this job very fast. +Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells. +'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0] +maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value) +FSE_count() will return the number of occurrence of the most frequent symbol. +This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility. +If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). + +The next step is to normalize the frequencies. +FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'. +It also guarantees a minimum of 1 to any Symbol with frequency >= 1. +You can use 'tableLog'==0 to mean "use default tableLog value". +If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(), +which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default"). + +The result of FSE_normalizeCount() will be saved into a table, +called 'normalizedCounter', which is a table of signed short. +'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells. +The return value is tableLog if everything proceeded as expected. +It is 0 if there is a single symbol within distribution. +If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()). + +'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount(). +'buffer' must be already allocated. +For guaranteed success, buffer size must be at least FSE_headerBound(). +The result of the function is the number of bytes written into 'buffer'. +If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small). + +'normalizedCounter' can then be used to create the compression table 'CTable'. +The space required by 'CTable' must be already allocated, using FSE_createCTable(). +You can then use FSE_buildCTable() to fill 'CTable'. +If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()). + +'CTable' can then be used to compress 'src', with FSE_compress_usingCTable(). +Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize' +The function returns the size of compressed data (without header), necessarily <= `dstCapacity`. +If it returns '0', compressed data could not fit into 'dst'. +If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). +*/ + + +/* *** DECOMPRESSION *** */ + +/*! FSE_readNCount(): + Read compactly saved 'normalizedCounter' from 'rBuffer'. + @return : size read from 'rBuffer', + or an errorCode, which can be tested using FSE_isError(). + maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */ +FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter, + unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, + const void* rBuffer, size_t rBuffSize); + +/*! FSE_readNCount_bmi2(): + * Same as FSE_readNCount() but pass bmi2=1 when your CPU supports BMI2 and 0 otherwise. + */ +FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter, + unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, + const void* rBuffer, size_t rBuffSize, int bmi2); + +typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */ + +/*! +Tutorial : +---------- +(Note : these functions only decompress FSE-compressed blocks. + If block is uncompressed, use memcpy() instead + If block is a single repeated byte, use memset() instead ) + +The first step is to obtain the normalized frequencies of symbols. +This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount(). +'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short. +In practice, that means it's necessary to know 'maxSymbolValue' beforehand, +or size the table to handle worst case situations (typically 256). +FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'. +The result of FSE_readNCount() is the number of bytes read from 'rBuffer'. +Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that. +If there is an error, the function will return an error code, which can be tested using FSE_isError(). + +The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'. +This is performed by the function FSE_buildDTable(). +The space required by 'FSE_DTable' must be already allocated using FSE_createDTable(). +If there is an error, the function will return an error code, which can be tested using FSE_isError(). + +`FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable(). +`cSrcSize` must be strictly correct, otherwise decompression will fail. +FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`). +If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small) +*/ + +#endif /* FSE_H */ + + +#if defined(FSE_STATIC_LINKING_ONLY) && !defined(FSE_H_FSE_STATIC_LINKING_ONLY) +#define FSE_H_FSE_STATIC_LINKING_ONLY +#include "bitstream.h" + +/* ***************************************** +* Static allocation +*******************************************/ +/* FSE buffer bounds */ +#define FSE_NCOUNTBOUND 512 +#define FSE_BLOCKBOUND(size) ((size) + ((size)>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */) +#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ + +/* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */ +#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<((maxTableLog)-1)) + (((maxSymbolValue)+1)*2)) +#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<(maxTableLog))) + +/* or use the size to malloc() space directly. Pay attention to alignment restrictions though */ +#define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue) (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable)) +#define FSE_DTABLE_SIZE(maxTableLog) (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable)) + + +/* ***************************************** + * FSE advanced API + ***************************************** */ + +unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus); +/**< same as FSE_optimalTableLog(), which used `minus==2` */ + +size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue); +/**< build a fake FSE_CTable, designed to compress always the same symbolValue */ + +/* FSE_buildCTable_wksp() : + * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`). + * `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`. + * See FSE_buildCTable_wksp() for breakdown of workspace usage. + */ +#define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (((maxSymbolValue + 2) + (1ull << (tableLog)))/2 + sizeof(U64)/sizeof(U32) /* additional 8 bytes for potential table overwrite */) +#define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)) +size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); + +#define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) (sizeof(short) * (maxSymbolValue + 1) + (1ULL << maxTableLog) + 8) +#define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ((FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) + sizeof(unsigned) - 1) / sizeof(unsigned)) +FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); +/**< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */ + +#define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + 1 + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1) +#define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned)) +size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2); +/**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)`. + * Set bmi2 to 1 if your CPU supports BMI2 or 0 if it doesn't */ + +typedef enum { + FSE_repeat_none, /**< Cannot use the previous table */ + FSE_repeat_check, /**< Can use the previous table but it must be checked */ + FSE_repeat_valid /**< Can use the previous table and it is assumed to be valid */ + } FSE_repeat; + +/* ***************************************** +* FSE symbol compression API +*******************************************/ +/*! + This API consists of small unitary functions, which highly benefit from being inlined. + Hence their body are included in next section. +*/ +typedef struct { + ptrdiff_t value; + const void* stateTable; + const void* symbolTT; + unsigned stateLog; +} FSE_CState_t; + +static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct); + +static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol); + +static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr); + +/**< +These functions are inner components of FSE_compress_usingCTable(). +They allow the creation of custom streams, mixing multiple tables and bit sources. + +A key property to keep in mind is that encoding and decoding are done **in reverse direction**. +So the first symbol you will encode is the last you will decode, like a LIFO stack. + +You will need a few variables to track your CStream. They are : + +FSE_CTable ct; // Provided by FSE_buildCTable() +BIT_CStream_t bitStream; // bitStream tracking structure +FSE_CState_t state; // State tracking structure (can have several) + + +The first thing to do is to init bitStream and state. + size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize); + FSE_initCState(&state, ct); + +Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError(); +You can then encode your input data, byte after byte. +FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time. +Remember decoding will be done in reverse direction. + FSE_encodeByte(&bitStream, &state, symbol); + +At any time, you can also add any bit sequence. +Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders + BIT_addBits(&bitStream, bitField, nbBits); + +The above methods don't commit data to memory, they just store it into local register, for speed. +Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t). +Writing data to memory is a manual operation, performed by the flushBits function. + BIT_flushBits(&bitStream); + +Your last FSE encoding operation shall be to flush your last state value(s). + FSE_flushState(&bitStream, &state); + +Finally, you must close the bitStream. +The function returns the size of CStream in bytes. +If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible) +If there is an error, it returns an errorCode (which can be tested using FSE_isError()). + size_t size = BIT_closeCStream(&bitStream); +*/ + + +/* ***************************************** +* FSE symbol decompression API +*******************************************/ +typedef struct { + size_t state; + const void* table; /* precise table may vary, depending on U16 */ +} FSE_DState_t; + + +static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt); + +static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); + +static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr); + +/**< +Let's now decompose FSE_decompress_usingDTable() into its unitary components. +You will decode FSE-encoded symbols from the bitStream, +and also any other bitFields you put in, **in reverse order**. + +You will need a few variables to track your bitStream. They are : + +BIT_DStream_t DStream; // Stream context +FSE_DState_t DState; // State context. Multiple ones are possible +FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable() + +The first thing to do is to init the bitStream. + errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize); + +You should then retrieve your initial state(s) +(in reverse flushing order if you have several ones) : + errorCode = FSE_initDState(&DState, &DStream, DTablePtr); + +You can then decode your data, symbol after symbol. +For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'. +Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out). + unsigned char symbol = FSE_decodeSymbol(&DState, &DStream); + +You can retrieve any bitfield you eventually stored into the bitStream (in reverse order) +Note : maximum allowed nbBits is 25, for 32-bits compatibility + size_t bitField = BIT_readBits(&DStream, nbBits); + +All above operations only read from local register (which size depends on size_t). +Refueling the register from memory is manually performed by the reload method. + endSignal = FSE_reloadDStream(&DStream); + +BIT_reloadDStream() result tells if there is still some more data to read from DStream. +BIT_DStream_unfinished : there is still some data left into the DStream. +BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled. +BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed. +BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted. + +When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop, +to properly detect the exact end of stream. +After each decoded symbol, check if DStream is fully consumed using this simple test : + BIT_reloadDStream(&DStream) >= BIT_DStream_completed + +When it's done, verify decompression is fully completed, by checking both DStream and the relevant states. +Checking if DStream has reached its end is performed by : + BIT_endOfDStream(&DStream); +Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible. + FSE_endOfDState(&DState); +*/ + + +/* ***************************************** +* FSE unsafe API +*******************************************/ +static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); +/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */ + + +/* ***************************************** +* Implementation of inlined functions +*******************************************/ +typedef struct { + int deltaFindState; + U32 deltaNbBits; +} FSE_symbolCompressionTransform; /* total 8 bytes */ + +MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct) +{ + const void* ptr = ct; + const U16* u16ptr = (const U16*) ptr; + const U32 tableLog = MEM_read16(ptr); + statePtr->value = (ptrdiff_t)1<stateTable = u16ptr+2; + statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1); + statePtr->stateLog = tableLog; +} + + +/*! FSE_initCState2() : +* Same as FSE_initCState(), but the first symbol to include (which will be the last to be read) +* uses the smallest state value possible, saving the cost of this symbol */ +MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol) +{ + FSE_initCState(statePtr, ct); + { const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; + const U16* stateTable = (const U16*)(statePtr->stateTable); + U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16); + statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits; + statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; + } +} + +MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol) +{ + FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; + const U16* const stateTable = (const U16*)(statePtr->stateTable); + U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16); + BIT_addBits(bitC, (size_t)statePtr->value, nbBitsOut); + statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; +} + +MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr) +{ + BIT_addBits(bitC, (size_t)statePtr->value, statePtr->stateLog); + BIT_flushBits(bitC); +} + + +/* FSE_getMaxNbBits() : + * Approximate maximum cost of a symbol, in bits. + * Fractional get rounded up (i.e. a symbol with a normalized frequency of 3 gives the same result as a frequency of 2) + * note 1 : assume symbolValue is valid (<= maxSymbolValue) + * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ +MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue) +{ + const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; + return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16; +} + +/* FSE_bitCost() : + * Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits) + * note 1 : assume symbolValue is valid (<= maxSymbolValue) + * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ +MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog) +{ + const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; + U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16; + U32 const threshold = (minNbBits+1) << 16; + assert(tableLog < 16); + assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */ + { U32 const tableSize = 1 << tableLog; + U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize); + U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */ + U32 const bitMultiplier = 1 << accuracyLog; + assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold); + assert(normalizedDeltaFromThreshold <= bitMultiplier); + return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold; + } +} + + +/* ====== Decompression ====== */ + +typedef struct { + U16 tableLog; + U16 fastMode; +} FSE_DTableHeader; /* sizeof U32 */ + +typedef struct +{ + unsigned short newState; + unsigned char symbol; + unsigned char nbBits; +} FSE_decode_t; /* size == U32 */ + +MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt) +{ + const void* ptr = dt; + const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr; + DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog); + BIT_reloadDStream(bitD); + DStatePtr->table = dt + 1; +} + +MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr) +{ + FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; + return DInfo.symbol; +} + +MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) +{ + FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; + U32 const nbBits = DInfo.nbBits; + size_t const lowBits = BIT_readBits(bitD, nbBits); + DStatePtr->state = DInfo.newState + lowBits; +} + +MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) +{ + FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; + U32 const nbBits = DInfo.nbBits; + BYTE const symbol = DInfo.symbol; + size_t const lowBits = BIT_readBits(bitD, nbBits); + + DStatePtr->state = DInfo.newState + lowBits; + return symbol; +} + +/*! FSE_decodeSymbolFast() : + unsafe, only works if no symbol has a probability > 50% */ +MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) +{ + FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; + U32 const nbBits = DInfo.nbBits; + BYTE const symbol = DInfo.symbol; + size_t const lowBits = BIT_readBitsFast(bitD, nbBits); + + DStatePtr->state = DInfo.newState + lowBits; + return symbol; +} + +MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr) +{ + return DStatePtr->state == 0; +} + + + +#ifndef FSE_COMMONDEFS_ONLY + +/* ************************************************************** +* Tuning parameters +****************************************************************/ +/*!MEMORY_USAGE : +* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) +* Increasing memory usage improves compression ratio +* Reduced memory usage can improve speed, due to cache effect +* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ +#ifndef FSE_MAX_MEMORY_USAGE +# define FSE_MAX_MEMORY_USAGE 14 +#endif +#ifndef FSE_DEFAULT_MEMORY_USAGE +# define FSE_DEFAULT_MEMORY_USAGE 13 +#endif +#if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY_USAGE) +# error "FSE_DEFAULT_MEMORY_USAGE must be <= FSE_MAX_MEMORY_USAGE" +#endif + +/*!FSE_MAX_SYMBOL_VALUE : +* Maximum symbol value authorized. +* Required for proper stack allocation */ +#ifndef FSE_MAX_SYMBOL_VALUE +# define FSE_MAX_SYMBOL_VALUE 255 +#endif + +/* ************************************************************** +* template functions type & suffix +****************************************************************/ +#define FSE_FUNCTION_TYPE BYTE +#define FSE_FUNCTION_EXTENSION +#define FSE_DECODE_TYPE FSE_decode_t + + +#endif /* !FSE_COMMONDEFS_ONLY */ + + +/* *************************************************************** +* Constants +*****************************************************************/ +#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2) +#define FSE_MAX_TABLESIZE (1U< FSE_TABLELOG_ABSOLUTE_MAX +# error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported" +#endif + +#define FSE_TABLESTEP(tableSize) (((tableSize)>>1) + ((tableSize)>>3) + 3) + +#endif /* FSE_STATIC_LINKING_ONLY */ diff --git a/src/third-party/zstd/common/fse_decompress.c b/src/third-party/zstd/common/fse_decompress.c new file mode 100644 index 0000000000000..c8f1bb0cf2336 --- /dev/null +++ b/src/third-party/zstd/common/fse_decompress.c @@ -0,0 +1,315 @@ +/* ****************************************************************** + * FSE : Finite State Entropy decoder + * Copyright (c) Meta Platforms, Inc. and affiliates. + * + * You can contact the author at : + * - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy + * - Public forum : https://groups.google.com/forum/#!forum/lz4c + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. +****************************************************************** */ + + +/* ************************************************************** +* Includes +****************************************************************/ +#include "debug.h" /* assert */ +#include "bitstream.h" +#include "compiler.h" +#define FSE_STATIC_LINKING_ONLY +#include "fse.h" +#include "error_private.h" +#include "zstd_deps.h" /* ZSTD_memcpy */ +#include "bits.h" /* ZSTD_highbit32 */ + + +/* ************************************************************** +* Error Management +****************************************************************/ +#define FSE_isError ERR_isError +#define FSE_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */ + + +/* ************************************************************** +* Templates +****************************************************************/ +/* + designed to be included + for type-specific functions (template emulation in C) + Objective is to write these functions only once, for improved maintenance +*/ + +/* safety checks */ +#ifndef FSE_FUNCTION_EXTENSION +# error "FSE_FUNCTION_EXTENSION must be defined" +#endif +#ifndef FSE_FUNCTION_TYPE +# error "FSE_FUNCTION_TYPE must be defined" +#endif + +/* Function names */ +#define FSE_CAT(X,Y) X##Y +#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y) +#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y) + +static size_t FSE_buildDTable_internal(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize) +{ + void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */ + FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr); + U16* symbolNext = (U16*)workSpace; + BYTE* spread = (BYTE*)(symbolNext + maxSymbolValue + 1); + + U32 const maxSV1 = maxSymbolValue + 1; + U32 const tableSize = 1 << tableLog; + U32 highThreshold = tableSize-1; + + /* Sanity Checks */ + if (FSE_BUILD_DTABLE_WKSP_SIZE(tableLog, maxSymbolValue) > wkspSize) return ERROR(maxSymbolValue_tooLarge); + if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge); + if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); + + /* Init, lay down lowprob symbols */ + { FSE_DTableHeader DTableH; + DTableH.tableLog = (U16)tableLog; + DTableH.fastMode = 1; + { S16 const largeLimit= (S16)(1 << (tableLog-1)); + U32 s; + for (s=0; s= largeLimit) DTableH.fastMode=0; + symbolNext[s] = (U16)normalizedCounter[s]; + } } } + ZSTD_memcpy(dt, &DTableH, sizeof(DTableH)); + } + + /* Spread symbols */ + if (highThreshold == tableSize - 1) { + size_t const tableMask = tableSize-1; + size_t const step = FSE_TABLESTEP(tableSize); + /* First lay down the symbols in order. + * We use a uint64_t to lay down 8 bytes at a time. This reduces branch + * misses since small blocks generally have small table logs, so nearly + * all symbols have counts <= 8. We ensure we have 8 bytes at the end of + * our buffer to handle the over-write. + */ + { U64 const add = 0x0101010101010101ull; + size_t pos = 0; + U64 sv = 0; + U32 s; + for (s=0; s highThreshold) position = (position + step) & tableMask; /* lowprob area */ + } } + if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */ + } + + /* Build Decoding table */ + { U32 u; + for (u=0; u sizeof(bitD.bitContainer)*8) /* This test must be static */ + BIT_reloadDStream(&bitD); + + op[1] = FSE_GETSYMBOL(&state2); + + if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ + { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } } + + op[2] = FSE_GETSYMBOL(&state1); + + if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ + BIT_reloadDStream(&bitD); + + op[3] = FSE_GETSYMBOL(&state2); + } + + /* tail */ + /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */ + while (1) { + if (op>(omax-2)) return ERROR(dstSize_tooSmall); + *op++ = FSE_GETSYMBOL(&state1); + if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) { + *op++ = FSE_GETSYMBOL(&state2); + break; + } + + if (op>(omax-2)) return ERROR(dstSize_tooSmall); + *op++ = FSE_GETSYMBOL(&state2); + if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) { + *op++ = FSE_GETSYMBOL(&state1); + break; + } } + + assert(op >= ostart); + return (size_t)(op-ostart); +} + +typedef struct { + short ncount[FSE_MAX_SYMBOL_VALUE + 1]; +} FSE_DecompressWksp; + + +FORCE_INLINE_TEMPLATE size_t FSE_decompress_wksp_body( + void* dst, size_t dstCapacity, + const void* cSrc, size_t cSrcSize, + unsigned maxLog, void* workSpace, size_t wkspSize, + int bmi2) +{ + const BYTE* const istart = (const BYTE*)cSrc; + const BYTE* ip = istart; + unsigned tableLog; + unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE; + FSE_DecompressWksp* const wksp = (FSE_DecompressWksp*)workSpace; + size_t const dtablePos = sizeof(FSE_DecompressWksp) / sizeof(FSE_DTable); + FSE_DTable* const dtable = (FSE_DTable*)workSpace + dtablePos; + + FSE_STATIC_ASSERT((FSE_MAX_SYMBOL_VALUE + 1) % 2 == 0); + if (wkspSize < sizeof(*wksp)) return ERROR(GENERIC); + + /* correct offset to dtable depends on this property */ + FSE_STATIC_ASSERT(sizeof(FSE_DecompressWksp) % sizeof(FSE_DTable) == 0); + + /* normal FSE decoding mode */ + { size_t const NCountLength = + FSE_readNCount_bmi2(wksp->ncount, &maxSymbolValue, &tableLog, istart, cSrcSize, bmi2); + if (FSE_isError(NCountLength)) return NCountLength; + if (tableLog > maxLog) return ERROR(tableLog_tooLarge); + assert(NCountLength <= cSrcSize); + ip += NCountLength; + cSrcSize -= NCountLength; + } + + if (FSE_DECOMPRESS_WKSP_SIZE(tableLog, maxSymbolValue) > wkspSize) return ERROR(tableLog_tooLarge); + assert(sizeof(*wksp) + FSE_DTABLE_SIZE(tableLog) <= wkspSize); + workSpace = (BYTE*)workSpace + sizeof(*wksp) + FSE_DTABLE_SIZE(tableLog); + wkspSize -= sizeof(*wksp) + FSE_DTABLE_SIZE(tableLog); + + CHECK_F( FSE_buildDTable_internal(dtable, wksp->ncount, maxSymbolValue, tableLog, workSpace, wkspSize) ); + + { + const void* ptr = dtable; + const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr; + const U32 fastMode = DTableH->fastMode; + + /* select fast mode (static) */ + if (fastMode) return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, dtable, 1); + return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, dtable, 0); + } +} + +/* Avoids the FORCE_INLINE of the _body() function. */ +static size_t FSE_decompress_wksp_body_default(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize) +{ + return FSE_decompress_wksp_body(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, 0); +} + +#if DYNAMIC_BMI2 +BMI2_TARGET_ATTRIBUTE static size_t FSE_decompress_wksp_body_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize) +{ + return FSE_decompress_wksp_body(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, 1); +} +#endif + +size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2) +{ +#if DYNAMIC_BMI2 + if (bmi2) { + return FSE_decompress_wksp_body_bmi2(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize); + } +#endif + (void)bmi2; + return FSE_decompress_wksp_body_default(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize); +} + +#endif /* FSE_COMMONDEFS_ONLY */ diff --git a/src/third-party/zstd/common/huf.h b/src/third-party/zstd/common/huf.h new file mode 100644 index 0000000000000..4b142c4f996c1 --- /dev/null +++ b/src/third-party/zstd/common/huf.h @@ -0,0 +1,277 @@ +/* ****************************************************************** + * huff0 huffman codec, + * part of Finite State Entropy library + * Copyright (c) Meta Platforms, Inc. and affiliates. + * + * You can contact the author at : + * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. +****************************************************************** */ + +#ifndef HUF_H_298734234 +#define HUF_H_298734234 + +/* *** Dependencies *** */ +#include "zstd_deps.h" /* size_t */ +#include "mem.h" /* U32 */ +#define FSE_STATIC_LINKING_ONLY +#include "fse.h" + +/* *** Tool functions *** */ +#define HUF_BLOCKSIZE_MAX (128 * 1024) /**< maximum input size for a single block compressed with HUF_compress */ +size_t HUF_compressBound(size_t size); /**< maximum compressed size (worst case) */ + +/* Error Management */ +unsigned HUF_isError(size_t code); /**< tells if a return value is an error code */ +const char* HUF_getErrorName(size_t code); /**< provides error code string (useful for debugging) */ + + +#define HUF_WORKSPACE_SIZE ((8 << 10) + 512 /* sorting scratch space */) +#define HUF_WORKSPACE_SIZE_U64 (HUF_WORKSPACE_SIZE / sizeof(U64)) + +/* *** Constants *** */ +#define HUF_TABLELOG_MAX 12 /* max runtime value of tableLog (due to static allocation); can be modified up to HUF_TABLELOG_ABSOLUTEMAX */ +#define HUF_TABLELOG_DEFAULT 11 /* default tableLog value when none specified */ +#define HUF_SYMBOLVALUE_MAX 255 + +#define HUF_TABLELOG_ABSOLUTEMAX 12 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */ +#if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX) +# error "HUF_TABLELOG_MAX is too large !" +#endif + + +/* **************************************** +* Static allocation +******************************************/ +/* HUF buffer bounds */ +#define HUF_CTABLEBOUND 129 +#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true when incompressible is pre-filtered with fast heuristic */ +#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ + +/* static allocation of HUF's Compression Table */ +/* this is a private definition, just exposed for allocation and strict aliasing purpose. never EVER access its members directly */ +typedef size_t HUF_CElt; /* consider it an incomplete type */ +#define HUF_CTABLE_SIZE_ST(maxSymbolValue) ((maxSymbolValue)+2) /* Use tables of size_t, for proper alignment */ +#define HUF_CTABLE_SIZE(maxSymbolValue) (HUF_CTABLE_SIZE_ST(maxSymbolValue) * sizeof(size_t)) +#define HUF_CREATE_STATIC_CTABLE(name, maxSymbolValue) \ + HUF_CElt name[HUF_CTABLE_SIZE_ST(maxSymbolValue)] /* no final ; */ + +/* static allocation of HUF's DTable */ +typedef U32 HUF_DTable; +#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<(maxTableLog))) +#define HUF_CREATE_STATIC_DTABLEX1(DTable, maxTableLog) \ + HUF_DTable DTable[HUF_DTABLE_SIZE((maxTableLog)-1)] = { ((U32)((maxTableLog)-1) * 0x01000001) } +#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \ + HUF_DTable DTable[HUF_DTABLE_SIZE(maxTableLog)] = { ((U32)(maxTableLog) * 0x01000001) } + + +/* **************************************** +* Advanced decompression functions +******************************************/ + +/** + * Huffman flags bitset. + * For all flags, 0 is the default value. + */ +typedef enum { + /** + * If compiled with DYNAMIC_BMI2: Set flag only if the CPU supports BMI2 at runtime. + * Otherwise: Ignored. + */ + HUF_flags_bmi2 = (1 << 0), + /** + * If set: Test possible table depths to find the one that produces the smallest header + encoded size. + * If unset: Use heuristic to find the table depth. + */ + HUF_flags_optimalDepth = (1 << 1), + /** + * If set: If the previous table can encode the input, always reuse the previous table. + * If unset: If the previous table can encode the input, reuse the previous table if it results in a smaller output. + */ + HUF_flags_preferRepeat = (1 << 2), + /** + * If set: Sample the input and check if the sample is uncompressible, if it is then don't attempt to compress. + * If unset: Always histogram the entire input. + */ + HUF_flags_suspectUncompressible = (1 << 3), + /** + * If set: Don't use assembly implementations + * If unset: Allow using assembly implementations + */ + HUF_flags_disableAsm = (1 << 4), + /** + * If set: Don't use the fast decoding loop, always use the fallback decoding loop. + * If unset: Use the fast decoding loop when possible. + */ + HUF_flags_disableFast = (1 << 5) +} HUF_flags_e; + + +/* **************************************** + * HUF detailed API + * ****************************************/ +#define HUF_OPTIMAL_DEPTH_THRESHOLD ZSTD_btultra + +/*! HUF_compress() does the following: + * 1. count symbol occurrence from source[] into table count[] using FSE_count() (exposed within "fse.h") + * 2. (optional) refine tableLog using HUF_optimalTableLog() + * 3. build Huffman table from count using HUF_buildCTable() + * 4. save Huffman table to memory buffer using HUF_writeCTable() + * 5. encode the data stream using HUF_compress4X_usingCTable() + * + * The following API allows targeting specific sub-functions for advanced tasks. + * For example, it's possible to compress several blocks using the same 'CTable', + * or to save and regenerate 'CTable' using external methods. + */ +unsigned HUF_minTableLog(unsigned symbolCardinality); +unsigned HUF_cardinality(const unsigned* count, unsigned maxSymbolValue); +unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, void* workSpace, + size_t wkspSize, HUF_CElt* table, const unsigned* count, int flags); /* table is used as scratch space for building and testing tables, not a return value */ +size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog, void* workspace, size_t workspaceSize); +size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags); +size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue); +int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue); + +typedef enum { + HUF_repeat_none, /**< Cannot use the previous table */ + HUF_repeat_check, /**< Can use the previous table but it must be checked. Note : The previous table must have been constructed by HUF_compress{1, 4}X_repeat */ + HUF_repeat_valid /**< Can use the previous table and it is assumed to be valid */ + } HUF_repeat; + +/** HUF_compress4X_repeat() : + * Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none. + * If it uses hufTable it does not modify hufTable or repeat. + * If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used. + * If preferRepeat then the old table will always be used if valid. + * If suspectUncompressible then some sampling checks will be run to potentially skip huffman coding */ +size_t HUF_compress4X_repeat(void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned tableLog, + void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */ + HUF_CElt* hufTable, HUF_repeat* repeat, int flags); + +/** HUF_buildCTable_wksp() : + * Same as HUF_buildCTable(), but using externally allocated scratch buffer. + * `workSpace` must be aligned on 4-bytes boundaries, and its size must be >= HUF_CTABLE_WORKSPACE_SIZE. + */ +#define HUF_CTABLE_WORKSPACE_SIZE_U32 ((4 * (HUF_SYMBOLVALUE_MAX + 1)) + 192) +#define HUF_CTABLE_WORKSPACE_SIZE (HUF_CTABLE_WORKSPACE_SIZE_U32 * sizeof(unsigned)) +size_t HUF_buildCTable_wksp (HUF_CElt* tree, + const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, + void* workSpace, size_t wkspSize); + +/*! HUF_readStats() : + * Read compact Huffman tree, saved by HUF_writeCTable(). + * `huffWeight` is destination buffer. + * @return : size read from `src` , or an error Code . + * Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */ +size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, + U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr, + const void* src, size_t srcSize); + +/*! HUF_readStats_wksp() : + * Same as HUF_readStats() but takes an external workspace which must be + * 4-byte aligned and its size must be >= HUF_READ_STATS_WORKSPACE_SIZE. + * If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0. + */ +#define HUF_READ_STATS_WORKSPACE_SIZE_U32 FSE_DECOMPRESS_WKSP_SIZE_U32(6, HUF_TABLELOG_MAX-1) +#define HUF_READ_STATS_WORKSPACE_SIZE (HUF_READ_STATS_WORKSPACE_SIZE_U32 * sizeof(unsigned)) +size_t HUF_readStats_wksp(BYTE* huffWeight, size_t hwSize, + U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr, + const void* src, size_t srcSize, + void* workspace, size_t wkspSize, + int flags); + +/** HUF_readCTable() : + * Loading a CTable saved with HUF_writeCTable() */ +size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned *hasZeroWeights); + +/** HUF_getNbBitsFromCTable() : + * Read nbBits from CTable symbolTable, for symbol `symbolValue` presumed <= HUF_SYMBOLVALUE_MAX + * Note 1 : If symbolValue > HUF_readCTableHeader(symbolTable).maxSymbolValue, returns 0 + * Note 2 : is not inlined, as HUF_CElt definition is private + */ +U32 HUF_getNbBitsFromCTable(const HUF_CElt* symbolTable, U32 symbolValue); + +typedef struct { + BYTE tableLog; + BYTE maxSymbolValue; + BYTE unused[sizeof(size_t) - 2]; +} HUF_CTableHeader; + +/** HUF_readCTableHeader() : + * @returns The header from the CTable specifying the tableLog and the maxSymbolValue. + */ +HUF_CTableHeader HUF_readCTableHeader(HUF_CElt const* ctable); + +/* + * HUF_decompress() does the following: + * 1. select the decompression algorithm (X1, X2) based on pre-computed heuristics + * 2. build Huffman table from save, using HUF_readDTableX?() + * 3. decode 1 or 4 segments in parallel using HUF_decompress?X?_usingDTable() + */ + +/** HUF_selectDecoder() : + * Tells which decoder is likely to decode faster, + * based on a set of pre-computed metrics. + * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 . + * Assumption : 0 < dstSize <= 128 KB */ +U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize); + +/** + * The minimum workspace size for the `workSpace` used in + * HUF_readDTableX1_wksp() and HUF_readDTableX2_wksp(). + * + * The space used depends on HUF_TABLELOG_MAX, ranging from ~1500 bytes when + * HUF_TABLE_LOG_MAX=12 to ~1850 bytes when HUF_TABLE_LOG_MAX=15. + * Buffer overflow errors may potentially occur if code modifications result in + * a required workspace size greater than that specified in the following + * macro. + */ +#define HUF_DECOMPRESS_WORKSPACE_SIZE ((2 << 10) + (1 << 9)) +#define HUF_DECOMPRESS_WORKSPACE_SIZE_U32 (HUF_DECOMPRESS_WORKSPACE_SIZE / sizeof(U32)) + + +/* ====================== */ +/* single stream variants */ +/* ====================== */ + +size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags); +/** HUF_compress1X_repeat() : + * Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none. + * If it uses hufTable it does not modify hufTable or repeat. + * If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used. + * If preferRepeat then the old table will always be used if valid. + * If suspectUncompressible then some sampling checks will be run to potentially skip huffman coding */ +size_t HUF_compress1X_repeat(void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned tableLog, + void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */ + HUF_CElt* hufTable, HUF_repeat* repeat, int flags); + +size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags); +#ifndef HUF_FORCE_DECOMPRESS_X1 +size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags); /**< double-symbols decoder */ +#endif + +/* BMI2 variants. + * If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0. + */ +size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags); +#ifndef HUF_FORCE_DECOMPRESS_X2 +size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags); +#endif +size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags); +size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags); +#ifndef HUF_FORCE_DECOMPRESS_X2 +size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags); +#endif +#ifndef HUF_FORCE_DECOMPRESS_X1 +size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags); +#endif + +#endif /* HUF_H_298734234 */ diff --git a/src/third-party/zstd/common/mem.h b/src/third-party/zstd/common/mem.h new file mode 100644 index 0000000000000..ca756e2371108 --- /dev/null +++ b/src/third-party/zstd/common/mem.h @@ -0,0 +1,422 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef MEM_H_MODULE +#define MEM_H_MODULE + +/*-**************************************** +* Dependencies +******************************************/ +#include /* size_t, ptrdiff_t */ +#include "compiler.h" /* __has_builtin */ +#include "debug.h" /* DEBUG_STATIC_ASSERT */ +#include "zstd_deps.h" /* ZSTD_memcpy */ + + +/*-**************************************** +* Compiler specifics +******************************************/ +#if defined(_MSC_VER) /* Visual Studio */ +# include /* _byteswap_ulong */ +# include /* _byteswap_* */ +#elif defined(__ICCARM__) +# include +#endif + +/*-************************************************************** +* Basic Types +*****************************************************************/ +#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) +# if defined(_AIX) +# include +# else +# include /* intptr_t */ +# endif + typedef uint8_t BYTE; + typedef uint8_t U8; + typedef int8_t S8; + typedef uint16_t U16; + typedef int16_t S16; + typedef uint32_t U32; + typedef int32_t S32; + typedef uint64_t U64; + typedef int64_t S64; +#else +# include +#if CHAR_BIT != 8 +# error "this implementation requires char to be exactly 8-bit type" +#endif + typedef unsigned char BYTE; + typedef unsigned char U8; + typedef signed char S8; +#if USHRT_MAX != 65535 +# error "this implementation requires short to be exactly 16-bit type" +#endif + typedef unsigned short U16; + typedef signed short S16; +#if UINT_MAX != 4294967295 +# error "this implementation requires int to be exactly 32-bit type" +#endif + typedef unsigned int U32; + typedef signed int S32; +/* note : there are no limits defined for long long type in C90. + * limits exist in C99, however, in such case, is preferred */ + typedef unsigned long long U64; + typedef signed long long S64; +#endif + +/*-************************************************************** +* Memory I/O API +*****************************************************************/ +/*=== Static platform detection ===*/ +MEM_STATIC unsigned MEM_32bits(void); +MEM_STATIC unsigned MEM_64bits(void); +MEM_STATIC unsigned MEM_isLittleEndian(void); + +/*=== Native unaligned read/write ===*/ +MEM_STATIC U16 MEM_read16(const void* memPtr); +MEM_STATIC U32 MEM_read32(const void* memPtr); +MEM_STATIC U64 MEM_read64(const void* memPtr); +MEM_STATIC size_t MEM_readST(const void* memPtr); + +MEM_STATIC void MEM_write16(void* memPtr, U16 value); +MEM_STATIC void MEM_write32(void* memPtr, U32 value); +MEM_STATIC void MEM_write64(void* memPtr, U64 value); + +/*=== Little endian unaligned read/write ===*/ +MEM_STATIC U16 MEM_readLE16(const void* memPtr); +MEM_STATIC U32 MEM_readLE24(const void* memPtr); +MEM_STATIC U32 MEM_readLE32(const void* memPtr); +MEM_STATIC U64 MEM_readLE64(const void* memPtr); +MEM_STATIC size_t MEM_readLEST(const void* memPtr); + +MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val); +MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val); +MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32); +MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64); +MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val); + +/*=== Big endian unaligned read/write ===*/ +MEM_STATIC U32 MEM_readBE32(const void* memPtr); +MEM_STATIC U64 MEM_readBE64(const void* memPtr); +MEM_STATIC size_t MEM_readBEST(const void* memPtr); + +MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32); +MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64); +MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val); + +/*=== Byteswap ===*/ +MEM_STATIC U32 MEM_swap32(U32 in); +MEM_STATIC U64 MEM_swap64(U64 in); +MEM_STATIC size_t MEM_swapST(size_t in); + + +/*-************************************************************** +* Memory I/O Implementation +*****************************************************************/ +/* MEM_FORCE_MEMORY_ACCESS : For accessing unaligned memory: + * Method 0 : always use `memcpy()`. Safe and portable. + * Method 1 : Use compiler extension to set unaligned access. + * Method 2 : direct access. This method is portable but violate C standard. + * It can generate buggy code on targets depending on alignment. + * Default : method 1 if supported, else method 0 + */ +#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ +# ifdef __GNUC__ +# define MEM_FORCE_MEMORY_ACCESS 1 +# endif +#endif + +MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; } +MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; } + +MEM_STATIC unsigned MEM_isLittleEndian(void) +{ +#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) + return 1; +#elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) + return 0; +#elif defined(__clang__) && __LITTLE_ENDIAN__ + return 1; +#elif defined(__clang__) && __BIG_ENDIAN__ + return 0; +#elif defined(_MSC_VER) && (_M_AMD64 || _M_IX86) + return 1; +#elif defined(__DMC__) && defined(_M_IX86) + return 1; +#elif defined(__IAR_SYSTEMS_ICC__) && __LITTLE_ENDIAN__ + return 1; +#else + const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */ + return one.c[0]; +#endif +} + +#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2) + +/* violates C standard, by lying on structure alignment. +Only use if no other choice to achieve best performance on target platform */ +MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; } +MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; } +MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; } +MEM_STATIC size_t MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; } + +MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; } +MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; } +MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; } + +#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1) + +typedef __attribute__((aligned(1))) U16 unalign16; +typedef __attribute__((aligned(1))) U32 unalign32; +typedef __attribute__((aligned(1))) U64 unalign64; +typedef __attribute__((aligned(1))) size_t unalignArch; + +MEM_STATIC U16 MEM_read16(const void* ptr) { return *(const unalign16*)ptr; } +MEM_STATIC U32 MEM_read32(const void* ptr) { return *(const unalign32*)ptr; } +MEM_STATIC U64 MEM_read64(const void* ptr) { return *(const unalign64*)ptr; } +MEM_STATIC size_t MEM_readST(const void* ptr) { return *(const unalignArch*)ptr; } + +MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(unalign16*)memPtr = value; } +MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(unalign32*)memPtr = value; } +MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(unalign64*)memPtr = value; } + +#else + +/* default method, safe and standard. + can sometimes prove slower */ + +MEM_STATIC U16 MEM_read16(const void* memPtr) +{ + U16 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val; +} + +MEM_STATIC U32 MEM_read32(const void* memPtr) +{ + U32 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val; +} + +MEM_STATIC U64 MEM_read64(const void* memPtr) +{ + U64 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val; +} + +MEM_STATIC size_t MEM_readST(const void* memPtr) +{ + size_t val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val; +} + +MEM_STATIC void MEM_write16(void* memPtr, U16 value) +{ + ZSTD_memcpy(memPtr, &value, sizeof(value)); +} + +MEM_STATIC void MEM_write32(void* memPtr, U32 value) +{ + ZSTD_memcpy(memPtr, &value, sizeof(value)); +} + +MEM_STATIC void MEM_write64(void* memPtr, U64 value) +{ + ZSTD_memcpy(memPtr, &value, sizeof(value)); +} + +#endif /* MEM_FORCE_MEMORY_ACCESS */ + +MEM_STATIC U32 MEM_swap32_fallback(U32 in) +{ + return ((in << 24) & 0xff000000 ) | + ((in << 8) & 0x00ff0000 ) | + ((in >> 8) & 0x0000ff00 ) | + ((in >> 24) & 0x000000ff ); +} + +MEM_STATIC U32 MEM_swap32(U32 in) +{ +#if defined(_MSC_VER) /* Visual Studio */ + return _byteswap_ulong(in); +#elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \ + || (defined(__clang__) && __has_builtin(__builtin_bswap32)) + return __builtin_bswap32(in); +#elif defined(__ICCARM__) + return __REV(in); +#else + return MEM_swap32_fallback(in); +#endif +} + +MEM_STATIC U64 MEM_swap64_fallback(U64 in) +{ + return ((in << 56) & 0xff00000000000000ULL) | + ((in << 40) & 0x00ff000000000000ULL) | + ((in << 24) & 0x0000ff0000000000ULL) | + ((in << 8) & 0x000000ff00000000ULL) | + ((in >> 8) & 0x00000000ff000000ULL) | + ((in >> 24) & 0x0000000000ff0000ULL) | + ((in >> 40) & 0x000000000000ff00ULL) | + ((in >> 56) & 0x00000000000000ffULL); +} + +MEM_STATIC U64 MEM_swap64(U64 in) +{ +#if defined(_MSC_VER) /* Visual Studio */ + return _byteswap_uint64(in); +#elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \ + || (defined(__clang__) && __has_builtin(__builtin_bswap64)) + return __builtin_bswap64(in); +#else + return MEM_swap64_fallback(in); +#endif +} + +MEM_STATIC size_t MEM_swapST(size_t in) +{ + if (MEM_32bits()) + return (size_t)MEM_swap32((U32)in); + else + return (size_t)MEM_swap64((U64)in); +} + +/*=== Little endian r/w ===*/ + +MEM_STATIC U16 MEM_readLE16(const void* memPtr) +{ + if (MEM_isLittleEndian()) + return MEM_read16(memPtr); + else { + const BYTE* p = (const BYTE*)memPtr; + return (U16)(p[0] + (p[1]<<8)); + } +} + +MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val) +{ + if (MEM_isLittleEndian()) { + MEM_write16(memPtr, val); + } else { + BYTE* p = (BYTE*)memPtr; + p[0] = (BYTE)val; + p[1] = (BYTE)(val>>8); + } +} + +MEM_STATIC U32 MEM_readLE24(const void* memPtr) +{ + return (U32)MEM_readLE16(memPtr) + ((U32)(((const BYTE*)memPtr)[2]) << 16); +} + +MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val) +{ + MEM_writeLE16(memPtr, (U16)val); + ((BYTE*)memPtr)[2] = (BYTE)(val>>16); +} + +MEM_STATIC U32 MEM_readLE32(const void* memPtr) +{ + if (MEM_isLittleEndian()) + return MEM_read32(memPtr); + else + return MEM_swap32(MEM_read32(memPtr)); +} + +MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32) +{ + if (MEM_isLittleEndian()) + MEM_write32(memPtr, val32); + else + MEM_write32(memPtr, MEM_swap32(val32)); +} + +MEM_STATIC U64 MEM_readLE64(const void* memPtr) +{ + if (MEM_isLittleEndian()) + return MEM_read64(memPtr); + else + return MEM_swap64(MEM_read64(memPtr)); +} + +MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64) +{ + if (MEM_isLittleEndian()) + MEM_write64(memPtr, val64); + else + MEM_write64(memPtr, MEM_swap64(val64)); +} + +MEM_STATIC size_t MEM_readLEST(const void* memPtr) +{ + if (MEM_32bits()) + return (size_t)MEM_readLE32(memPtr); + else + return (size_t)MEM_readLE64(memPtr); +} + +MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val) +{ + if (MEM_32bits()) + MEM_writeLE32(memPtr, (U32)val); + else + MEM_writeLE64(memPtr, (U64)val); +} + +/*=== Big endian r/w ===*/ + +MEM_STATIC U32 MEM_readBE32(const void* memPtr) +{ + if (MEM_isLittleEndian()) + return MEM_swap32(MEM_read32(memPtr)); + else + return MEM_read32(memPtr); +} + +MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32) +{ + if (MEM_isLittleEndian()) + MEM_write32(memPtr, MEM_swap32(val32)); + else + MEM_write32(memPtr, val32); +} + +MEM_STATIC U64 MEM_readBE64(const void* memPtr) +{ + if (MEM_isLittleEndian()) + return MEM_swap64(MEM_read64(memPtr)); + else + return MEM_read64(memPtr); +} + +MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64) +{ + if (MEM_isLittleEndian()) + MEM_write64(memPtr, MEM_swap64(val64)); + else + MEM_write64(memPtr, val64); +} + +MEM_STATIC size_t MEM_readBEST(const void* memPtr) +{ + if (MEM_32bits()) + return (size_t)MEM_readBE32(memPtr); + else + return (size_t)MEM_readBE64(memPtr); +} + +MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val) +{ + if (MEM_32bits()) + MEM_writeBE32(memPtr, (U32)val); + else + MEM_writeBE64(memPtr, (U64)val); +} + +/* code only tested on 32 and 64 bits systems */ +MEM_STATIC void MEM_check(void) { DEBUG_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); } + +#endif /* MEM_H_MODULE */ diff --git a/src/third-party/zstd/common/pool.c b/src/third-party/zstd/common/pool.c new file mode 100644 index 0000000000000..3adcefc9a50ae --- /dev/null +++ b/src/third-party/zstd/common/pool.c @@ -0,0 +1,371 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + +/* ====== Dependencies ======= */ +#include "../common/allocations.h" /* ZSTD_customCalloc, ZSTD_customFree */ +#include "zstd_deps.h" /* size_t */ +#include "debug.h" /* assert */ +#include "pool.h" + +/* ====== Compiler specifics ====== */ +#if defined(_MSC_VER) +# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ +#endif + + +#ifdef ZSTD_MULTITHREAD + +#include "threading.h" /* pthread adaptation */ + +/* A job is a function and an opaque argument */ +typedef struct POOL_job_s { + POOL_function function; + void *opaque; +} POOL_job; + +struct POOL_ctx_s { + ZSTD_customMem customMem; + /* Keep track of the threads */ + ZSTD_pthread_t* threads; + size_t threadCapacity; + size_t threadLimit; + + /* The queue is a circular buffer */ + POOL_job *queue; + size_t queueHead; + size_t queueTail; + size_t queueSize; + + /* The number of threads working on jobs */ + size_t numThreadsBusy; + /* Indicates if the queue is empty */ + int queueEmpty; + + /* The mutex protects the queue */ + ZSTD_pthread_mutex_t queueMutex; + /* Condition variable for pushers to wait on when the queue is full */ + ZSTD_pthread_cond_t queuePushCond; + /* Condition variables for poppers to wait on when the queue is empty */ + ZSTD_pthread_cond_t queuePopCond; + /* Indicates if the queue is shutting down */ + int shutdown; +}; + +/* POOL_thread() : + * Work thread for the thread pool. + * Waits for jobs and executes them. + * @returns : NULL on failure else non-null. + */ +static void* POOL_thread(void* opaque) { + POOL_ctx* const ctx = (POOL_ctx*)opaque; + if (!ctx) { return NULL; } + for (;;) { + /* Lock the mutex and wait for a non-empty queue or until shutdown */ + ZSTD_pthread_mutex_lock(&ctx->queueMutex); + + while ( ctx->queueEmpty + || (ctx->numThreadsBusy >= ctx->threadLimit) ) { + if (ctx->shutdown) { + /* even if !queueEmpty, (possible if numThreadsBusy >= threadLimit), + * a few threads will be shutdown while !queueEmpty, + * but enough threads will remain active to finish the queue */ + ZSTD_pthread_mutex_unlock(&ctx->queueMutex); + return opaque; + } + ZSTD_pthread_cond_wait(&ctx->queuePopCond, &ctx->queueMutex); + } + /* Pop a job off the queue */ + { POOL_job const job = ctx->queue[ctx->queueHead]; + ctx->queueHead = (ctx->queueHead + 1) % ctx->queueSize; + ctx->numThreadsBusy++; + ctx->queueEmpty = (ctx->queueHead == ctx->queueTail); + /* Unlock the mutex, signal a pusher, and run the job */ + ZSTD_pthread_cond_signal(&ctx->queuePushCond); + ZSTD_pthread_mutex_unlock(&ctx->queueMutex); + + job.function(job.opaque); + + /* If the intended queue size was 0, signal after finishing job */ + ZSTD_pthread_mutex_lock(&ctx->queueMutex); + ctx->numThreadsBusy--; + ZSTD_pthread_cond_signal(&ctx->queuePushCond); + ZSTD_pthread_mutex_unlock(&ctx->queueMutex); + } + } /* for (;;) */ + assert(0); /* Unreachable */ +} + +/* ZSTD_createThreadPool() : public access point */ +POOL_ctx* ZSTD_createThreadPool(size_t numThreads) { + return POOL_create (numThreads, 0); +} + +POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) { + return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem); +} + +POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, + ZSTD_customMem customMem) +{ + POOL_ctx* ctx; + /* Check parameters */ + if (!numThreads) { return NULL; } + /* Allocate the context and zero initialize */ + ctx = (POOL_ctx*)ZSTD_customCalloc(sizeof(POOL_ctx), customMem); + if (!ctx) { return NULL; } + /* Initialize the job queue. + * It needs one extra space since one space is wasted to differentiate + * empty and full queues. + */ + ctx->queueSize = queueSize + 1; + ctx->queue = (POOL_job*)ZSTD_customCalloc(ctx->queueSize * sizeof(POOL_job), customMem); + ctx->queueHead = 0; + ctx->queueTail = 0; + ctx->numThreadsBusy = 0; + ctx->queueEmpty = 1; + { + int error = 0; + error |= ZSTD_pthread_mutex_init(&ctx->queueMutex, NULL); + error |= ZSTD_pthread_cond_init(&ctx->queuePushCond, NULL); + error |= ZSTD_pthread_cond_init(&ctx->queuePopCond, NULL); + if (error) { POOL_free(ctx); return NULL; } + } + ctx->shutdown = 0; + /* Allocate space for the thread handles */ + ctx->threads = (ZSTD_pthread_t*)ZSTD_customCalloc(numThreads * sizeof(ZSTD_pthread_t), customMem); + ctx->threadCapacity = 0; + ctx->customMem = customMem; + /* Check for errors */ + if (!ctx->threads || !ctx->queue) { POOL_free(ctx); return NULL; } + /* Initialize the threads */ + { size_t i; + for (i = 0; i < numThreads; ++i) { + if (ZSTD_pthread_create(&ctx->threads[i], NULL, &POOL_thread, ctx)) { + ctx->threadCapacity = i; + POOL_free(ctx); + return NULL; + } } + ctx->threadCapacity = numThreads; + ctx->threadLimit = numThreads; + } + return ctx; +} + +/*! POOL_join() : + Shutdown the queue, wake any sleeping threads, and join all of the threads. +*/ +static void POOL_join(POOL_ctx* ctx) { + /* Shut down the queue */ + ZSTD_pthread_mutex_lock(&ctx->queueMutex); + ctx->shutdown = 1; + ZSTD_pthread_mutex_unlock(&ctx->queueMutex); + /* Wake up sleeping threads */ + ZSTD_pthread_cond_broadcast(&ctx->queuePushCond); + ZSTD_pthread_cond_broadcast(&ctx->queuePopCond); + /* Join all of the threads */ + { size_t i; + for (i = 0; i < ctx->threadCapacity; ++i) { + ZSTD_pthread_join(ctx->threads[i]); /* note : could fail */ + } } +} + +void POOL_free(POOL_ctx *ctx) { + if (!ctx) { return; } + POOL_join(ctx); + ZSTD_pthread_mutex_destroy(&ctx->queueMutex); + ZSTD_pthread_cond_destroy(&ctx->queuePushCond); + ZSTD_pthread_cond_destroy(&ctx->queuePopCond); + ZSTD_customFree(ctx->queue, ctx->customMem); + ZSTD_customFree(ctx->threads, ctx->customMem); + ZSTD_customFree(ctx, ctx->customMem); +} + +/*! POOL_joinJobs() : + * Waits for all queued jobs to finish executing. + */ +void POOL_joinJobs(POOL_ctx* ctx) { + ZSTD_pthread_mutex_lock(&ctx->queueMutex); + while(!ctx->queueEmpty || ctx->numThreadsBusy > 0) { + ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex); + } + ZSTD_pthread_mutex_unlock(&ctx->queueMutex); +} + +void ZSTD_freeThreadPool (ZSTD_threadPool* pool) { + POOL_free (pool); +} + +size_t POOL_sizeof(const POOL_ctx* ctx) { + if (ctx==NULL) return 0; /* supports sizeof NULL */ + return sizeof(*ctx) + + ctx->queueSize * sizeof(POOL_job) + + ctx->threadCapacity * sizeof(ZSTD_pthread_t); +} + + +/* @return : 0 on success, 1 on error */ +static int POOL_resize_internal(POOL_ctx* ctx, size_t numThreads) +{ + if (numThreads <= ctx->threadCapacity) { + if (!numThreads) return 1; + ctx->threadLimit = numThreads; + return 0; + } + /* numThreads > threadCapacity */ + { ZSTD_pthread_t* const threadPool = (ZSTD_pthread_t*)ZSTD_customCalloc(numThreads * sizeof(ZSTD_pthread_t), ctx->customMem); + if (!threadPool) return 1; + /* replace existing thread pool */ + ZSTD_memcpy(threadPool, ctx->threads, ctx->threadCapacity * sizeof(ZSTD_pthread_t)); + ZSTD_customFree(ctx->threads, ctx->customMem); + ctx->threads = threadPool; + /* Initialize additional threads */ + { size_t threadId; + for (threadId = ctx->threadCapacity; threadId < numThreads; ++threadId) { + if (ZSTD_pthread_create(&threadPool[threadId], NULL, &POOL_thread, ctx)) { + ctx->threadCapacity = threadId; + return 1; + } } + } } + /* successfully expanded */ + ctx->threadCapacity = numThreads; + ctx->threadLimit = numThreads; + return 0; +} + +/* @return : 0 on success, 1 on error */ +int POOL_resize(POOL_ctx* ctx, size_t numThreads) +{ + int result; + if (ctx==NULL) return 1; + ZSTD_pthread_mutex_lock(&ctx->queueMutex); + result = POOL_resize_internal(ctx, numThreads); + ZSTD_pthread_cond_broadcast(&ctx->queuePopCond); + ZSTD_pthread_mutex_unlock(&ctx->queueMutex); + return result; +} + +/** + * Returns 1 if the queue is full and 0 otherwise. + * + * When queueSize is 1 (pool was created with an intended queueSize of 0), + * then a queue is empty if there is a thread free _and_ no job is waiting. + */ +static int isQueueFull(POOL_ctx const* ctx) { + if (ctx->queueSize > 1) { + return ctx->queueHead == ((ctx->queueTail + 1) % ctx->queueSize); + } else { + return (ctx->numThreadsBusy == ctx->threadLimit) || + !ctx->queueEmpty; + } +} + + +static void +POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque) +{ + POOL_job job; + job.function = function; + job.opaque = opaque; + assert(ctx != NULL); + if (ctx->shutdown) return; + + ctx->queueEmpty = 0; + ctx->queue[ctx->queueTail] = job; + ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize; + ZSTD_pthread_cond_signal(&ctx->queuePopCond); +} + +void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) +{ + assert(ctx != NULL); + ZSTD_pthread_mutex_lock(&ctx->queueMutex); + /* Wait until there is space in the queue for the new job */ + while (isQueueFull(ctx) && (!ctx->shutdown)) { + ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex); + } + POOL_add_internal(ctx, function, opaque); + ZSTD_pthread_mutex_unlock(&ctx->queueMutex); +} + + +int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) +{ + assert(ctx != NULL); + ZSTD_pthread_mutex_lock(&ctx->queueMutex); + if (isQueueFull(ctx)) { + ZSTD_pthread_mutex_unlock(&ctx->queueMutex); + return 0; + } + POOL_add_internal(ctx, function, opaque); + ZSTD_pthread_mutex_unlock(&ctx->queueMutex); + return 1; +} + + +#else /* ZSTD_MULTITHREAD not defined */ + +/* ========================== */ +/* No multi-threading support */ +/* ========================== */ + + +/* We don't need any data, but if it is empty, malloc() might return NULL. */ +struct POOL_ctx_s { + int dummy; +}; +static POOL_ctx g_poolCtx; + +POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) { + return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem); +} + +POOL_ctx* +POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem) +{ + (void)numThreads; + (void)queueSize; + (void)customMem; + return &g_poolCtx; +} + +void POOL_free(POOL_ctx* ctx) { + assert(!ctx || ctx == &g_poolCtx); + (void)ctx; +} + +void POOL_joinJobs(POOL_ctx* ctx){ + assert(!ctx || ctx == &g_poolCtx); + (void)ctx; +} + +int POOL_resize(POOL_ctx* ctx, size_t numThreads) { + (void)ctx; (void)numThreads; + return 0; +} + +void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) { + (void)ctx; + function(opaque); +} + +int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) { + (void)ctx; + function(opaque); + return 1; +} + +size_t POOL_sizeof(const POOL_ctx* ctx) { + if (ctx==NULL) return 0; /* supports sizeof NULL */ + assert(ctx == &g_poolCtx); + return sizeof(*ctx); +} + +#endif /* ZSTD_MULTITHREAD */ diff --git a/src/third-party/zstd/common/pool.h b/src/third-party/zstd/common/pool.h new file mode 100644 index 0000000000000..f39b7f1eb99e7 --- /dev/null +++ b/src/third-party/zstd/common/pool.h @@ -0,0 +1,81 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef POOL_H +#define POOL_H + + +#include "zstd_deps.h" +#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_customMem */ +#include "../zstd.h" + +typedef struct POOL_ctx_s POOL_ctx; + +/*! POOL_create() : + * Create a thread pool with at most `numThreads` threads. + * `numThreads` must be at least 1. + * The maximum number of queued jobs before blocking is `queueSize`. + * @return : POOL_ctx pointer on success, else NULL. +*/ +POOL_ctx* POOL_create(size_t numThreads, size_t queueSize); + +POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, + ZSTD_customMem customMem); + +/*! POOL_free() : + * Free a thread pool returned by POOL_create(). + */ +void POOL_free(POOL_ctx* ctx); + + +/*! POOL_joinJobs() : + * Waits for all queued jobs to finish executing. + */ +void POOL_joinJobs(POOL_ctx* ctx); + +/*! POOL_resize() : + * Expands or shrinks pool's number of threads. + * This is more efficient than releasing + creating a new context, + * since it tries to preserve and reuse existing threads. + * `numThreads` must be at least 1. + * @return : 0 when resize was successful, + * !0 (typically 1) if there is an error. + * note : only numThreads can be resized, queueSize remains unchanged. + */ +int POOL_resize(POOL_ctx* ctx, size_t numThreads); + +/*! POOL_sizeof() : + * @return threadpool memory usage + * note : compatible with NULL (returns 0 in this case) + */ +size_t POOL_sizeof(const POOL_ctx* ctx); + +/*! POOL_function : + * The function type that can be added to a thread pool. + */ +typedef void (*POOL_function)(void*); + +/*! POOL_add() : + * Add the job `function(opaque)` to the thread pool. `ctx` must be valid. + * Possibly blocks until there is room in the queue. + * Note : The function may be executed asynchronously, + * therefore, `opaque` must live until function has been completed. + */ +void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque); + + +/*! POOL_tryAdd() : + * Add the job `function(opaque)` to thread pool _if_ a queue slot is available. + * Returns immediately even if not (does not block). + * @return : 1 if successful, 0 if not. + */ +int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque); + +#endif diff --git a/src/third-party/zstd/common/portability_macros.h b/src/third-party/zstd/common/portability_macros.h new file mode 100644 index 0000000000000..b1d9765fb07d0 --- /dev/null +++ b/src/third-party/zstd/common/portability_macros.h @@ -0,0 +1,158 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_PORTABILITY_MACROS_H +#define ZSTD_PORTABILITY_MACROS_H + +/** + * This header file contains macro definitions to support portability. + * This header is shared between C and ASM code, so it MUST only + * contain macro definitions. It MUST not contain any C code. + * + * This header ONLY defines macros to detect platforms/feature support. + * + */ + + +/* compat. with non-clang compilers */ +#ifndef __has_attribute + #define __has_attribute(x) 0 +#endif + +/* compat. with non-clang compilers */ +#ifndef __has_builtin +# define __has_builtin(x) 0 +#endif + +/* compat. with non-clang compilers */ +#ifndef __has_feature +# define __has_feature(x) 0 +#endif + +/* detects whether we are being compiled under msan */ +#ifndef ZSTD_MEMORY_SANITIZER +# if __has_feature(memory_sanitizer) +# define ZSTD_MEMORY_SANITIZER 1 +# else +# define ZSTD_MEMORY_SANITIZER 0 +# endif +#endif + +/* detects whether we are being compiled under asan */ +#ifndef ZSTD_ADDRESS_SANITIZER +# if __has_feature(address_sanitizer) +# define ZSTD_ADDRESS_SANITIZER 1 +# elif defined(__SANITIZE_ADDRESS__) +# define ZSTD_ADDRESS_SANITIZER 1 +# else +# define ZSTD_ADDRESS_SANITIZER 0 +# endif +#endif + +/* detects whether we are being compiled under dfsan */ +#ifndef ZSTD_DATAFLOW_SANITIZER +# if __has_feature(dataflow_sanitizer) +# define ZSTD_DATAFLOW_SANITIZER 1 +# else +# define ZSTD_DATAFLOW_SANITIZER 0 +# endif +#endif + +/* Mark the internal assembly functions as hidden */ +#ifdef __ELF__ +# define ZSTD_HIDE_ASM_FUNCTION(func) .hidden func +#elif defined(__APPLE__) +# define ZSTD_HIDE_ASM_FUNCTION(func) .private_extern func +#else +# define ZSTD_HIDE_ASM_FUNCTION(func) +#endif + +/* Enable runtime BMI2 dispatch based on the CPU. + * Enabled for clang & gcc >=4.8 on x86 when BMI2 isn't enabled by default. + */ +#ifndef DYNAMIC_BMI2 + #if ((defined(__clang__) && __has_attribute(__target__)) \ + || (defined(__GNUC__) \ + && (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))) \ + && (defined(__x86_64__) || defined(_M_X64)) \ + && !defined(__BMI2__) + # define DYNAMIC_BMI2 1 + #else + # define DYNAMIC_BMI2 0 + #endif +#endif + +/** + * Only enable assembly for GNU C compatible compilers, + * because other platforms may not support GAS assembly syntax. + * + * Only enable assembly for Linux / MacOS, other platforms may + * work, but they haven't been tested. This could likely be + * extended to BSD systems. + * + * Disable assembly when MSAN is enabled, because MSAN requires + * 100% of code to be instrumented to work. + */ +#if defined(__GNUC__) +# if defined(__linux__) || defined(__linux) || defined(__APPLE__) +# if ZSTD_MEMORY_SANITIZER +# define ZSTD_ASM_SUPPORTED 0 +# elif ZSTD_DATAFLOW_SANITIZER +# define ZSTD_ASM_SUPPORTED 0 +# else +# define ZSTD_ASM_SUPPORTED 1 +# endif +# else +# define ZSTD_ASM_SUPPORTED 0 +# endif +#else +# define ZSTD_ASM_SUPPORTED 0 +#endif + +/** + * Determines whether we should enable assembly for x86-64 + * with BMI2. + * + * Enable if all of the following conditions hold: + * - ASM hasn't been explicitly disabled by defining ZSTD_DISABLE_ASM + * - Assembly is supported + * - We are compiling for x86-64 and either: + * - DYNAMIC_BMI2 is enabled + * - BMI2 is supported at compile time + */ +#if !defined(ZSTD_DISABLE_ASM) && \ + ZSTD_ASM_SUPPORTED && \ + defined(__x86_64__) && \ + (DYNAMIC_BMI2 || defined(__BMI2__)) +# define ZSTD_ENABLE_ASM_X86_64_BMI2 1 +#else +# define ZSTD_ENABLE_ASM_X86_64_BMI2 0 +#endif + +/* + * For x86 ELF targets, add .note.gnu.property section for Intel CET in + * assembly sources when CET is enabled. + * + * Additionally, any function that may be called indirectly must begin + * with ZSTD_CET_ENDBRANCH. + */ +#if defined(__ELF__) && (defined(__x86_64__) || defined(__i386__)) \ + && defined(__has_include) +# if __has_include() +# include +# define ZSTD_CET_ENDBRANCH _CET_ENDBR +# endif +#endif + +#ifndef ZSTD_CET_ENDBRANCH +# define ZSTD_CET_ENDBRANCH +#endif + +#endif /* ZSTD_PORTABILITY_MACROS_H */ diff --git a/src/third-party/zstd/common/threading.c b/src/third-party/zstd/common/threading.c new file mode 100644 index 0000000000000..25bb8b981042d --- /dev/null +++ b/src/third-party/zstd/common/threading.c @@ -0,0 +1,182 @@ +/** + * Copyright (c) 2016 Tino Reichardt + * All rights reserved. + * + * You can contact the author at: + * - zstdmt source repository: https://github.com/mcmilk/zstdmt + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/** + * This file will hold wrapper for systems, which do not support pthreads + */ + +#include "threading.h" + +/* create fake symbol to avoid empty translation unit warning */ +int g_ZSTD_threading_useless_symbol; + +#if defined(ZSTD_MULTITHREAD) && defined(_WIN32) + +/** + * Windows minimalist Pthread Wrapper + */ + + +/* === Dependencies === */ +#include +#include + + +/* === Implementation === */ + +typedef struct { + void* (*start_routine)(void*); + void* arg; + int initialized; + ZSTD_pthread_cond_t initialized_cond; + ZSTD_pthread_mutex_t initialized_mutex; +} ZSTD_thread_params_t; + +static unsigned __stdcall worker(void *arg) +{ + void* (*start_routine)(void*); + void* thread_arg; + + /* Initialized thread_arg and start_routine and signal main thread that we don't need it + * to wait any longer. + */ + { + ZSTD_thread_params_t* thread_param = (ZSTD_thread_params_t*)arg; + thread_arg = thread_param->arg; + start_routine = thread_param->start_routine; + + /* Signal main thread that we are running and do not depend on its memory anymore */ + ZSTD_pthread_mutex_lock(&thread_param->initialized_mutex); + thread_param->initialized = 1; + ZSTD_pthread_cond_signal(&thread_param->initialized_cond); + ZSTD_pthread_mutex_unlock(&thread_param->initialized_mutex); + } + + start_routine(thread_arg); + + return 0; +} + +int ZSTD_pthread_create(ZSTD_pthread_t* thread, const void* unused, + void* (*start_routine) (void*), void* arg) +{ + ZSTD_thread_params_t thread_param; + (void)unused; + + if (thread==NULL) return -1; + *thread = NULL; + + thread_param.start_routine = start_routine; + thread_param.arg = arg; + thread_param.initialized = 0; + + /* Setup thread initialization synchronization */ + if(ZSTD_pthread_cond_init(&thread_param.initialized_cond, NULL)) { + /* Should never happen on Windows */ + return -1; + } + if(ZSTD_pthread_mutex_init(&thread_param.initialized_mutex, NULL)) { + /* Should never happen on Windows */ + ZSTD_pthread_cond_destroy(&thread_param.initialized_cond); + return -1; + } + + /* Spawn thread */ + *thread = (HANDLE)_beginthreadex(NULL, 0, worker, &thread_param, 0, NULL); + if (*thread==NULL) { + ZSTD_pthread_mutex_destroy(&thread_param.initialized_mutex); + ZSTD_pthread_cond_destroy(&thread_param.initialized_cond); + return errno; + } + + /* Wait for thread to be initialized */ + ZSTD_pthread_mutex_lock(&thread_param.initialized_mutex); + while(!thread_param.initialized) { + ZSTD_pthread_cond_wait(&thread_param.initialized_cond, &thread_param.initialized_mutex); + } + ZSTD_pthread_mutex_unlock(&thread_param.initialized_mutex); + ZSTD_pthread_mutex_destroy(&thread_param.initialized_mutex); + ZSTD_pthread_cond_destroy(&thread_param.initialized_cond); + + return 0; +} + +int ZSTD_pthread_join(ZSTD_pthread_t thread) +{ + DWORD result; + + if (!thread) return 0; + + result = WaitForSingleObject(thread, INFINITE); + CloseHandle(thread); + + switch (result) { + case WAIT_OBJECT_0: + return 0; + case WAIT_ABANDONED: + return EINVAL; + default: + return GetLastError(); + } +} + +#endif /* ZSTD_MULTITHREAD */ + +#if defined(ZSTD_MULTITHREAD) && DEBUGLEVEL >= 1 && !defined(_WIN32) + +#define ZSTD_DEPS_NEED_MALLOC +#include "zstd_deps.h" + +int ZSTD_pthread_mutex_init(ZSTD_pthread_mutex_t* mutex, pthread_mutexattr_t const* attr) +{ + assert(mutex != NULL); + *mutex = (pthread_mutex_t*)ZSTD_malloc(sizeof(pthread_mutex_t)); + if (!*mutex) + return 1; + return pthread_mutex_init(*mutex, attr); +} + +int ZSTD_pthread_mutex_destroy(ZSTD_pthread_mutex_t* mutex) +{ + assert(mutex != NULL); + if (!*mutex) + return 0; + { + int const ret = pthread_mutex_destroy(*mutex); + ZSTD_free(*mutex); + return ret; + } +} + +int ZSTD_pthread_cond_init(ZSTD_pthread_cond_t* cond, pthread_condattr_t const* attr) +{ + assert(cond != NULL); + *cond = (pthread_cond_t*)ZSTD_malloc(sizeof(pthread_cond_t)); + if (!*cond) + return 1; + return pthread_cond_init(*cond, attr); +} + +int ZSTD_pthread_cond_destroy(ZSTD_pthread_cond_t* cond) +{ + assert(cond != NULL); + if (!*cond) + return 0; + { + int const ret = pthread_cond_destroy(*cond); + ZSTD_free(*cond); + return ret; + } +} + +#endif diff --git a/src/third-party/zstd/common/threading.h b/src/third-party/zstd/common/threading.h new file mode 100644 index 0000000000000..e123cdf14a334 --- /dev/null +++ b/src/third-party/zstd/common/threading.h @@ -0,0 +1,142 @@ +/** + * Copyright (c) 2016 Tino Reichardt + * All rights reserved. + * + * You can contact the author at: + * - zstdmt source repository: https://github.com/mcmilk/zstdmt + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef THREADING_H_938743 +#define THREADING_H_938743 + +#include "debug.h" + +#if defined(ZSTD_MULTITHREAD) && defined(_WIN32) + +/** + * Windows minimalist Pthread Wrapper + */ +#ifdef WINVER +# undef WINVER +#endif +#define WINVER 0x0600 + +#ifdef _WIN32_WINNT +# undef _WIN32_WINNT +#endif +#define _WIN32_WINNT 0x0600 + +#ifndef WIN32_LEAN_AND_MEAN +# define WIN32_LEAN_AND_MEAN +#endif + +#undef ERROR /* reported already defined on VS 2015 (Rich Geldreich) */ +#include +#undef ERROR +#define ERROR(name) ZSTD_ERROR(name) + + +/* mutex */ +#define ZSTD_pthread_mutex_t CRITICAL_SECTION +#define ZSTD_pthread_mutex_init(a, b) ((void)(b), InitializeCriticalSection((a)), 0) +#define ZSTD_pthread_mutex_destroy(a) DeleteCriticalSection((a)) +#define ZSTD_pthread_mutex_lock(a) EnterCriticalSection((a)) +#define ZSTD_pthread_mutex_unlock(a) LeaveCriticalSection((a)) + +/* condition variable */ +#define ZSTD_pthread_cond_t CONDITION_VARIABLE +#define ZSTD_pthread_cond_init(a, b) ((void)(b), InitializeConditionVariable((a)), 0) +#define ZSTD_pthread_cond_destroy(a) ((void)(a)) +#define ZSTD_pthread_cond_wait(a, b) SleepConditionVariableCS((a), (b), INFINITE) +#define ZSTD_pthread_cond_signal(a) WakeConditionVariable((a)) +#define ZSTD_pthread_cond_broadcast(a) WakeAllConditionVariable((a)) + +/* ZSTD_pthread_create() and ZSTD_pthread_join() */ +typedef HANDLE ZSTD_pthread_t; + +int ZSTD_pthread_create(ZSTD_pthread_t* thread, const void* unused, + void* (*start_routine) (void*), void* arg); + +int ZSTD_pthread_join(ZSTD_pthread_t thread); + +/** + * add here more wrappers as required + */ + +#elif defined(ZSTD_MULTITHREAD) /* posix assumed ; need a better detection method */ +/* === POSIX Systems === */ +# include + +#if DEBUGLEVEL < 1 + +#define ZSTD_pthread_mutex_t pthread_mutex_t +#define ZSTD_pthread_mutex_init(a, b) pthread_mutex_init((a), (b)) +#define ZSTD_pthread_mutex_destroy(a) pthread_mutex_destroy((a)) +#define ZSTD_pthread_mutex_lock(a) pthread_mutex_lock((a)) +#define ZSTD_pthread_mutex_unlock(a) pthread_mutex_unlock((a)) + +#define ZSTD_pthread_cond_t pthread_cond_t +#define ZSTD_pthread_cond_init(a, b) pthread_cond_init((a), (b)) +#define ZSTD_pthread_cond_destroy(a) pthread_cond_destroy((a)) +#define ZSTD_pthread_cond_wait(a, b) pthread_cond_wait((a), (b)) +#define ZSTD_pthread_cond_signal(a) pthread_cond_signal((a)) +#define ZSTD_pthread_cond_broadcast(a) pthread_cond_broadcast((a)) + +#define ZSTD_pthread_t pthread_t +#define ZSTD_pthread_create(a, b, c, d) pthread_create((a), (b), (c), (d)) +#define ZSTD_pthread_join(a) pthread_join((a),NULL) + +#else /* DEBUGLEVEL >= 1 */ + +/* Debug implementation of threading. + * In this implementation we use pointers for mutexes and condition variables. + * This way, if we forget to init/destroy them the program will crash or ASAN + * will report leaks. + */ + +#define ZSTD_pthread_mutex_t pthread_mutex_t* +int ZSTD_pthread_mutex_init(ZSTD_pthread_mutex_t* mutex, pthread_mutexattr_t const* attr); +int ZSTD_pthread_mutex_destroy(ZSTD_pthread_mutex_t* mutex); +#define ZSTD_pthread_mutex_lock(a) pthread_mutex_lock(*(a)) +#define ZSTD_pthread_mutex_unlock(a) pthread_mutex_unlock(*(a)) + +#define ZSTD_pthread_cond_t pthread_cond_t* +int ZSTD_pthread_cond_init(ZSTD_pthread_cond_t* cond, pthread_condattr_t const* attr); +int ZSTD_pthread_cond_destroy(ZSTD_pthread_cond_t* cond); +#define ZSTD_pthread_cond_wait(a, b) pthread_cond_wait(*(a), *(b)) +#define ZSTD_pthread_cond_signal(a) pthread_cond_signal(*(a)) +#define ZSTD_pthread_cond_broadcast(a) pthread_cond_broadcast(*(a)) + +#define ZSTD_pthread_t pthread_t +#define ZSTD_pthread_create(a, b, c, d) pthread_create((a), (b), (c), (d)) +#define ZSTD_pthread_join(a) pthread_join((a),NULL) + +#endif + +#else /* ZSTD_MULTITHREAD not defined */ +/* No multithreading support */ + +typedef int ZSTD_pthread_mutex_t; +#define ZSTD_pthread_mutex_init(a, b) ((void)(a), (void)(b), 0) +#define ZSTD_pthread_mutex_destroy(a) ((void)(a)) +#define ZSTD_pthread_mutex_lock(a) ((void)(a)) +#define ZSTD_pthread_mutex_unlock(a) ((void)(a)) + +typedef int ZSTD_pthread_cond_t; +#define ZSTD_pthread_cond_init(a, b) ((void)(a), (void)(b), 0) +#define ZSTD_pthread_cond_destroy(a) ((void)(a)) +#define ZSTD_pthread_cond_wait(a, b) ((void)(a), (void)(b)) +#define ZSTD_pthread_cond_signal(a) ((void)(a)) +#define ZSTD_pthread_cond_broadcast(a) ((void)(a)) + +/* do not use ZSTD_pthread_t */ + +#endif /* ZSTD_MULTITHREAD */ + + +#endif /* THREADING_H_938743 */ diff --git a/src/third-party/zstd/common/xxhash.c b/src/third-party/zstd/common/xxhash.c new file mode 100644 index 0000000000000..052cd522824b1 --- /dev/null +++ b/src/third-party/zstd/common/xxhash.c @@ -0,0 +1,18 @@ +/* + * xxHash - Extremely Fast Hash algorithm + * Copyright (c) Yann Collet - Meta Platforms, Inc + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/* + * xxhash.c instantiates functions defined in xxhash.h + */ + +#define XXH_STATIC_LINKING_ONLY /* access advanced declarations */ +#define XXH_IMPLEMENTATION /* access definitions */ + +#include "xxhash.h" diff --git a/src/third-party/zstd/common/xxhash.h b/src/third-party/zstd/common/xxhash.h new file mode 100644 index 0000000000000..68ec6b29fd182 --- /dev/null +++ b/src/third-party/zstd/common/xxhash.h @@ -0,0 +1,7094 @@ +/* + * xxHash - Extremely Fast Hash algorithm + * Header File + * Copyright (c) Yann Collet - Meta Platforms, Inc + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/* Local adaptations for Zstandard */ + +#ifndef XXH_NO_XXH3 +# define XXH_NO_XXH3 +#endif + +#ifndef XXH_NAMESPACE +# define XXH_NAMESPACE ZSTD_ +#endif + +/*! + * @mainpage xxHash + * + * xxHash is an extremely fast non-cryptographic hash algorithm, working at RAM speed + * limits. + * + * It is proposed in four flavors, in three families: + * 1. @ref XXH32_family + * - Classic 32-bit hash function. Simple, compact, and runs on almost all + * 32-bit and 64-bit systems. + * 2. @ref XXH64_family + * - Classic 64-bit adaptation of XXH32. Just as simple, and runs well on most + * 64-bit systems (but _not_ 32-bit systems). + * 3. @ref XXH3_family + * - Modern 64-bit and 128-bit hash function family which features improved + * strength and performance across the board, especially on smaller data. + * It benefits greatly from SIMD and 64-bit without requiring it. + * + * Benchmarks + * --- + * The reference system uses an Intel i7-9700K CPU, and runs Ubuntu x64 20.04. + * The open source benchmark program is compiled with clang v10.0 using -O3 flag. + * + * | Hash Name | ISA ext | Width | Large Data Speed | Small Data Velocity | + * | -------------------- | ------- | ----: | ---------------: | ------------------: | + * | XXH3_64bits() | @b AVX2 | 64 | 59.4 GB/s | 133.1 | + * | MeowHash | AES-NI | 128 | 58.2 GB/s | 52.5 | + * | XXH3_128bits() | @b AVX2 | 128 | 57.9 GB/s | 118.1 | + * | CLHash | PCLMUL | 64 | 37.1 GB/s | 58.1 | + * | XXH3_64bits() | @b SSE2 | 64 | 31.5 GB/s | 133.1 | + * | XXH3_128bits() | @b SSE2 | 128 | 29.6 GB/s | 118.1 | + * | RAM sequential read | | N/A | 28.0 GB/s | N/A | + * | ahash | AES-NI | 64 | 22.5 GB/s | 107.2 | + * | City64 | | 64 | 22.0 GB/s | 76.6 | + * | T1ha2 | | 64 | 22.0 GB/s | 99.0 | + * | City128 | | 128 | 21.7 GB/s | 57.7 | + * | FarmHash | AES-NI | 64 | 21.3 GB/s | 71.9 | + * | XXH64() | | 64 | 19.4 GB/s | 71.0 | + * | SpookyHash | | 64 | 19.3 GB/s | 53.2 | + * | Mum | | 64 | 18.0 GB/s | 67.0 | + * | CRC32C | SSE4.2 | 32 | 13.0 GB/s | 57.9 | + * | XXH32() | | 32 | 9.7 GB/s | 71.9 | + * | City32 | | 32 | 9.1 GB/s | 66.0 | + * | Blake3* | @b AVX2 | 256 | 4.4 GB/s | 8.1 | + * | Murmur3 | | 32 | 3.9 GB/s | 56.1 | + * | SipHash* | | 64 | 3.0 GB/s | 43.2 | + * | Blake3* | @b SSE2 | 256 | 2.4 GB/s | 8.1 | + * | HighwayHash | | 64 | 1.4 GB/s | 6.0 | + * | FNV64 | | 64 | 1.2 GB/s | 62.7 | + * | Blake2* | | 256 | 1.1 GB/s | 5.1 | + * | SHA1* | | 160 | 0.8 GB/s | 5.6 | + * | MD5* | | 128 | 0.6 GB/s | 7.8 | + * @note + * - Hashes which require a specific ISA extension are noted. SSE2 is also noted, + * even though it is mandatory on x64. + * - Hashes with an asterisk are cryptographic. Note that MD5 is non-cryptographic + * by modern standards. + * - Small data velocity is a rough average of algorithm's efficiency for small + * data. For more accurate information, see the wiki. + * - More benchmarks and strength tests are found on the wiki: + * https://github.com/Cyan4973/xxHash/wiki + * + * Usage + * ------ + * All xxHash variants use a similar API. Changing the algorithm is a trivial + * substitution. + * + * @pre + * For functions which take an input and length parameter, the following + * requirements are assumed: + * - The range from [`input`, `input + length`) is valid, readable memory. + * - The only exception is if the `length` is `0`, `input` may be `NULL`. + * - For C++, the objects must have the *TriviallyCopyable* property, as the + * functions access bytes directly as if it was an array of `unsigned char`. + * + * @anchor single_shot_example + * **Single Shot** + * + * These functions are stateless functions which hash a contiguous block of memory, + * immediately returning the result. They are the easiest and usually the fastest + * option. + * + * XXH32(), XXH64(), XXH3_64bits(), XXH3_128bits() + * + * @code{.c} + * #include + * #include "xxhash.h" + * + * // Example for a function which hashes a null terminated string with XXH32(). + * XXH32_hash_t hash_string(const char* string, XXH32_hash_t seed) + * { + * // NULL pointers are only valid if the length is zero + * size_t length = (string == NULL) ? 0 : strlen(string); + * return XXH32(string, length, seed); + * } + * @endcode + * + * + * @anchor streaming_example + * **Streaming** + * + * These groups of functions allow incremental hashing of unknown size, even + * more than what would fit in a size_t. + * + * XXH32_reset(), XXH64_reset(), XXH3_64bits_reset(), XXH3_128bits_reset() + * + * @code{.c} + * #include + * #include + * #include "xxhash.h" + * // Example for a function which hashes a FILE incrementally with XXH3_64bits(). + * XXH64_hash_t hashFile(FILE* f) + * { + * // Allocate a state struct. Do not just use malloc() or new. + * XXH3_state_t* state = XXH3_createState(); + * assert(state != NULL && "Out of memory!"); + * // Reset the state to start a new hashing session. + * XXH3_64bits_reset(state); + * char buffer[4096]; + * size_t count; + * // Read the file in chunks + * while ((count = fread(buffer, 1, sizeof(buffer), f)) != 0) { + * // Run update() as many times as necessary to process the data + * XXH3_64bits_update(state, buffer, count); + * } + * // Retrieve the finalized hash. This will not change the state. + * XXH64_hash_t result = XXH3_64bits_digest(state); + * // Free the state. Do not use free(). + * XXH3_freeState(state); + * return result; + * } + * @endcode + * + * Streaming functions generate the xxHash value from an incremental input. + * This method is slower than single-call functions, due to state management. + * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized. + * + * An XXH state must first be allocated using `XXH*_createState()`. + * + * Start a new hash by initializing the state with a seed using `XXH*_reset()`. + * + * Then, feed the hash state by calling `XXH*_update()` as many times as necessary. + * + * The function returns an error code, with 0 meaning OK, and any other value + * meaning there is an error. + * + * Finally, a hash value can be produced anytime, by using `XXH*_digest()`. + * This function returns the nn-bits hash as an int or long long. + * + * It's still possible to continue inserting input into the hash state after a + * digest, and generate new hash values later on by invoking `XXH*_digest()`. + * + * When done, release the state using `XXH*_freeState()`. + * + * + * @anchor canonical_representation_example + * **Canonical Representation** + * + * The default return values from XXH functions are unsigned 32, 64 and 128 bit + * integers. + * This the simplest and fastest format for further post-processing. + * + * However, this leaves open the question of what is the order on the byte level, + * since little and big endian conventions will store the same number differently. + * + * The canonical representation settles this issue by mandating big-endian + * convention, the same convention as human-readable numbers (large digits first). + * + * When writing hash values to storage, sending them over a network, or printing + * them, it's highly recommended to use the canonical representation to ensure + * portability across a wider range of systems, present and future. + * + * The following functions allow transformation of hash values to and from + * canonical format. + * + * XXH32_canonicalFromHash(), XXH32_hashFromCanonical(), + * XXH64_canonicalFromHash(), XXH64_hashFromCanonical(), + * XXH128_canonicalFromHash(), XXH128_hashFromCanonical(), + * + * @code{.c} + * #include + * #include "xxhash.h" + * + * // Example for a function which prints XXH32_hash_t in human readable format + * void printXxh32(XXH32_hash_t hash) + * { + * XXH32_canonical_t cano; + * XXH32_canonicalFromHash(&cano, hash); + * size_t i; + * for(i = 0; i < sizeof(cano.digest); ++i) { + * printf("%02x", cano.digest[i]); + * } + * printf("\n"); + * } + * + * // Example for a function which converts XXH32_canonical_t to XXH32_hash_t + * XXH32_hash_t convertCanonicalToXxh32(XXH32_canonical_t cano) + * { + * XXH32_hash_t hash = XXH32_hashFromCanonical(&cano); + * return hash; + * } + * @endcode + * + * + * @file xxhash.h + * xxHash prototypes and implementation + */ + +/* **************************** + * INLINE mode + ******************************/ +/*! + * @defgroup public Public API + * Contains details on the public xxHash functions. + * @{ + */ +#ifdef XXH_DOXYGEN +/*! + * @brief Gives access to internal state declaration, required for static allocation. + * + * Incompatible with dynamic linking, due to risks of ABI changes. + * + * Usage: + * @code{.c} + * #define XXH_STATIC_LINKING_ONLY + * #include "xxhash.h" + * @endcode + */ +# define XXH_STATIC_LINKING_ONLY +/* Do not undef XXH_STATIC_LINKING_ONLY for Doxygen */ + +/*! + * @brief Gives access to internal definitions. + * + * Usage: + * @code{.c} + * #define XXH_STATIC_LINKING_ONLY + * #define XXH_IMPLEMENTATION + * #include "xxhash.h" + * @endcode + */ +# define XXH_IMPLEMENTATION +/* Do not undef XXH_IMPLEMENTATION for Doxygen */ + +/*! + * @brief Exposes the implementation and marks all functions as `inline`. + * + * Use these build macros to inline xxhash into the target unit. + * Inlining improves performance on small inputs, especially when the length is + * expressed as a compile-time constant: + * + * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html + * + * It also keeps xxHash symbols private to the unit, so they are not exported. + * + * Usage: + * @code{.c} + * #define XXH_INLINE_ALL + * #include "xxhash.h" + * @endcode + * Do not compile and link xxhash.o as a separate object, as it is not useful. + */ +# define XXH_INLINE_ALL +# undef XXH_INLINE_ALL +/*! + * @brief Exposes the implementation without marking functions as inline. + */ +# define XXH_PRIVATE_API +# undef XXH_PRIVATE_API +/*! + * @brief Emulate a namespace by transparently prefixing all symbols. + * + * If you want to include _and expose_ xxHash functions from within your own + * library, but also want to avoid symbol collisions with other libraries which + * may also include xxHash, you can use @ref XXH_NAMESPACE to automatically prefix + * any public symbol from xxhash library with the value of @ref XXH_NAMESPACE + * (therefore, avoid empty or numeric values). + * + * Note that no change is required within the calling program as long as it + * includes `xxhash.h`: Regular symbol names will be automatically translated + * by this header. + */ +# define XXH_NAMESPACE /* YOUR NAME HERE */ +# undef XXH_NAMESPACE +#endif + +#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \ + && !defined(XXH_INLINE_ALL_31684351384) + /* this section should be traversed only once */ +# define XXH_INLINE_ALL_31684351384 + /* give access to the advanced API, required to compile implementations */ +# undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */ +# define XXH_STATIC_LINKING_ONLY + /* make all functions private */ +# undef XXH_PUBLIC_API +# if defined(__GNUC__) +# define XXH_PUBLIC_API static __inline __attribute__((unused)) +# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) +# define XXH_PUBLIC_API static inline +# elif defined(_MSC_VER) +# define XXH_PUBLIC_API static __inline +# else + /* note: this version may generate warnings for unused static functions */ +# define XXH_PUBLIC_API static +# endif + + /* + * This part deals with the special case where a unit wants to inline xxHash, + * but "xxhash.h" has previously been included without XXH_INLINE_ALL, + * such as part of some previously included *.h header file. + * Without further action, the new include would just be ignored, + * and functions would effectively _not_ be inlined (silent failure). + * The following macros solve this situation by prefixing all inlined names, + * avoiding naming collision with previous inclusions. + */ + /* Before that, we unconditionally #undef all symbols, + * in case they were already defined with XXH_NAMESPACE. + * They will then be redefined for XXH_INLINE_ALL + */ +# undef XXH_versionNumber + /* XXH32 */ +# undef XXH32 +# undef XXH32_createState +# undef XXH32_freeState +# undef XXH32_reset +# undef XXH32_update +# undef XXH32_digest +# undef XXH32_copyState +# undef XXH32_canonicalFromHash +# undef XXH32_hashFromCanonical + /* XXH64 */ +# undef XXH64 +# undef XXH64_createState +# undef XXH64_freeState +# undef XXH64_reset +# undef XXH64_update +# undef XXH64_digest +# undef XXH64_copyState +# undef XXH64_canonicalFromHash +# undef XXH64_hashFromCanonical + /* XXH3_64bits */ +# undef XXH3_64bits +# undef XXH3_64bits_withSecret +# undef XXH3_64bits_withSeed +# undef XXH3_64bits_withSecretandSeed +# undef XXH3_createState +# undef XXH3_freeState +# undef XXH3_copyState +# undef XXH3_64bits_reset +# undef XXH3_64bits_reset_withSeed +# undef XXH3_64bits_reset_withSecret +# undef XXH3_64bits_update +# undef XXH3_64bits_digest +# undef XXH3_generateSecret + /* XXH3_128bits */ +# undef XXH128 +# undef XXH3_128bits +# undef XXH3_128bits_withSeed +# undef XXH3_128bits_withSecret +# undef XXH3_128bits_reset +# undef XXH3_128bits_reset_withSeed +# undef XXH3_128bits_reset_withSecret +# undef XXH3_128bits_reset_withSecretandSeed +# undef XXH3_128bits_update +# undef XXH3_128bits_digest +# undef XXH128_isEqual +# undef XXH128_cmp +# undef XXH128_canonicalFromHash +# undef XXH128_hashFromCanonical + /* Finally, free the namespace itself */ +# undef XXH_NAMESPACE + + /* employ the namespace for XXH_INLINE_ALL */ +# define XXH_NAMESPACE XXH_INLINE_ + /* + * Some identifiers (enums, type names) are not symbols, + * but they must nonetheless be renamed to avoid redeclaration. + * Alternative solution: do not redeclare them. + * However, this requires some #ifdefs, and has a more dispersed impact. + * Meanwhile, renaming can be achieved in a single place. + */ +# define XXH_IPREF(Id) XXH_NAMESPACE ## Id +# define XXH_OK XXH_IPREF(XXH_OK) +# define XXH_ERROR XXH_IPREF(XXH_ERROR) +# define XXH_errorcode XXH_IPREF(XXH_errorcode) +# define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t) +# define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t) +# define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t) +# define XXH32_state_s XXH_IPREF(XXH32_state_s) +# define XXH32_state_t XXH_IPREF(XXH32_state_t) +# define XXH64_state_s XXH_IPREF(XXH64_state_s) +# define XXH64_state_t XXH_IPREF(XXH64_state_t) +# define XXH3_state_s XXH_IPREF(XXH3_state_s) +# define XXH3_state_t XXH_IPREF(XXH3_state_t) +# define XXH128_hash_t XXH_IPREF(XXH128_hash_t) + /* Ensure the header is parsed again, even if it was previously included */ +# undef XXHASH_H_5627135585666179 +# undef XXHASH_H_STATIC_13879238742 +#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */ + +/* **************************************************************** + * Stable API + *****************************************************************/ +#ifndef XXHASH_H_5627135585666179 +#define XXHASH_H_5627135585666179 1 + +/*! @brief Marks a global symbol. */ +#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) +# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT)) +# ifdef XXH_EXPORT +# define XXH_PUBLIC_API __declspec(dllexport) +# elif XXH_IMPORT +# define XXH_PUBLIC_API __declspec(dllimport) +# endif +# else +# define XXH_PUBLIC_API /* do nothing */ +# endif +#endif + +#ifdef XXH_NAMESPACE +# define XXH_CAT(A,B) A##B +# define XXH_NAME2(A,B) XXH_CAT(A,B) +# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber) +/* XXH32 */ +# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32) +# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState) +# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState) +# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset) +# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update) +# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest) +# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState) +# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash) +# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical) +/* XXH64 */ +# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64) +# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState) +# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState) +# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset) +# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update) +# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest) +# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState) +# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash) +# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical) +/* XXH3_64bits */ +# define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits) +# define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret) +# define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed) +# define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed) +# define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState) +# define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState) +# define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState) +# define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset) +# define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed) +# define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret) +# define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed) +# define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update) +# define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest) +# define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret) +# define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed) +/* XXH3_128bits */ +# define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128) +# define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits) +# define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed) +# define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret) +# define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed) +# define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset) +# define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed) +# define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret) +# define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed) +# define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update) +# define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest) +# define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual) +# define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp) +# define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash) +# define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical) +#endif + + +/* ************************************* +* Compiler specifics +***************************************/ + +/* specific declaration modes for Windows */ +#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) +# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT)) +# ifdef XXH_EXPORT +# define XXH_PUBLIC_API __declspec(dllexport) +# elif XXH_IMPORT +# define XXH_PUBLIC_API __declspec(dllimport) +# endif +# else +# define XXH_PUBLIC_API /* do nothing */ +# endif +#endif + +#if defined (__GNUC__) +# define XXH_CONSTF __attribute__((const)) +# define XXH_PUREF __attribute__((pure)) +# define XXH_MALLOCF __attribute__((malloc)) +#else +# define XXH_CONSTF /* disable */ +# define XXH_PUREF +# define XXH_MALLOCF +#endif + +/* ************************************* +* Version +***************************************/ +#define XXH_VERSION_MAJOR 0 +#define XXH_VERSION_MINOR 8 +#define XXH_VERSION_RELEASE 2 +/*! @brief Version number, encoded as two digits each */ +#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE) + +#if defined (__cplusplus) +extern "C" { +#endif +/*! + * @brief Obtains the xxHash version. + * + * This is mostly useful when xxHash is compiled as a shared library, + * since the returned value comes from the library, as opposed to header file. + * + * @return @ref XXH_VERSION_NUMBER of the invoked library. + */ +XXH_PUBLIC_API XXH_CONSTF unsigned XXH_versionNumber (void); + +#if defined (__cplusplus) +} +#endif + +/* **************************** +* Common basic types +******************************/ +#include /* size_t */ +/*! + * @brief Exit code for the streaming API. + */ +typedef enum { + XXH_OK = 0, /*!< OK */ + XXH_ERROR /*!< Error */ +} XXH_errorcode; + + +/*-********************************************************************** +* 32-bit hash +************************************************************************/ +#if defined(XXH_DOXYGEN) /* Don't show include */ +/*! + * @brief An unsigned 32-bit integer. + * + * Not necessarily defined to `uint32_t` but functionally equivalent. + */ +typedef uint32_t XXH32_hash_t; + +#elif !defined (__VMS) \ + && (defined (__cplusplus) \ + || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) +# ifdef _AIX +# include +# else +# include +# endif + typedef uint32_t XXH32_hash_t; + +#else +# include +# if UINT_MAX == 0xFFFFFFFFUL + typedef unsigned int XXH32_hash_t; +# elif ULONG_MAX == 0xFFFFFFFFUL + typedef unsigned long XXH32_hash_t; +# else +# error "unsupported platform: need a 32-bit type" +# endif +#endif + +#if defined (__cplusplus) +extern "C" { +#endif + +/*! + * @} + * + * @defgroup XXH32_family XXH32 family + * @ingroup public + * Contains functions used in the classic 32-bit xxHash algorithm. + * + * @note + * XXH32 is useful for older platforms, with no or poor 64-bit performance. + * Note that the @ref XXH3_family provides competitive speed for both 32-bit + * and 64-bit systems, and offers true 64/128 bit hash results. + * + * @see @ref XXH64_family, @ref XXH3_family : Other xxHash families + * @see @ref XXH32_impl for implementation details + * @{ + */ + +/*! + * @brief Calculates the 32-bit hash of @p input using xxHash32. + * + * @param input The block of data to be hashed, at least @p length bytes in size. + * @param length The length of @p input, in bytes. + * @param seed The 32-bit seed to alter the hash's output predictably. + * + * @pre + * The memory between @p input and @p input + @p length must be valid, + * readable, contiguous memory. However, if @p length is `0`, @p input may be + * `NULL`. In C++, this also must be *TriviallyCopyable*. + * + * @return The calculated 32-bit xxHash32 value. + * + * @see @ref single_shot_example "Single Shot Example" for an example. + */ +XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed); + +#ifndef XXH_NO_STREAM +/*! + * @typedef struct XXH32_state_s XXH32_state_t + * @brief The opaque state struct for the XXH32 streaming API. + * + * @see XXH32_state_s for details. + */ +typedef struct XXH32_state_s XXH32_state_t; + +/*! + * @brief Allocates an @ref XXH32_state_t. + * + * @return An allocated pointer of @ref XXH32_state_t on success. + * @return `NULL` on failure. + * + * @note Must be freed with XXH32_freeState(). + */ +XXH_PUBLIC_API XXH_MALLOCF XXH32_state_t* XXH32_createState(void); +/*! + * @brief Frees an @ref XXH32_state_t. + * + * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState(). + * + * @return @ref XXH_OK. + * + * @note @p statePtr must be allocated with XXH32_createState(). + * + */ +XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr); +/*! + * @brief Copies one @ref XXH32_state_t to another. + * + * @param dst_state The state to copy to. + * @param src_state The state to copy from. + * @pre + * @p dst_state and @p src_state must not be `NULL` and must not overlap. + */ +XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state); + +/*! + * @brief Resets an @ref XXH32_state_t to begin a new hash. + * + * @param statePtr The state struct to reset. + * @param seed The 32-bit seed to alter the hash result predictably. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note This function resets and seeds a state. Call it before @ref XXH32_update(). + */ +XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed); + +/*! + * @brief Consumes a block of @p input to an @ref XXH32_state_t. + * + * @param statePtr The state struct to update. + * @param input The block of data to be hashed, at least @p length bytes in size. + * @param length The length of @p input, in bytes. + * + * @pre + * @p statePtr must not be `NULL`. + * @pre + * The memory between @p input and @p input + @p length must be valid, + * readable, contiguous memory. However, if @p length is `0`, @p input may be + * `NULL`. In C++, this also must be *TriviallyCopyable*. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note Call this to incrementally consume blocks of data. + */ +XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length); + +/*! + * @brief Returns the calculated hash value from an @ref XXH32_state_t. + * + * @param statePtr The state struct to calculate the hash from. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return The calculated 32-bit xxHash32 value from that state. + * + * @note + * Calling XXH32_digest() will not affect @p statePtr, so you can update, + * digest, and update again. + */ +XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr); +#endif /* !XXH_NO_STREAM */ + +/******* Canonical representation *******/ + +/*! + * @brief Canonical (big endian) representation of @ref XXH32_hash_t. + */ +typedef struct { + unsigned char digest[4]; /*!< Hash bytes, big endian */ +} XXH32_canonical_t; + +/*! + * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t. + * + * @param dst The @ref XXH32_canonical_t pointer to be stored to. + * @param hash The @ref XXH32_hash_t to be converted. + * + * @pre + * @p dst must not be `NULL`. + * + * @see @ref canonical_representation_example "Canonical Representation Example" + */ +XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash); + +/*! + * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t. + * + * @param src The @ref XXH32_canonical_t to convert. + * + * @pre + * @p src must not be `NULL`. + * + * @return The converted hash. + * + * @see @ref canonical_representation_example "Canonical Representation Example" + */ +XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src); + + +/*! @cond Doxygen ignores this part */ +#ifdef __has_attribute +# define XXH_HAS_ATTRIBUTE(x) __has_attribute(x) +#else +# define XXH_HAS_ATTRIBUTE(x) 0 +#endif +/*! @endcond */ + +/*! @cond Doxygen ignores this part */ +/* + * C23 __STDC_VERSION__ number hasn't been specified yet. For now + * leave as `201711L` (C17 + 1). + * TODO: Update to correct value when its been specified. + */ +#define XXH_C23_VN 201711L +/*! @endcond */ + +/*! @cond Doxygen ignores this part */ +/* C-language Attributes are added in C23. */ +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) && defined(__has_c_attribute) +# define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x) +#else +# define XXH_HAS_C_ATTRIBUTE(x) 0 +#endif +/*! @endcond */ + +/*! @cond Doxygen ignores this part */ +#if defined(__cplusplus) && defined(__has_cpp_attribute) +# define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) +#else +# define XXH_HAS_CPP_ATTRIBUTE(x) 0 +#endif +/*! @endcond */ + +/*! @cond Doxygen ignores this part */ +/* + * Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute + * introduced in CPP17 and C23. + * CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough + * C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough + */ +#if XXH_HAS_C_ATTRIBUTE(fallthrough) || XXH_HAS_CPP_ATTRIBUTE(fallthrough) +# define XXH_FALLTHROUGH [[fallthrough]] +#elif XXH_HAS_ATTRIBUTE(__fallthrough__) +# define XXH_FALLTHROUGH __attribute__ ((__fallthrough__)) +#else +# define XXH_FALLTHROUGH /* fallthrough */ +#endif +/*! @endcond */ + +/*! @cond Doxygen ignores this part */ +/* + * Define XXH_NOESCAPE for annotated pointers in public API. + * https://clang.llvm.org/docs/AttributeReference.html#noescape + * As of writing this, only supported by clang. + */ +#if XXH_HAS_ATTRIBUTE(noescape) +# define XXH_NOESCAPE __attribute__((noescape)) +#else +# define XXH_NOESCAPE +#endif +/*! @endcond */ + +#if defined (__cplusplus) +} /* end of extern "C" */ +#endif + +/*! + * @} + * @ingroup public + * @{ + */ + +#ifndef XXH_NO_LONG_LONG +/*-********************************************************************** +* 64-bit hash +************************************************************************/ +#if defined(XXH_DOXYGEN) /* don't include */ +/*! + * @brief An unsigned 64-bit integer. + * + * Not necessarily defined to `uint64_t` but functionally equivalent. + */ +typedef uint64_t XXH64_hash_t; +#elif !defined (__VMS) \ + && (defined (__cplusplus) \ + || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) +# ifdef _AIX +# include +# else +# include +# endif + typedef uint64_t XXH64_hash_t; +#else +# include +# if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL + /* LP64 ABI says uint64_t is unsigned long */ + typedef unsigned long XXH64_hash_t; +# else + /* the following type must have a width of 64-bit */ + typedef unsigned long long XXH64_hash_t; +# endif +#endif + +#if defined (__cplusplus) +extern "C" { +#endif +/*! + * @} + * + * @defgroup XXH64_family XXH64 family + * @ingroup public + * @{ + * Contains functions used in the classic 64-bit xxHash algorithm. + * + * @note + * XXH3 provides competitive speed for both 32-bit and 64-bit systems, + * and offers true 64/128 bit hash results. + * It provides better speed for systems with vector processing capabilities. + */ + +/*! + * @brief Calculates the 64-bit hash of @p input using xxHash64. + * + * @param input The block of data to be hashed, at least @p length bytes in size. + * @param length The length of @p input, in bytes. + * @param seed The 64-bit seed to alter the hash's output predictably. + * + * @pre + * The memory between @p input and @p input + @p length must be valid, + * readable, contiguous memory. However, if @p length is `0`, @p input may be + * `NULL`. In C++, this also must be *TriviallyCopyable*. + * + * @return The calculated 64-bit xxHash64 value. + * + * @see @ref single_shot_example "Single Shot Example" for an example. + */ +XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed); + +/******* Streaming *******/ +#ifndef XXH_NO_STREAM +/*! + * @brief The opaque state struct for the XXH64 streaming API. + * + * @see XXH64_state_s for details. + */ +typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */ + +/*! + * @brief Allocates an @ref XXH64_state_t. + * + * @return An allocated pointer of @ref XXH64_state_t on success. + * @return `NULL` on failure. + * + * @note Must be freed with XXH64_freeState(). + */ +XXH_PUBLIC_API XXH_MALLOCF XXH64_state_t* XXH64_createState(void); + +/*! + * @brief Frees an @ref XXH64_state_t. + * + * @param statePtr A pointer to an @ref XXH64_state_t allocated with @ref XXH64_createState(). + * + * @return @ref XXH_OK. + * + * @note @p statePtr must be allocated with XXH64_createState(). + */ +XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr); + +/*! + * @brief Copies one @ref XXH64_state_t to another. + * + * @param dst_state The state to copy to. + * @param src_state The state to copy from. + * @pre + * @p dst_state and @p src_state must not be `NULL` and must not overlap. + */ +XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dst_state, const XXH64_state_t* src_state); + +/*! + * @brief Resets an @ref XXH64_state_t to begin a new hash. + * + * @param statePtr The state struct to reset. + * @param seed The 64-bit seed to alter the hash result predictably. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note This function resets and seeds a state. Call it before @ref XXH64_update(). + */ +XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed); + +/*! + * @brief Consumes a block of @p input to an @ref XXH64_state_t. + * + * @param statePtr The state struct to update. + * @param input The block of data to be hashed, at least @p length bytes in size. + * @param length The length of @p input, in bytes. + * + * @pre + * @p statePtr must not be `NULL`. + * @pre + * The memory between @p input and @p input + @p length must be valid, + * readable, contiguous memory. However, if @p length is `0`, @p input may be + * `NULL`. In C++, this also must be *TriviallyCopyable*. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note Call this to incrementally consume blocks of data. + */ +XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH_NOESCAPE XXH64_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); + +/*! + * @brief Returns the calculated hash value from an @ref XXH64_state_t. + * + * @param statePtr The state struct to calculate the hash from. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return The calculated 64-bit xxHash64 value from that state. + * + * @note + * Calling XXH64_digest() will not affect @p statePtr, so you can update, + * digest, and update again. + */ +XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_digest (XXH_NOESCAPE const XXH64_state_t* statePtr); +#endif /* !XXH_NO_STREAM */ +/******* Canonical representation *******/ + +/*! + * @brief Canonical (big endian) representation of @ref XXH64_hash_t. + */ +typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t; + +/*! + * @brief Converts an @ref XXH64_hash_t to a big endian @ref XXH64_canonical_t. + * + * @param dst The @ref XXH64_canonical_t pointer to be stored to. + * @param hash The @ref XXH64_hash_t to be converted. + * + * @pre + * @p dst must not be `NULL`. + * + * @see @ref canonical_representation_example "Canonical Representation Example" + */ +XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash); + +/*! + * @brief Converts an @ref XXH64_canonical_t to a native @ref XXH64_hash_t. + * + * @param src The @ref XXH64_canonical_t to convert. + * + * @pre + * @p src must not be `NULL`. + * + * @return The converted hash. + * + * @see @ref canonical_representation_example "Canonical Representation Example" + */ +XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src); + +#ifndef XXH_NO_XXH3 + +/*! + * @} + * ************************************************************************ + * @defgroup XXH3_family XXH3 family + * @ingroup public + * @{ + * + * XXH3 is a more recent hash algorithm featuring: + * - Improved speed for both small and large inputs + * - True 64-bit and 128-bit outputs + * - SIMD acceleration + * - Improved 32-bit viability + * + * Speed analysis methodology is explained here: + * + * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html + * + * Compared to XXH64, expect XXH3 to run approximately + * ~2x faster on large inputs and >3x faster on small ones, + * exact differences vary depending on platform. + * + * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic, + * but does not require it. + * Most 32-bit and 64-bit targets that can run XXH32 smoothly can run XXH3 + * at competitive speeds, even without vector support. Further details are + * explained in the implementation. + * + * XXH3 has a fast scalar implementation, but it also includes accelerated SIMD + * implementations for many common platforms: + * - AVX512 + * - AVX2 + * - SSE2 + * - ARM NEON + * - WebAssembly SIMD128 + * - POWER8 VSX + * - s390x ZVector + * This can be controlled via the @ref XXH_VECTOR macro, but it automatically + * selects the best version according to predefined macros. For the x86 family, an + * automatic runtime dispatcher is included separately in @ref xxh_x86dispatch.c. + * + * XXH3 implementation is portable: + * it has a generic C90 formulation that can be compiled on any platform, + * all implementations generate exactly the same hash value on all platforms. + * Starting from v0.8.0, it's also labelled "stable", meaning that + * any future version will also generate the same hash value. + * + * XXH3 offers 2 variants, _64bits and _128bits. + * + * When only 64 bits are needed, prefer invoking the _64bits variant, as it + * reduces the amount of mixing, resulting in faster speed on small inputs. + * It's also generally simpler to manipulate a scalar return type than a struct. + * + * The API supports one-shot hashing, streaming mode, and custom secrets. + */ +/*-********************************************************************** +* XXH3 64-bit variant +************************************************************************/ + +/*! + * @brief Calculates 64-bit unseeded variant of XXH3 hash of @p input. + * + * @param input The block of data to be hashed, at least @p length bytes in size. + * @param length The length of @p input, in bytes. + * + * @pre + * The memory between @p input and @p input + @p length must be valid, + * readable, contiguous memory. However, if @p length is `0`, @p input may be + * `NULL`. In C++, this also must be *TriviallyCopyable*. + * + * @return The calculated 64-bit XXH3 hash value. + * + * @note + * This is equivalent to @ref XXH3_64bits_withSeed() with a seed of `0`, however + * it may have slightly better performance due to constant propagation of the + * defaults. + * + * @see + * XXH3_64bits_withSeed(), XXH3_64bits_withSecret(): other seeding variants + * @see @ref single_shot_example "Single Shot Example" for an example. + */ +XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length); + +/*! + * @brief Calculates 64-bit seeded variant of XXH3 hash of @p input. + * + * @param input The block of data to be hashed, at least @p length bytes in size. + * @param length The length of @p input, in bytes. + * @param seed The 64-bit seed to alter the hash result predictably. + * + * @pre + * The memory between @p input and @p input + @p length must be valid, + * readable, contiguous memory. However, if @p length is `0`, @p input may be + * `NULL`. In C++, this also must be *TriviallyCopyable*. + * + * @return The calculated 64-bit XXH3 hash value. + * + * @note + * seed == 0 produces the same results as @ref XXH3_64bits(). + * + * This variant generates a custom secret on the fly based on default secret + * altered using the @p seed value. + * + * While this operation is decently fast, note that it's not completely free. + * + * @see @ref single_shot_example "Single Shot Example" for an example. + */ +XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed); + +/*! + * The bare minimum size for a custom secret. + * + * @see + * XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(), + * XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret(). + */ +#define XXH3_SECRET_SIZE_MIN 136 + +/*! + * @brief Calculates 64-bit variant of XXH3 with a custom "secret". + * + * @param data The block of data to be hashed, at least @p len bytes in size. + * @param len The length of @p data, in bytes. + * @param secret The secret data. + * @param secretSize The length of @p secret, in bytes. + * + * @return The calculated 64-bit XXH3 hash value. + * + * @pre + * The memory between @p data and @p data + @p len must be valid, + * readable, contiguous memory. However, if @p length is `0`, @p data may be + * `NULL`. In C++, this also must be *TriviallyCopyable*. + * + * It's possible to provide any blob of bytes as a "secret" to generate the hash. + * This makes it more difficult for an external actor to prepare an intentional collision. + * The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN). + * However, the quality of the secret impacts the dispersion of the hash algorithm. + * Therefore, the secret _must_ look like a bunch of random bytes. + * Avoid "trivial" or structured data such as repeated sequences or a text document. + * Whenever in doubt about the "randomness" of the blob of bytes, + * consider employing @ref XXH3_generateSecret() instead (see below). + * It will generate a proper high entropy secret derived from the blob of bytes. + * Another advantage of using XXH3_generateSecret() is that + * it guarantees that all bits within the initial blob of bytes + * will impact every bit of the output. + * This is not necessarily the case when using the blob of bytes directly + * because, when hashing _small_ inputs, only a portion of the secret is employed. + * + * @see @ref single_shot_example "Single Shot Example" for an example. + */ +XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize); + + +/******* Streaming *******/ +#ifndef XXH_NO_STREAM +/* + * Streaming requires state maintenance. + * This operation costs memory and CPU. + * As a consequence, streaming is slower than one-shot hashing. + * For better performance, prefer one-shot functions whenever applicable. + */ + +/*! + * @brief The opaque state struct for the XXH3 streaming API. + * + * @see XXH3_state_s for details. + */ +typedef struct XXH3_state_s XXH3_state_t; +XXH_PUBLIC_API XXH_MALLOCF XXH3_state_t* XXH3_createState(void); +XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr); + +/*! + * @brief Copies one @ref XXH3_state_t to another. + * + * @param dst_state The state to copy to. + * @param src_state The state to copy from. + * @pre + * @p dst_state and @p src_state must not be `NULL` and must not overlap. + */ +XXH_PUBLIC_API void XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state); + +/*! + * @brief Resets an @ref XXH3_state_t to begin a new hash. + * + * @param statePtr The state struct to reset. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note + * - This function resets `statePtr` and generate a secret with default parameters. + * - Call this function before @ref XXH3_64bits_update(). + * - Digest will be equivalent to `XXH3_64bits()`. + * + */ +XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr); + +/*! + * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash. + * + * @param statePtr The state struct to reset. + * @param seed The 64-bit seed to alter the hash result predictably. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note + * - This function resets `statePtr` and generate a secret from `seed`. + * - Call this function before @ref XXH3_64bits_update(). + * - Digest will be equivalent to `XXH3_64bits_withSeed()`. + * + */ +XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed); + +/*! + * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash. + * + * @param statePtr The state struct to reset. + * @param secret The secret data. + * @param secretSize The length of @p secret, in bytes. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note + * `secret` is referenced, it _must outlive_ the hash streaming session. + * + * Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN, + * and the quality of produced hash values depends on secret's entropy + * (secret's content should look like a bunch of random bytes). + * When in doubt about the randomness of a candidate `secret`, + * consider employing `XXH3_generateSecret()` instead (see below). + */ +XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize); + +/*! + * @brief Consumes a block of @p input to an @ref XXH3_state_t. + * + * @param statePtr The state struct to update. + * @param input The block of data to be hashed, at least @p length bytes in size. + * @param length The length of @p input, in bytes. + * + * @pre + * @p statePtr must not be `NULL`. + * @pre + * The memory between @p input and @p input + @p length must be valid, + * readable, contiguous memory. However, if @p length is `0`, @p input may be + * `NULL`. In C++, this also must be *TriviallyCopyable*. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note Call this to incrementally consume blocks of data. + */ +XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); + +/*! + * @brief Returns the calculated XXH3 64-bit hash value from an @ref XXH3_state_t. + * + * @param statePtr The state struct to calculate the hash from. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return The calculated XXH3 64-bit hash value from that state. + * + * @note + * Calling XXH3_64bits_digest() will not affect @p statePtr, so you can update, + * digest, and update again. + */ +XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr); +#endif /* !XXH_NO_STREAM */ + +/* note : canonical representation of XXH3 is the same as XXH64 + * since they both produce XXH64_hash_t values */ + + +/*-********************************************************************** +* XXH3 128-bit variant +************************************************************************/ + +/*! + * @brief The return value from 128-bit hashes. + * + * Stored in little endian order, although the fields themselves are in native + * endianness. + */ +typedef struct { + XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */ + XXH64_hash_t high64; /*!< `value >> 64` */ +} XXH128_hash_t; + +/*! + * @brief Calculates 128-bit unseeded variant of XXH3 of @p data. + * + * @param data The block of data to be hashed, at least @p length bytes in size. + * @param len The length of @p data, in bytes. + * + * @return The calculated 128-bit variant of XXH3 value. + * + * The 128-bit variant of XXH3 has more strength, but it has a bit of overhead + * for shorter inputs. + * + * This is equivalent to @ref XXH3_128bits_withSeed() with a seed of `0`, however + * it may have slightly better performance due to constant propagation of the + * defaults. + * + * @see XXH3_128bits_withSeed(), XXH3_128bits_withSecret(): other seeding variants + * @see @ref single_shot_example "Single Shot Example" for an example. + */ +XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* data, size_t len); +/*! @brief Calculates 128-bit seeded variant of XXH3 hash of @p data. + * + * @param data The block of data to be hashed, at least @p length bytes in size. + * @param len The length of @p data, in bytes. + * @param seed The 64-bit seed to alter the hash result predictably. + * + * @return The calculated 128-bit variant of XXH3 value. + * + * @note + * seed == 0 produces the same results as @ref XXH3_64bits(). + * + * This variant generates a custom secret on the fly based on default secret + * altered using the @p seed value. + * + * While this operation is decently fast, note that it's not completely free. + * + * @see XXH3_128bits(), XXH3_128bits_withSecret(): other seeding variants + * @see @ref single_shot_example "Single Shot Example" for an example. + */ +XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSeed(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed); +/*! + * @brief Calculates 128-bit variant of XXH3 with a custom "secret". + * + * @param data The block of data to be hashed, at least @p len bytes in size. + * @param len The length of @p data, in bytes. + * @param secret The secret data. + * @param secretSize The length of @p secret, in bytes. + * + * @return The calculated 128-bit variant of XXH3 value. + * + * It's possible to provide any blob of bytes as a "secret" to generate the hash. + * This makes it more difficult for an external actor to prepare an intentional collision. + * The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN). + * However, the quality of the secret impacts the dispersion of the hash algorithm. + * Therefore, the secret _must_ look like a bunch of random bytes. + * Avoid "trivial" or structured data such as repeated sequences or a text document. + * Whenever in doubt about the "randomness" of the blob of bytes, + * consider employing @ref XXH3_generateSecret() instead (see below). + * It will generate a proper high entropy secret derived from the blob of bytes. + * Another advantage of using XXH3_generateSecret() is that + * it guarantees that all bits within the initial blob of bytes + * will impact every bit of the output. + * This is not necessarily the case when using the blob of bytes directly + * because, when hashing _small_ inputs, only a portion of the secret is employed. + * + * @see @ref single_shot_example "Single Shot Example" for an example. + */ +XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize); + +/******* Streaming *******/ +#ifndef XXH_NO_STREAM +/* + * Streaming requires state maintenance. + * This operation costs memory and CPU. + * As a consequence, streaming is slower than one-shot hashing. + * For better performance, prefer one-shot functions whenever applicable. + * + * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits(). + * Use already declared XXH3_createState() and XXH3_freeState(). + * + * All reset and streaming functions have same meaning as their 64-bit counterpart. + */ + +/*! + * @brief Resets an @ref XXH3_state_t to begin a new hash. + * + * @param statePtr The state struct to reset. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note + * - This function resets `statePtr` and generate a secret with default parameters. + * - Call it before @ref XXH3_128bits_update(). + * - Digest will be equivalent to `XXH3_128bits()`. + */ +XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr); + +/*! + * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash. + * + * @param statePtr The state struct to reset. + * @param seed The 64-bit seed to alter the hash result predictably. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note + * - This function resets `statePtr` and generate a secret from `seed`. + * - Call it before @ref XXH3_128bits_update(). + * - Digest will be equivalent to `XXH3_128bits_withSeed()`. + */ +XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed); +/*! + * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash. + * + * @param statePtr The state struct to reset. + * @param secret The secret data. + * @param secretSize The length of @p secret, in bytes. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * `secret` is referenced, it _must outlive_ the hash streaming session. + * Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN, + * and the quality of produced hash values depends on secret's entropy + * (secret's content should look like a bunch of random bytes). + * When in doubt about the randomness of a candidate `secret`, + * consider employing `XXH3_generateSecret()` instead (see below). + */ +XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize); + +/*! + * @brief Consumes a block of @p input to an @ref XXH3_state_t. + * + * Call this to incrementally consume blocks of data. + * + * @param statePtr The state struct to update. + * @param input The block of data to be hashed, at least @p length bytes in size. + * @param length The length of @p input, in bytes. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @note + * The memory between @p input and @p input + @p length must be valid, + * readable, contiguous memory. However, if @p length is `0`, @p input may be + * `NULL`. In C++, this also must be *TriviallyCopyable*. + * + */ +XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); + +/*! + * @brief Returns the calculated XXH3 128-bit hash value from an @ref XXH3_state_t. + * + * @param statePtr The state struct to calculate the hash from. + * + * @pre + * @p statePtr must not be `NULL`. + * + * @return The calculated XXH3 128-bit hash value from that state. + * + * @note + * Calling XXH3_128bits_digest() will not affect @p statePtr, so you can update, + * digest, and update again. + * + */ +XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr); +#endif /* !XXH_NO_STREAM */ + +/* Following helper functions make it possible to compare XXH128_hast_t values. + * Since XXH128_hash_t is a structure, this capability is not offered by the language. + * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */ + +/*! + * @brief Check equality of two XXH128_hash_t values + * + * @param h1 The 128-bit hash value. + * @param h2 Another 128-bit hash value. + * + * @return `1` if `h1` and `h2` are equal. + * @return `0` if they are not. + */ +XXH_PUBLIC_API XXH_PUREF int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2); + +/*! + * @brief Compares two @ref XXH128_hash_t + * + * This comparator is compatible with stdlib's `qsort()`/`bsearch()`. + * + * @param h128_1 Left-hand side value + * @param h128_2 Right-hand side value + * + * @return >0 if @p h128_1 > @p h128_2 + * @return =0 if @p h128_1 == @p h128_2 + * @return <0 if @p h128_1 < @p h128_2 + */ +XXH_PUBLIC_API XXH_PUREF int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2); + + +/******* Canonical representation *******/ +typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t; + + +/*! + * @brief Converts an @ref XXH128_hash_t to a big endian @ref XXH128_canonical_t. + * + * @param dst The @ref XXH128_canonical_t pointer to be stored to. + * @param hash The @ref XXH128_hash_t to be converted. + * + * @pre + * @p dst must not be `NULL`. + * @see @ref canonical_representation_example "Canonical Representation Example" + */ +XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash); + +/*! + * @brief Converts an @ref XXH128_canonical_t to a native @ref XXH128_hash_t. + * + * @param src The @ref XXH128_canonical_t to convert. + * + * @pre + * @p src must not be `NULL`. + * + * @return The converted hash. + * @see @ref canonical_representation_example "Canonical Representation Example" + */ +XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src); + + +#endif /* !XXH_NO_XXH3 */ + +#if defined (__cplusplus) +} /* extern "C" */ +#endif + +#endif /* XXH_NO_LONG_LONG */ + +/*! + * @} + */ +#endif /* XXHASH_H_5627135585666179 */ + + + +#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) +#define XXHASH_H_STATIC_13879238742 +/* **************************************************************************** + * This section contains declarations which are not guaranteed to remain stable. + * They may change in future versions, becoming incompatible with a different + * version of the library. + * These declarations should only be used with static linking. + * Never use them in association with dynamic linking! + ***************************************************************************** */ + +/* + * These definitions are only present to allow static allocation + * of XXH states, on stack or in a struct, for example. + * Never **ever** access their members directly. + */ + +/*! + * @internal + * @brief Structure for XXH32 streaming API. + * + * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, + * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is + * an opaque type. This allows fields to safely be changed. + * + * Typedef'd to @ref XXH32_state_t. + * Do not access the members of this struct directly. + * @see XXH64_state_s, XXH3_state_s + */ +struct XXH32_state_s { + XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */ + XXH32_hash_t large_len; /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */ + XXH32_hash_t v[4]; /*!< Accumulator lanes */ + XXH32_hash_t mem32[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */ + XXH32_hash_t memsize; /*!< Amount of data in @ref mem32 */ + XXH32_hash_t reserved; /*!< Reserved field. Do not read nor write to it. */ +}; /* typedef'd to XXH32_state_t */ + + +#ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */ + +/*! + * @internal + * @brief Structure for XXH64 streaming API. + * + * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, + * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is + * an opaque type. This allows fields to safely be changed. + * + * Typedef'd to @ref XXH64_state_t. + * Do not access the members of this struct directly. + * @see XXH32_state_s, XXH3_state_s + */ +struct XXH64_state_s { + XXH64_hash_t total_len; /*!< Total length hashed. This is always 64-bit. */ + XXH64_hash_t v[4]; /*!< Accumulator lanes */ + XXH64_hash_t mem64[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */ + XXH32_hash_t memsize; /*!< Amount of data in @ref mem64 */ + XXH32_hash_t reserved32; /*!< Reserved field, needed for padding anyways*/ + XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it. */ +}; /* typedef'd to XXH64_state_t */ + +#ifndef XXH_NO_XXH3 + +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */ +# include +# define XXH_ALIGN(n) alignas(n) +#elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */ +/* In C++ alignas() is a keyword */ +# define XXH_ALIGN(n) alignas(n) +#elif defined(__GNUC__) +# define XXH_ALIGN(n) __attribute__ ((aligned(n))) +#elif defined(_MSC_VER) +# define XXH_ALIGN(n) __declspec(align(n)) +#else +# define XXH_ALIGN(n) /* disabled */ +#endif + +/* Old GCC versions only accept the attribute after the type in structures. */ +#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \ + && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \ + && defined(__GNUC__) +# define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align) +#else +# define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type +#endif + +/*! + * @brief The size of the internal XXH3 buffer. + * + * This is the optimal update size for incremental hashing. + * + * @see XXH3_64b_update(), XXH3_128b_update(). + */ +#define XXH3_INTERNALBUFFER_SIZE 256 + +/*! + * @internal + * @brief Default size of the secret buffer (and @ref XXH3_kSecret). + * + * This is the size used in @ref XXH3_kSecret and the seeded functions. + * + * Not to be confused with @ref XXH3_SECRET_SIZE_MIN. + */ +#define XXH3_SECRET_DEFAULT_SIZE 192 + +/*! + * @internal + * @brief Structure for XXH3 streaming API. + * + * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, + * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. + * Otherwise it is an opaque type. + * Never use this definition in combination with dynamic library. + * This allows fields to safely be changed in the future. + * + * @note ** This structure has a strict alignment requirement of 64 bytes!! ** + * Do not allocate this with `malloc()` or `new`, + * it will not be sufficiently aligned. + * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation. + * + * Typedef'd to @ref XXH3_state_t. + * Do never access the members of this struct directly. + * + * @see XXH3_INITSTATE() for stack initialization. + * @see XXH3_createState(), XXH3_freeState(). + * @see XXH32_state_s, XXH64_state_s + */ +struct XXH3_state_s { + XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]); + /*!< The 8 accumulators. See @ref XXH32_state_s::v and @ref XXH64_state_s::v */ + XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]); + /*!< Used to store a custom secret generated from a seed. */ + XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]); + /*!< The internal buffer. @see XXH32_state_s::mem32 */ + XXH32_hash_t bufferedSize; + /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */ + XXH32_hash_t useSeed; + /*!< Reserved field. Needed for padding on 64-bit. */ + size_t nbStripesSoFar; + /*!< Number or stripes processed. */ + XXH64_hash_t totalLen; + /*!< Total length hashed. 64-bit even on 32-bit targets. */ + size_t nbStripesPerBlock; + /*!< Number of stripes per block. */ + size_t secretLimit; + /*!< Size of @ref customSecret or @ref extSecret */ + XXH64_hash_t seed; + /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */ + XXH64_hash_t reserved64; + /*!< Reserved field. */ + const unsigned char* extSecret; + /*!< Reference to an external secret for the _withSecret variants, NULL + * for other variants. */ + /* note: there may be some padding at the end due to alignment on 64 bytes */ +}; /* typedef'd to XXH3_state_t */ + +#undef XXH_ALIGN_MEMBER + +/*! + * @brief Initializes a stack-allocated `XXH3_state_s`. + * + * When the @ref XXH3_state_t structure is merely emplaced on stack, + * it should be initialized with XXH3_INITSTATE() or a memset() + * in case its first reset uses XXH3_NNbits_reset_withSeed(). + * This init can be omitted if the first reset uses default or _withSecret mode. + * This operation isn't necessary when the state is created with XXH3_createState(). + * Note that this doesn't prepare the state for a streaming operation, + * it's still necessary to use XXH3_NNbits_reset*() afterwards. + */ +#define XXH3_INITSTATE(XXH3_state_ptr) \ + do { \ + XXH3_state_t* tmp_xxh3_state_ptr = (XXH3_state_ptr); \ + tmp_xxh3_state_ptr->seed = 0; \ + tmp_xxh3_state_ptr->extSecret = NULL; \ + } while(0) + + +#if defined (__cplusplus) +extern "C" { +#endif + +/*! + * @brief Calculates the 128-bit hash of @p data using XXH3. + * + * @param data The block of data to be hashed, at least @p len bytes in size. + * @param len The length of @p data, in bytes. + * @param seed The 64-bit seed to alter the hash's output predictably. + * + * @pre + * The memory between @p data and @p data + @p len must be valid, + * readable, contiguous memory. However, if @p len is `0`, @p data may be + * `NULL`. In C++, this also must be *TriviallyCopyable*. + * + * @return The calculated 128-bit XXH3 value. + * + * @see @ref single_shot_example "Single Shot Example" for an example. + */ +XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed); + + +/* === Experimental API === */ +/* Symbols defined below must be considered tied to a specific library version. */ + +/*! + * @brief Derive a high-entropy secret from any user-defined content, named customSeed. + * + * @param secretBuffer A writable buffer for derived high-entropy secret data. + * @param secretSize Size of secretBuffer, in bytes. Must be >= XXH3_SECRET_DEFAULT_SIZE. + * @param customSeed A user-defined content. + * @param customSeedSize Size of customSeed, in bytes. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * The generated secret can be used in combination with `*_withSecret()` functions. + * The `_withSecret()` variants are useful to provide a higher level of protection + * than 64-bit seed, as it becomes much more difficult for an external actor to + * guess how to impact the calculation logic. + * + * The function accepts as input a custom seed of any length and any content, + * and derives from it a high-entropy secret of length @p secretSize into an + * already allocated buffer @p secretBuffer. + * + * The generated secret can then be used with any `*_withSecret()` variant. + * The functions @ref XXH3_128bits_withSecret(), @ref XXH3_64bits_withSecret(), + * @ref XXH3_128bits_reset_withSecret() and @ref XXH3_64bits_reset_withSecret() + * are part of this list. They all accept a `secret` parameter + * which must be large enough for implementation reasons (>= @ref XXH3_SECRET_SIZE_MIN) + * _and_ feature very high entropy (consist of random-looking bytes). + * These conditions can be a high bar to meet, so @ref XXH3_generateSecret() can + * be employed to ensure proper quality. + * + * @p customSeed can be anything. It can have any size, even small ones, + * and its content can be anything, even "poor entropy" sources such as a bunch + * of zeroes. The resulting `secret` will nonetheless provide all required qualities. + * + * @pre + * - @p secretSize must be >= @ref XXH3_SECRET_SIZE_MIN + * - When @p customSeedSize > 0, supplying NULL as customSeed is undefined behavior. + * + * Example code: + * @code{.c} + * #include + * #include + * #include + * #define XXH_STATIC_LINKING_ONLY // expose unstable API + * #include "xxhash.h" + * // Hashes argv[2] using the entropy from argv[1]. + * int main(int argc, char* argv[]) + * { + * char secret[XXH3_SECRET_SIZE_MIN]; + * if (argv != 3) { return 1; } + * XXH3_generateSecret(secret, sizeof(secret), argv[1], strlen(argv[1])); + * XXH64_hash_t h = XXH3_64bits_withSecret( + * argv[2], strlen(argv[2]), + * secret, sizeof(secret) + * ); + * printf("%016llx\n", (unsigned long long) h); + * } + * @endcode + */ +XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize); + +/*! + * @brief Generate the same secret as the _withSeed() variants. + * + * @param secretBuffer A writable buffer of @ref XXH3_SECRET_SIZE_MIN bytes + * @param seed The 64-bit seed to alter the hash result predictably. + * + * The generated secret can be used in combination with + *`*_withSecret()` and `_withSecretandSeed()` variants. + * + * Example C++ `std::string` hash class: + * @code{.cpp} + * #include + * #define XXH_STATIC_LINKING_ONLY // expose unstable API + * #include "xxhash.h" + * // Slow, seeds each time + * class HashSlow { + * XXH64_hash_t seed; + * public: + * HashSlow(XXH64_hash_t s) : seed{s} {} + * size_t operator()(const std::string& x) const { + * return size_t{XXH3_64bits_withSeed(x.c_str(), x.length(), seed)}; + * } + * }; + * // Fast, caches the seeded secret for future uses. + * class HashFast { + * unsigned char secret[XXH3_SECRET_SIZE_MIN]; + * public: + * HashFast(XXH64_hash_t s) { + * XXH3_generateSecret_fromSeed(secret, seed); + * } + * size_t operator()(const std::string& x) const { + * return size_t{ + * XXH3_64bits_withSecret(x.c_str(), x.length(), secret, sizeof(secret)) + * }; + * } + * }; + * @endcode + */ +XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed); + +/*! + * @brief Calculates 64/128-bit seeded variant of XXH3 hash of @p data. + * + * @param data The block of data to be hashed, at least @p len bytes in size. + * @param len The length of @p data, in bytes. + * @param secret The secret data. + * @param secretSize The length of @p secret, in bytes. + * @param seed The 64-bit seed to alter the hash result predictably. + * + * These variants generate hash values using either + * @p seed for "short" keys (< @ref XXH3_MIDSIZE_MAX = 240 bytes) + * or @p secret for "large" keys (>= @ref XXH3_MIDSIZE_MAX). + * + * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`. + * `_withSeed()` has to generate the secret on the fly for "large" keys. + * It's fast, but can be perceptible for "not so large" keys (< 1 KB). + * `_withSecret()` has to generate the masks on the fly for "small" keys, + * which requires more instructions than _withSeed() variants. + * Therefore, _withSecretandSeed variant combines the best of both worlds. + * + * When @p secret has been generated by XXH3_generateSecret_fromSeed(), + * this variant produces *exactly* the same results as `_withSeed()` variant, + * hence offering only a pure speed benefit on "large" input, + * by skipping the need to regenerate the secret for every large input. + * + * Another usage scenario is to hash the secret to a 64-bit hash value, + * for example with XXH3_64bits(), which then becomes the seed, + * and then employ both the seed and the secret in _withSecretandSeed(). + * On top of speed, an added benefit is that each bit in the secret + * has a 50% chance to swap each bit in the output, via its impact to the seed. + * + * This is not guaranteed when using the secret directly in "small data" scenarios, + * because only portions of the secret are employed for small data. + */ +XXH_PUBLIC_API XXH_PUREF XXH64_hash_t +XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* data, size_t len, + XXH_NOESCAPE const void* secret, size_t secretSize, + XXH64_hash_t seed); +/*! + * @brief Calculates 128-bit seeded variant of XXH3 hash of @p data. + * + * @param input The block of data to be hashed, at least @p len bytes in size. + * @param length The length of @p data, in bytes. + * @param secret The secret data. + * @param secretSize The length of @p secret, in bytes. + * @param seed64 The 64-bit seed to alter the hash result predictably. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @see XXH3_64bits_withSecretandSeed() + */ +XXH_PUBLIC_API XXH_PUREF XXH128_hash_t +XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, + XXH_NOESCAPE const void* secret, size_t secretSize, + XXH64_hash_t seed64); +#ifndef XXH_NO_STREAM +/*! + * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash. + * + * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState(). + * @param secret The secret data. + * @param secretSize The length of @p secret, in bytes. + * @param seed64 The 64-bit seed to alter the hash result predictably. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @see XXH3_64bits_withSecretandSeed() + */ +XXH_PUBLIC_API XXH_errorcode +XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, + XXH_NOESCAPE const void* secret, size_t secretSize, + XXH64_hash_t seed64); +/*! + * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash. + * + * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState(). + * @param secret The secret data. + * @param secretSize The length of @p secret, in bytes. + * @param seed64 The 64-bit seed to alter the hash result predictably. + * + * @return @ref XXH_OK on success. + * @return @ref XXH_ERROR on failure. + * + * @see XXH3_64bits_withSecretandSeed() + */ +XXH_PUBLIC_API XXH_errorcode +XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, + XXH_NOESCAPE const void* secret, size_t secretSize, + XXH64_hash_t seed64); +#endif /* !XXH_NO_STREAM */ + +#if defined (__cplusplus) +} /* extern "C" */ +#endif + +#endif /* !XXH_NO_XXH3 */ +#endif /* XXH_NO_LONG_LONG */ + +#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) +# define XXH_IMPLEMENTATION +#endif + +#endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */ + + +/* ======================================================================== */ +/* ======================================================================== */ +/* ======================================================================== */ + + +/*-********************************************************************** + * xxHash implementation + *-********************************************************************** + * xxHash's implementation used to be hosted inside xxhash.c. + * + * However, inlining requires implementation to be visible to the compiler, + * hence be included alongside the header. + * Previously, implementation was hosted inside xxhash.c, + * which was then #included when inlining was activated. + * This construction created issues with a few build and install systems, + * as it required xxhash.c to be stored in /include directory. + * + * xxHash implementation is now directly integrated within xxhash.h. + * As a consequence, xxhash.c is no longer needed in /include. + * + * xxhash.c is still available and is still useful. + * In a "normal" setup, when xxhash is not inlined, + * xxhash.h only exposes the prototypes and public symbols, + * while xxhash.c can be built into an object file xxhash.o + * which can then be linked into the final binary. + ************************************************************************/ + +#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \ + || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387) +# define XXH_IMPLEM_13a8737387 + +/* ************************************* +* Tuning parameters +***************************************/ + +/*! + * @defgroup tuning Tuning parameters + * @{ + * + * Various macros to control xxHash's behavior. + */ +#ifdef XXH_DOXYGEN +/*! + * @brief Define this to disable 64-bit code. + * + * Useful if only using the @ref XXH32_family and you have a strict C90 compiler. + */ +# define XXH_NO_LONG_LONG +# undef XXH_NO_LONG_LONG /* don't actually */ +/*! + * @brief Controls how unaligned memory is accessed. + * + * By default, access to unaligned memory is controlled by `memcpy()`, which is + * safe and portable. + * + * Unfortunately, on some target/compiler combinations, the generated assembly + * is sub-optimal. + * + * The below switch allow selection of a different access method + * in the search for improved performance. + * + * @par Possible options: + * + * - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy` + * @par + * Use `memcpy()`. Safe and portable. Note that most modern compilers will + * eliminate the function call and treat it as an unaligned access. + * + * - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((aligned(1)))` + * @par + * Depends on compiler extensions and is therefore not portable. + * This method is safe _if_ your compiler supports it, + * and *generally* as fast or faster than `memcpy`. + * + * - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast + * @par + * Casts directly and dereferences. This method doesn't depend on the + * compiler, but it violates the C standard as it directly dereferences an + * unaligned pointer. It can generate buggy code on targets which do not + * support unaligned memory accesses, but in some circumstances, it's the + * only known way to get the most performance. + * + * - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift + * @par + * Also portable. This can generate the best code on old compilers which don't + * inline small `memcpy()` calls, and it might also be faster on big-endian + * systems which lack a native byteswap instruction. However, some compilers + * will emit literal byteshifts even if the target supports unaligned access. + * + * + * @warning + * Methods 1 and 2 rely on implementation-defined behavior. Use these with + * care, as what works on one compiler/platform/optimization level may cause + * another to read garbage data or even crash. + * + * See https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details. + * + * Prefer these methods in priority order (0 > 3 > 1 > 2) + */ +# define XXH_FORCE_MEMORY_ACCESS 0 + +/*! + * @def XXH_SIZE_OPT + * @brief Controls how much xxHash optimizes for size. + * + * xxHash, when compiled, tends to result in a rather large binary size. This + * is mostly due to heavy usage to forced inlining and constant folding of the + * @ref XXH3_family to increase performance. + * + * However, some developers prefer size over speed. This option can + * significantly reduce the size of the generated code. When using the `-Os` + * or `-Oz` options on GCC or Clang, this is defined to 1 by default, + * otherwise it is defined to 0. + * + * Most of these size optimizations can be controlled manually. + * + * This is a number from 0-2. + * - `XXH_SIZE_OPT` == 0: Default. xxHash makes no size optimizations. Speed + * comes first. + * - `XXH_SIZE_OPT` == 1: Default for `-Os` and `-Oz`. xxHash is more + * conservative and disables hacks that increase code size. It implies the + * options @ref XXH_NO_INLINE_HINTS == 1, @ref XXH_FORCE_ALIGN_CHECK == 0, + * and @ref XXH3_NEON_LANES == 8 if they are not already defined. + * - `XXH_SIZE_OPT` == 2: xxHash tries to make itself as small as possible. + * Performance may cry. For example, the single shot functions just use the + * streaming API. + */ +# define XXH_SIZE_OPT 0 + +/*! + * @def XXH_FORCE_ALIGN_CHECK + * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32() + * and XXH64() only). + * + * This is an important performance trick for architectures without decent + * unaligned memory access performance. + * + * It checks for input alignment, and when conditions are met, uses a "fast + * path" employing direct 32-bit/64-bit reads, resulting in _dramatically + * faster_ read speed. + * + * The check costs one initial branch per hash, which is generally negligible, + * but not zero. + * + * Moreover, it's not useful to generate an additional code path if memory + * access uses the same instruction for both aligned and unaligned + * addresses (e.g. x86 and aarch64). + * + * In these cases, the alignment check can be removed by setting this macro to 0. + * Then the code will always use unaligned memory access. + * Align check is automatically disabled on x86, x64, ARM64, and some ARM chips + * which are platforms known to offer good unaligned memory accesses performance. + * + * It is also disabled by default when @ref XXH_SIZE_OPT >= 1. + * + * This option does not affect XXH3 (only XXH32 and XXH64). + */ +# define XXH_FORCE_ALIGN_CHECK 0 + +/*! + * @def XXH_NO_INLINE_HINTS + * @brief When non-zero, sets all functions to `static`. + * + * By default, xxHash tries to force the compiler to inline almost all internal + * functions. + * + * This can usually improve performance due to reduced jumping and improved + * constant folding, but significantly increases the size of the binary which + * might not be favorable. + * + * Additionally, sometimes the forced inlining can be detrimental to performance, + * depending on the architecture. + * + * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the + * compiler full control on whether to inline or not. + * + * When not optimizing (-O0), using `-fno-inline` with GCC or Clang, or if + * @ref XXH_SIZE_OPT >= 1, this will automatically be defined. + */ +# define XXH_NO_INLINE_HINTS 0 + +/*! + * @def XXH3_INLINE_SECRET + * @brief Determines whether to inline the XXH3 withSecret code. + * + * When the secret size is known, the compiler can improve the performance + * of XXH3_64bits_withSecret() and XXH3_128bits_withSecret(). + * + * However, if the secret size is not known, it doesn't have any benefit. This + * happens when xxHash is compiled into a global symbol. Therefore, if + * @ref XXH_INLINE_ALL is *not* defined, this will be defined to 0. + * + * Additionally, this defaults to 0 on GCC 12+, which has an issue with function pointers + * that are *sometimes* force inline on -Og, and it is impossible to automatically + * detect this optimization level. + */ +# define XXH3_INLINE_SECRET 0 + +/*! + * @def XXH32_ENDJMP + * @brief Whether to use a jump for `XXH32_finalize`. + * + * For performance, `XXH32_finalize` uses multiple branches in the finalizer. + * This is generally preferable for performance, + * but depending on exact architecture, a jmp may be preferable. + * + * This setting is only possibly making a difference for very small inputs. + */ +# define XXH32_ENDJMP 0 + +/*! + * @internal + * @brief Redefines old internal names. + * + * For compatibility with code that uses xxHash's internals before the names + * were changed to improve namespacing. There is no other reason to use this. + */ +# define XXH_OLD_NAMES +# undef XXH_OLD_NAMES /* don't actually use, it is ugly. */ + +/*! + * @def XXH_NO_STREAM + * @brief Disables the streaming API. + * + * When xxHash is not inlined and the streaming functions are not used, disabling + * the streaming functions can improve code size significantly, especially with + * the @ref XXH3_family which tends to make constant folded copies of itself. + */ +# define XXH_NO_STREAM +# undef XXH_NO_STREAM /* don't actually */ +#endif /* XXH_DOXYGEN */ +/*! + * @} + */ + +#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ + /* prefer __packed__ structures (method 1) for GCC + * < ARMv7 with unaligned access (e.g. Raspbian armhf) still uses byte shifting, so we use memcpy + * which for some reason does unaligned loads. */ +# if defined(__GNUC__) && !(defined(__ARM_ARCH) && __ARM_ARCH < 7 && defined(__ARM_FEATURE_UNALIGNED)) +# define XXH_FORCE_MEMORY_ACCESS 1 +# endif +#endif + +#ifndef XXH_SIZE_OPT + /* default to 1 for -Os or -Oz */ +# if (defined(__GNUC__) || defined(__clang__)) && defined(__OPTIMIZE_SIZE__) +# define XXH_SIZE_OPT 1 +# else +# define XXH_SIZE_OPT 0 +# endif +#endif + +#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ + /* don't check on sizeopt, x86, aarch64, or arm when unaligned access is available */ +# if XXH_SIZE_OPT >= 1 || \ + defined(__i386) || defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_FEATURE_UNALIGNED) \ + || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) || defined(_M_ARM) /* visual */ +# define XXH_FORCE_ALIGN_CHECK 0 +# else +# define XXH_FORCE_ALIGN_CHECK 1 +# endif +#endif + +#ifndef XXH_NO_INLINE_HINTS +# if XXH_SIZE_OPT >= 1 || defined(__NO_INLINE__) /* -O0, -fno-inline */ +# define XXH_NO_INLINE_HINTS 1 +# else +# define XXH_NO_INLINE_HINTS 0 +# endif +#endif + +#ifndef XXH3_INLINE_SECRET +# if (defined(__GNUC__) && !defined(__clang__) && __GNUC__ >= 12) \ + || !defined(XXH_INLINE_ALL) +# define XXH3_INLINE_SECRET 0 +# else +# define XXH3_INLINE_SECRET 1 +# endif +#endif + +#ifndef XXH32_ENDJMP +/* generally preferable for performance */ +# define XXH32_ENDJMP 0 +#endif + +/*! + * @defgroup impl Implementation + * @{ + */ + +/* ************************************* +* Includes & Memory related functions +***************************************/ +#include /* memcmp, memcpy */ +#include /* ULLONG_MAX */ + +#if defined(XXH_NO_STREAM) +/* nothing */ +#elif defined(XXH_NO_STDLIB) + +/* When requesting to disable any mention of stdlib, + * the library loses the ability to invoked malloc / free. + * In practice, it means that functions like `XXH*_createState()` + * will always fail, and return NULL. + * This flag is useful in situations where + * xxhash.h is integrated into some kernel, embedded or limited environment + * without access to dynamic allocation. + */ + +#if defined (__cplusplus) +extern "C" { +#endif + +static XXH_CONSTF void* XXH_malloc(size_t s) { (void)s; return NULL; } +static void XXH_free(void* p) { (void)p; } + +#if defined (__cplusplus) +} /* extern "C" */ +#endif + +#else + +/* + * Modify the local functions below should you wish to use + * different memory routines for malloc() and free() + */ +#include + +#if defined (__cplusplus) +extern "C" { +#endif +/*! + * @internal + * @brief Modify this function to use a different routine than malloc(). + */ +static XXH_MALLOCF void* XXH_malloc(size_t s) { return malloc(s); } + +/*! + * @internal + * @brief Modify this function to use a different routine than free(). + */ +static void XXH_free(void* p) { free(p); } + +#if defined (__cplusplus) +} /* extern "C" */ +#endif + +#endif /* XXH_NO_STDLIB */ + +#if defined (__cplusplus) +extern "C" { +#endif +/*! + * @internal + * @brief Modify this function to use a different routine than memcpy(). + */ +static void* XXH_memcpy(void* dest, const void* src, size_t size) +{ + return memcpy(dest,src,size); +} + +#if defined (__cplusplus) +} /* extern "C" */ +#endif + +/* ************************************* +* Compiler Specific Options +***************************************/ +#ifdef _MSC_VER /* Visual Studio warning fix */ +# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ +#endif + +#if XXH_NO_INLINE_HINTS /* disable inlining hints */ +# if defined(__GNUC__) || defined(__clang__) +# define XXH_FORCE_INLINE static __attribute__((unused)) +# else +# define XXH_FORCE_INLINE static +# endif +# define XXH_NO_INLINE static +/* enable inlining hints */ +#elif defined(__GNUC__) || defined(__clang__) +# define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused)) +# define XXH_NO_INLINE static __attribute__((noinline)) +#elif defined(_MSC_VER) /* Visual Studio */ +# define XXH_FORCE_INLINE static __forceinline +# define XXH_NO_INLINE static __declspec(noinline) +#elif defined (__cplusplus) \ + || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */ +# define XXH_FORCE_INLINE static inline +# define XXH_NO_INLINE static +#else +# define XXH_FORCE_INLINE static +# define XXH_NO_INLINE static +#endif + +#if XXH3_INLINE_SECRET +# define XXH3_WITH_SECRET_INLINE XXH_FORCE_INLINE +#else +# define XXH3_WITH_SECRET_INLINE XXH_NO_INLINE +#endif + + +/* ************************************* +* Debug +***************************************/ +/*! + * @ingroup tuning + * @def XXH_DEBUGLEVEL + * @brief Sets the debugging level. + * + * XXH_DEBUGLEVEL is expected to be defined externally, typically via the + * compiler's command line options. The value must be a number. + */ +#ifndef XXH_DEBUGLEVEL +# ifdef DEBUGLEVEL /* backwards compat */ +# define XXH_DEBUGLEVEL DEBUGLEVEL +# else +# define XXH_DEBUGLEVEL 0 +# endif +#endif + +#if (XXH_DEBUGLEVEL>=1) +# include /* note: can still be disabled with NDEBUG */ +# define XXH_ASSERT(c) assert(c) +#else +# if defined(__INTEL_COMPILER) +# define XXH_ASSERT(c) XXH_ASSUME((unsigned char) (c)) +# else +# define XXH_ASSERT(c) XXH_ASSUME(c) +# endif +#endif + +/* note: use after variable declarations */ +#ifndef XXH_STATIC_ASSERT +# if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */ +# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { _Static_assert((c),m); } while(0) +# elif defined(__cplusplus) && (__cplusplus >= 201103L) /* C++11 */ +# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0) +# else +# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0) +# endif +# define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c) +#endif + +/*! + * @internal + * @def XXH_COMPILER_GUARD(var) + * @brief Used to prevent unwanted optimizations for @p var. + * + * It uses an empty GCC inline assembly statement with a register constraint + * which forces @p var into a general purpose register (eg eax, ebx, ecx + * on x86) and marks it as modified. + * + * This is used in a few places to avoid unwanted autovectorization (e.g. + * XXH32_round()). All vectorization we want is explicit via intrinsics, + * and _usually_ isn't wanted elsewhere. + * + * We also use it to prevent unwanted constant folding for AArch64 in + * XXH3_initCustomSecret_scalar(). + */ +#if defined(__GNUC__) || defined(__clang__) +# define XXH_COMPILER_GUARD(var) __asm__("" : "+r" (var)) +#else +# define XXH_COMPILER_GUARD(var) ((void)0) +#endif + +/* Specifically for NEON vectors which use the "w" constraint, on + * Clang. */ +#if defined(__clang__) && defined(__ARM_ARCH) && !defined(__wasm__) +# define XXH_COMPILER_GUARD_CLANG_NEON(var) __asm__("" : "+w" (var)) +#else +# define XXH_COMPILER_GUARD_CLANG_NEON(var) ((void)0) +#endif + +/* ************************************* +* Basic Types +***************************************/ +#if !defined (__VMS) \ + && (defined (__cplusplus) \ + || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) +# ifdef _AIX +# include +# else +# include +# endif + typedef uint8_t xxh_u8; +#else + typedef unsigned char xxh_u8; +#endif +typedef XXH32_hash_t xxh_u32; + +#ifdef XXH_OLD_NAMES +# warning "XXH_OLD_NAMES is planned to be removed starting v0.9. If the program depends on it, consider moving away from it by employing newer type names directly" +# define BYTE xxh_u8 +# define U8 xxh_u8 +# define U32 xxh_u32 +#endif + +#if defined (__cplusplus) +extern "C" { +#endif + +/* *** Memory access *** */ + +/*! + * @internal + * @fn xxh_u32 XXH_read32(const void* ptr) + * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness. + * + * Affected by @ref XXH_FORCE_MEMORY_ACCESS. + * + * @param ptr The pointer to read from. + * @return The 32-bit native endian integer from the bytes at @p ptr. + */ + +/*! + * @internal + * @fn xxh_u32 XXH_readLE32(const void* ptr) + * @brief Reads an unaligned 32-bit little endian integer from @p ptr. + * + * Affected by @ref XXH_FORCE_MEMORY_ACCESS. + * + * @param ptr The pointer to read from. + * @return The 32-bit little endian integer from the bytes at @p ptr. + */ + +/*! + * @internal + * @fn xxh_u32 XXH_readBE32(const void* ptr) + * @brief Reads an unaligned 32-bit big endian integer from @p ptr. + * + * Affected by @ref XXH_FORCE_MEMORY_ACCESS. + * + * @param ptr The pointer to read from. + * @return The 32-bit big endian integer from the bytes at @p ptr. + */ + +/*! + * @internal + * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align) + * @brief Like @ref XXH_readLE32(), but has an option for aligned reads. + * + * Affected by @ref XXH_FORCE_MEMORY_ACCESS. + * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is + * always @ref XXH_alignment::XXH_unaligned. + * + * @param ptr The pointer to read from. + * @param align Whether @p ptr is aligned. + * @pre + * If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte + * aligned. + * @return The 32-bit little endian integer from the bytes at @p ptr. + */ + +#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) +/* + * Manual byteshift. Best for old compilers which don't inline memcpy. + * We actually directly use XXH_readLE32 and XXH_readBE32. + */ +#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) + +/* + * Force direct memory access. Only works on CPU which support unaligned memory + * access in hardware. + */ +static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; } + +#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) + +/* + * __attribute__((aligned(1))) is supported by gcc and clang. Originally the + * documentation claimed that it only increased the alignment, but actually it + * can decrease it on gcc, clang, and icc: + * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502, + * https://gcc.godbolt.org/z/xYez1j67Y. + */ +#ifdef XXH_OLD_NAMES +typedef union { xxh_u32 u32; } __attribute__((packed)) unalign; +#endif +static xxh_u32 XXH_read32(const void* ptr) +{ + typedef __attribute__((aligned(1))) xxh_u32 xxh_unalign32; + return *((const xxh_unalign32*)ptr); +} + +#else + +/* + * Portable and safe solution. Generally efficient. + * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html + */ +static xxh_u32 XXH_read32(const void* memPtr) +{ + xxh_u32 val; + XXH_memcpy(&val, memPtr, sizeof(val)); + return val; +} + +#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ + + +/* *** Endianness *** */ + +/*! + * @ingroup tuning + * @def XXH_CPU_LITTLE_ENDIAN + * @brief Whether the target is little endian. + * + * Defined to 1 if the target is little endian, or 0 if it is big endian. + * It can be defined externally, for example on the compiler command line. + * + * If it is not defined, + * a runtime check (which is usually constant folded) is used instead. + * + * @note + * This is not necessarily defined to an integer constant. + * + * @see XXH_isLittleEndian() for the runtime check. + */ +#ifndef XXH_CPU_LITTLE_ENDIAN +/* + * Try to detect endianness automatically, to avoid the nonstandard behavior + * in `XXH_isLittleEndian()` + */ +# if defined(_WIN32) /* Windows is always little endian */ \ + || defined(__LITTLE_ENDIAN__) \ + || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) +# define XXH_CPU_LITTLE_ENDIAN 1 +# elif defined(__BIG_ENDIAN__) \ + || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) +# define XXH_CPU_LITTLE_ENDIAN 0 +# else +/*! + * @internal + * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN. + * + * Most compilers will constant fold this. + */ +static int XXH_isLittleEndian(void) +{ + /* + * Portable and well-defined behavior. + * Don't use static: it is detrimental to performance. + */ + const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 }; + return one.c[0]; +} +# define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian() +# endif +#endif + + + + +/* **************************************** +* Compiler-specific Functions and Macros +******************************************/ +#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) + +#ifdef __has_builtin +# define XXH_HAS_BUILTIN(x) __has_builtin(x) +#else +# define XXH_HAS_BUILTIN(x) 0 +#endif + + + +/* + * C23 and future versions have standard "unreachable()". + * Once it has been implemented reliably we can add it as an + * additional case: + * + * ``` + * #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) + * # include + * # ifdef unreachable + * # define XXH_UNREACHABLE() unreachable() + * # endif + * #endif + * ``` + * + * Note C++23 also has std::unreachable() which can be detected + * as follows: + * ``` + * #if defined(__cpp_lib_unreachable) && (__cpp_lib_unreachable >= 202202L) + * # include + * # define XXH_UNREACHABLE() std::unreachable() + * #endif + * ``` + * NB: `__cpp_lib_unreachable` is defined in the `` header. + * We don't use that as including `` in `extern "C"` blocks + * doesn't work on GCC12 + */ + +#if XXH_HAS_BUILTIN(__builtin_unreachable) +# define XXH_UNREACHABLE() __builtin_unreachable() + +#elif defined(_MSC_VER) +# define XXH_UNREACHABLE() __assume(0) + +#else +# define XXH_UNREACHABLE() +#endif + +#if XXH_HAS_BUILTIN(__builtin_assume) +# define XXH_ASSUME(c) __builtin_assume(c) +#else +# define XXH_ASSUME(c) if (!(c)) { XXH_UNREACHABLE(); } +#endif + +/*! + * @internal + * @def XXH_rotl32(x,r) + * @brief 32-bit rotate left. + * + * @param x The 32-bit integer to be rotated. + * @param r The number of bits to rotate. + * @pre + * @p r > 0 && @p r < 32 + * @note + * @p x and @p r may be evaluated multiple times. + * @return The rotated result. + */ +#if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \ + && XXH_HAS_BUILTIN(__builtin_rotateleft64) +# define XXH_rotl32 __builtin_rotateleft32 +# define XXH_rotl64 __builtin_rotateleft64 +/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */ +#elif defined(_MSC_VER) +# define XXH_rotl32(x,r) _rotl(x,r) +# define XXH_rotl64(x,r) _rotl64(x,r) +#else +# define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r)))) +# define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r)))) +#endif + +/*! + * @internal + * @fn xxh_u32 XXH_swap32(xxh_u32 x) + * @brief A 32-bit byteswap. + * + * @param x The 32-bit integer to byteswap. + * @return @p x, byteswapped. + */ +#if defined(_MSC_VER) /* Visual Studio */ +# define XXH_swap32 _byteswap_ulong +#elif XXH_GCC_VERSION >= 403 +# define XXH_swap32 __builtin_bswap32 +#else +static xxh_u32 XXH_swap32 (xxh_u32 x) +{ + return ((x << 24) & 0xff000000 ) | + ((x << 8) & 0x00ff0000 ) | + ((x >> 8) & 0x0000ff00 ) | + ((x >> 24) & 0x000000ff ); +} +#endif + + +/* *************************** +* Memory reads +*****************************/ + +/*! + * @internal + * @brief Enum to indicate whether a pointer is aligned. + */ +typedef enum { + XXH_aligned, /*!< Aligned */ + XXH_unaligned /*!< Possibly unaligned */ +} XXH_alignment; + +/* + * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. + * + * This is ideal for older compilers which don't inline memcpy. + */ +#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) + +XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr) +{ + const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; + return bytePtr[0] + | ((xxh_u32)bytePtr[1] << 8) + | ((xxh_u32)bytePtr[2] << 16) + | ((xxh_u32)bytePtr[3] << 24); +} + +XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr) +{ + const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; + return bytePtr[3] + | ((xxh_u32)bytePtr[2] << 8) + | ((xxh_u32)bytePtr[1] << 16) + | ((xxh_u32)bytePtr[0] << 24); +} + +#else +XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr) +{ + return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); +} + +static xxh_u32 XXH_readBE32(const void* ptr) +{ + return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); +} +#endif + +XXH_FORCE_INLINE xxh_u32 +XXH_readLE32_align(const void* ptr, XXH_alignment align) +{ + if (align==XXH_unaligned) { + return XXH_readLE32(ptr); + } else { + return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr); + } +} + + +/* ************************************* +* Misc +***************************************/ +/*! @ingroup public */ +XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } + + +/* ******************************************************************* +* 32-bit hash functions +*********************************************************************/ +/*! + * @} + * @defgroup XXH32_impl XXH32 implementation + * @ingroup impl + * + * Details on the XXH32 implementation. + * @{ + */ + /* #define instead of static const, to be used as initializers */ +#define XXH_PRIME32_1 0x9E3779B1U /*!< 0b10011110001101110111100110110001 */ +#define XXH_PRIME32_2 0x85EBCA77U /*!< 0b10000101111010111100101001110111 */ +#define XXH_PRIME32_3 0xC2B2AE3DU /*!< 0b11000010101100101010111000111101 */ +#define XXH_PRIME32_4 0x27D4EB2FU /*!< 0b00100111110101001110101100101111 */ +#define XXH_PRIME32_5 0x165667B1U /*!< 0b00010110010101100110011110110001 */ + +#ifdef XXH_OLD_NAMES +# define PRIME32_1 XXH_PRIME32_1 +# define PRIME32_2 XXH_PRIME32_2 +# define PRIME32_3 XXH_PRIME32_3 +# define PRIME32_4 XXH_PRIME32_4 +# define PRIME32_5 XXH_PRIME32_5 +#endif + +/*! + * @internal + * @brief Normal stripe processing routine. + * + * This shuffles the bits so that any bit from @p input impacts several bits in + * @p acc. + * + * @param acc The accumulator lane. + * @param input The stripe of input to mix. + * @return The mixed accumulator lane. + */ +static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input) +{ + acc += input * XXH_PRIME32_2; + acc = XXH_rotl32(acc, 13); + acc *= XXH_PRIME32_1; +#if (defined(__SSE4_1__) || defined(__aarch64__) || defined(__wasm_simd128__)) && !defined(XXH_ENABLE_AUTOVECTORIZE) + /* + * UGLY HACK: + * A compiler fence is the only thing that prevents GCC and Clang from + * autovectorizing the XXH32 loop (pragmas and attributes don't work for some + * reason) without globally disabling SSE4.1. + * + * The reason we want to avoid vectorization is because despite working on + * 4 integers at a time, there are multiple factors slowing XXH32 down on + * SSE4: + * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on + * newer chips!) making it slightly slower to multiply four integers at + * once compared to four integers independently. Even when pmulld was + * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE + * just to multiply unless doing a long operation. + * + * - Four instructions are required to rotate, + * movqda tmp, v // not required with VEX encoding + * pslld tmp, 13 // tmp <<= 13 + * psrld v, 19 // x >>= 19 + * por v, tmp // x |= tmp + * compared to one for scalar: + * roll v, 13 // reliably fast across the board + * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason + * + * - Instruction level parallelism is actually more beneficial here because + * the SIMD actually serializes this operation: While v1 is rotating, v2 + * can load data, while v3 can multiply. SSE forces them to operate + * together. + * + * This is also enabled on AArch64, as Clang is *very aggressive* in vectorizing + * the loop. NEON is only faster on the A53, and with the newer cores, it is less + * than half the speed. + * + * Additionally, this is used on WASM SIMD128 because it JITs to the same + * SIMD instructions and has the same issue. + */ + XXH_COMPILER_GUARD(acc); +#endif + return acc; +} + +/*! + * @internal + * @brief Mixes all bits to finalize the hash. + * + * The final mix ensures that all input bits have a chance to impact any bit in + * the output digest, resulting in an unbiased distribution. + * + * @param hash The hash to avalanche. + * @return The avalanched hash. + */ +static xxh_u32 XXH32_avalanche(xxh_u32 hash) +{ + hash ^= hash >> 15; + hash *= XXH_PRIME32_2; + hash ^= hash >> 13; + hash *= XXH_PRIME32_3; + hash ^= hash >> 16; + return hash; +} + +#define XXH_get32bits(p) XXH_readLE32_align(p, align) + +/*! + * @internal + * @brief Processes the last 0-15 bytes of @p ptr. + * + * There may be up to 15 bytes remaining to consume from the input. + * This final stage will digest them to ensure that all input bytes are present + * in the final mix. + * + * @param hash The hash to finalize. + * @param ptr The pointer to the remaining input. + * @param len The remaining length, modulo 16. + * @param align Whether @p ptr is aligned. + * @return The finalized hash. + * @see XXH64_finalize(). + */ +static XXH_PUREF xxh_u32 +XXH32_finalize(xxh_u32 hash, const xxh_u8* ptr, size_t len, XXH_alignment align) +{ +#define XXH_PROCESS1 do { \ + hash += (*ptr++) * XXH_PRIME32_5; \ + hash = XXH_rotl32(hash, 11) * XXH_PRIME32_1; \ +} while (0) + +#define XXH_PROCESS4 do { \ + hash += XXH_get32bits(ptr) * XXH_PRIME32_3; \ + ptr += 4; \ + hash = XXH_rotl32(hash, 17) * XXH_PRIME32_4; \ +} while (0) + + if (ptr==NULL) XXH_ASSERT(len == 0); + + /* Compact rerolled version; generally faster */ + if (!XXH32_ENDJMP) { + len &= 15; + while (len >= 4) { + XXH_PROCESS4; + len -= 4; + } + while (len > 0) { + XXH_PROCESS1; + --len; + } + return XXH32_avalanche(hash); + } else { + switch(len&15) /* or switch(bEnd - p) */ { + case 12: XXH_PROCESS4; + XXH_FALLTHROUGH; /* fallthrough */ + case 8: XXH_PROCESS4; + XXH_FALLTHROUGH; /* fallthrough */ + case 4: XXH_PROCESS4; + return XXH32_avalanche(hash); + + case 13: XXH_PROCESS4; + XXH_FALLTHROUGH; /* fallthrough */ + case 9: XXH_PROCESS4; + XXH_FALLTHROUGH; /* fallthrough */ + case 5: XXH_PROCESS4; + XXH_PROCESS1; + return XXH32_avalanche(hash); + + case 14: XXH_PROCESS4; + XXH_FALLTHROUGH; /* fallthrough */ + case 10: XXH_PROCESS4; + XXH_FALLTHROUGH; /* fallthrough */ + case 6: XXH_PROCESS4; + XXH_PROCESS1; + XXH_PROCESS1; + return XXH32_avalanche(hash); + + case 15: XXH_PROCESS4; + XXH_FALLTHROUGH; /* fallthrough */ + case 11: XXH_PROCESS4; + XXH_FALLTHROUGH; /* fallthrough */ + case 7: XXH_PROCESS4; + XXH_FALLTHROUGH; /* fallthrough */ + case 3: XXH_PROCESS1; + XXH_FALLTHROUGH; /* fallthrough */ + case 2: XXH_PROCESS1; + XXH_FALLTHROUGH; /* fallthrough */ + case 1: XXH_PROCESS1; + XXH_FALLTHROUGH; /* fallthrough */ + case 0: return XXH32_avalanche(hash); + } + XXH_ASSERT(0); + return hash; /* reaching this point is deemed impossible */ + } +} + +#ifdef XXH_OLD_NAMES +# define PROCESS1 XXH_PROCESS1 +# define PROCESS4 XXH_PROCESS4 +#else +# undef XXH_PROCESS1 +# undef XXH_PROCESS4 +#endif + +/*! + * @internal + * @brief The implementation for @ref XXH32(). + * + * @param input , len , seed Directly passed from @ref XXH32(). + * @param align Whether @p input is aligned. + * @return The calculated hash. + */ +XXH_FORCE_INLINE XXH_PUREF xxh_u32 +XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align) +{ + xxh_u32 h32; + + if (input==NULL) XXH_ASSERT(len == 0); + + if (len>=16) { + const xxh_u8* const bEnd = input + len; + const xxh_u8* const limit = bEnd - 15; + xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; + xxh_u32 v2 = seed + XXH_PRIME32_2; + xxh_u32 v3 = seed + 0; + xxh_u32 v4 = seed - XXH_PRIME32_1; + + do { + v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4; + v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4; + v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4; + v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4; + } while (input < limit); + + h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); + } else { + h32 = seed + XXH_PRIME32_5; + } + + h32 += (xxh_u32)len; + + return XXH32_finalize(h32, input, len&15, align); +} + +/*! @ingroup XXH32_family */ +XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed) +{ +#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2 + /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ + XXH32_state_t state; + XXH32_reset(&state, seed); + XXH32_update(&state, (const xxh_u8*)input, len); + return XXH32_digest(&state); +#else + if (XXH_FORCE_ALIGN_CHECK) { + if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ + return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); + } } + + return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); +#endif +} + + + +/******* Hash streaming *******/ +#ifndef XXH_NO_STREAM +/*! @ingroup XXH32_family */ +XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) +{ + return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); +} +/*! @ingroup XXH32_family */ +XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) +{ + XXH_free(statePtr); + return XXH_OK; +} + +/*! @ingroup XXH32_family */ +XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) +{ + XXH_memcpy(dstState, srcState, sizeof(*dstState)); +} + +/*! @ingroup XXH32_family */ +XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed) +{ + XXH_ASSERT(statePtr != NULL); + memset(statePtr, 0, sizeof(*statePtr)); + statePtr->v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2; + statePtr->v[1] = seed + XXH_PRIME32_2; + statePtr->v[2] = seed + 0; + statePtr->v[3] = seed - XXH_PRIME32_1; + return XXH_OK; +} + + +/*! @ingroup XXH32_family */ +XXH_PUBLIC_API XXH_errorcode +XXH32_update(XXH32_state_t* state, const void* input, size_t len) +{ + if (input==NULL) { + XXH_ASSERT(len == 0); + return XXH_OK; + } + + { const xxh_u8* p = (const xxh_u8*)input; + const xxh_u8* const bEnd = p + len; + + state->total_len_32 += (XXH32_hash_t)len; + state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16)); + + if (state->memsize + len < 16) { /* fill in tmp buffer */ + XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len); + state->memsize += (XXH32_hash_t)len; + return XXH_OK; + } + + if (state->memsize) { /* some data left from previous update */ + XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize); + { const xxh_u32* p32 = state->mem32; + state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++; + state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++; + state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++; + state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32)); + } + p += 16-state->memsize; + state->memsize = 0; + } + + if (p <= bEnd-16) { + const xxh_u8* const limit = bEnd - 16; + + do { + state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4; + state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4; + state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4; + state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4; + } while (p<=limit); + + } + + if (p < bEnd) { + XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); + state->memsize = (unsigned)(bEnd-p); + } + } + + return XXH_OK; +} + + +/*! @ingroup XXH32_family */ +XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state) +{ + xxh_u32 h32; + + if (state->large_len) { + h32 = XXH_rotl32(state->v[0], 1) + + XXH_rotl32(state->v[1], 7) + + XXH_rotl32(state->v[2], 12) + + XXH_rotl32(state->v[3], 18); + } else { + h32 = state->v[2] /* == seed */ + XXH_PRIME32_5; + } + + h32 += state->total_len_32; + + return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned); +} +#endif /* !XXH_NO_STREAM */ + +/******* Canonical representation *******/ + +/*! @ingroup XXH32_family */ +XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) +{ + XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); + if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); + XXH_memcpy(dst, &hash, sizeof(*dst)); +} +/*! @ingroup XXH32_family */ +XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) +{ + return XXH_readBE32(src); +} + + +#ifndef XXH_NO_LONG_LONG + +/* ******************************************************************* +* 64-bit hash functions +*********************************************************************/ +/*! + * @} + * @ingroup impl + * @{ + */ +/******* Memory access *******/ + +typedef XXH64_hash_t xxh_u64; + +#ifdef XXH_OLD_NAMES +# define U64 xxh_u64 +#endif + +#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) +/* + * Manual byteshift. Best for old compilers which don't inline memcpy. + * We actually directly use XXH_readLE64 and XXH_readBE64. + */ +#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) + +/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ +static xxh_u64 XXH_read64(const void* memPtr) +{ + return *(const xxh_u64*) memPtr; +} + +#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) + +/* + * __attribute__((aligned(1))) is supported by gcc and clang. Originally the + * documentation claimed that it only increased the alignment, but actually it + * can decrease it on gcc, clang, and icc: + * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502, + * https://gcc.godbolt.org/z/xYez1j67Y. + */ +#ifdef XXH_OLD_NAMES +typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64; +#endif +static xxh_u64 XXH_read64(const void* ptr) +{ + typedef __attribute__((aligned(1))) xxh_u64 xxh_unalign64; + return *((const xxh_unalign64*)ptr); +} + +#else + +/* + * Portable and safe solution. Generally efficient. + * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html + */ +static xxh_u64 XXH_read64(const void* memPtr) +{ + xxh_u64 val; + XXH_memcpy(&val, memPtr, sizeof(val)); + return val; +} + +#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ + +#if defined(_MSC_VER) /* Visual Studio */ +# define XXH_swap64 _byteswap_uint64 +#elif XXH_GCC_VERSION >= 403 +# define XXH_swap64 __builtin_bswap64 +#else +static xxh_u64 XXH_swap64(xxh_u64 x) +{ + return ((x << 56) & 0xff00000000000000ULL) | + ((x << 40) & 0x00ff000000000000ULL) | + ((x << 24) & 0x0000ff0000000000ULL) | + ((x << 8) & 0x000000ff00000000ULL) | + ((x >> 8) & 0x00000000ff000000ULL) | + ((x >> 24) & 0x0000000000ff0000ULL) | + ((x >> 40) & 0x000000000000ff00ULL) | + ((x >> 56) & 0x00000000000000ffULL); +} +#endif + + +/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */ +#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) + +XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr) +{ + const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; + return bytePtr[0] + | ((xxh_u64)bytePtr[1] << 8) + | ((xxh_u64)bytePtr[2] << 16) + | ((xxh_u64)bytePtr[3] << 24) + | ((xxh_u64)bytePtr[4] << 32) + | ((xxh_u64)bytePtr[5] << 40) + | ((xxh_u64)bytePtr[6] << 48) + | ((xxh_u64)bytePtr[7] << 56); +} + +XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr) +{ + const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; + return bytePtr[7] + | ((xxh_u64)bytePtr[6] << 8) + | ((xxh_u64)bytePtr[5] << 16) + | ((xxh_u64)bytePtr[4] << 24) + | ((xxh_u64)bytePtr[3] << 32) + | ((xxh_u64)bytePtr[2] << 40) + | ((xxh_u64)bytePtr[1] << 48) + | ((xxh_u64)bytePtr[0] << 56); +} + +#else +XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr) +{ + return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); +} + +static xxh_u64 XXH_readBE64(const void* ptr) +{ + return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); +} +#endif + +XXH_FORCE_INLINE xxh_u64 +XXH_readLE64_align(const void* ptr, XXH_alignment align) +{ + if (align==XXH_unaligned) + return XXH_readLE64(ptr); + else + return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr); +} + + +/******* xxh64 *******/ +/*! + * @} + * @defgroup XXH64_impl XXH64 implementation + * @ingroup impl + * + * Details on the XXH64 implementation. + * @{ + */ +/* #define rather that static const, to be used as initializers */ +#define XXH_PRIME64_1 0x9E3779B185EBCA87ULL /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */ +#define XXH_PRIME64_2 0xC2B2AE3D27D4EB4FULL /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */ +#define XXH_PRIME64_3 0x165667B19E3779F9ULL /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */ +#define XXH_PRIME64_4 0x85EBCA77C2B2AE63ULL /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */ +#define XXH_PRIME64_5 0x27D4EB2F165667C5ULL /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */ + +#ifdef XXH_OLD_NAMES +# define PRIME64_1 XXH_PRIME64_1 +# define PRIME64_2 XXH_PRIME64_2 +# define PRIME64_3 XXH_PRIME64_3 +# define PRIME64_4 XXH_PRIME64_4 +# define PRIME64_5 XXH_PRIME64_5 +#endif + +/*! @copydoc XXH32_round */ +static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input) +{ + acc += input * XXH_PRIME64_2; + acc = XXH_rotl64(acc, 31); + acc *= XXH_PRIME64_1; +#if (defined(__AVX512F__)) && !defined(XXH_ENABLE_AUTOVECTORIZE) + /* + * DISABLE AUTOVECTORIZATION: + * A compiler fence is used to prevent GCC and Clang from + * autovectorizing the XXH64 loop (pragmas and attributes don't work for some + * reason) without globally disabling AVX512. + * + * Autovectorization of XXH64 tends to be detrimental, + * though the exact outcome may change depending on exact cpu and compiler version. + * For information, it has been reported as detrimental for Skylake-X, + * but possibly beneficial for Zen4. + * + * The default is to disable auto-vectorization, + * but you can select to enable it instead using `XXH_ENABLE_AUTOVECTORIZE` build variable. + */ + XXH_COMPILER_GUARD(acc); +#endif + return acc; +} + +static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val) +{ + val = XXH64_round(0, val); + acc ^= val; + acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4; + return acc; +} + +/*! @copydoc XXH32_avalanche */ +static xxh_u64 XXH64_avalanche(xxh_u64 hash) +{ + hash ^= hash >> 33; + hash *= XXH_PRIME64_2; + hash ^= hash >> 29; + hash *= XXH_PRIME64_3; + hash ^= hash >> 32; + return hash; +} + + +#define XXH_get64bits(p) XXH_readLE64_align(p, align) + +/*! + * @internal + * @brief Processes the last 0-31 bytes of @p ptr. + * + * There may be up to 31 bytes remaining to consume from the input. + * This final stage will digest them to ensure that all input bytes are present + * in the final mix. + * + * @param hash The hash to finalize. + * @param ptr The pointer to the remaining input. + * @param len The remaining length, modulo 32. + * @param align Whether @p ptr is aligned. + * @return The finalized hash + * @see XXH32_finalize(). + */ +static XXH_PUREF xxh_u64 +XXH64_finalize(xxh_u64 hash, const xxh_u8* ptr, size_t len, XXH_alignment align) +{ + if (ptr==NULL) XXH_ASSERT(len == 0); + len &= 31; + while (len >= 8) { + xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); + ptr += 8; + hash ^= k1; + hash = XXH_rotl64(hash,27) * XXH_PRIME64_1 + XXH_PRIME64_4; + len -= 8; + } + if (len >= 4) { + hash ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1; + ptr += 4; + hash = XXH_rotl64(hash, 23) * XXH_PRIME64_2 + XXH_PRIME64_3; + len -= 4; + } + while (len > 0) { + hash ^= (*ptr++) * XXH_PRIME64_5; + hash = XXH_rotl64(hash, 11) * XXH_PRIME64_1; + --len; + } + return XXH64_avalanche(hash); +} + +#ifdef XXH_OLD_NAMES +# define PROCESS1_64 XXH_PROCESS1_64 +# define PROCESS4_64 XXH_PROCESS4_64 +# define PROCESS8_64 XXH_PROCESS8_64 +#else +# undef XXH_PROCESS1_64 +# undef XXH_PROCESS4_64 +# undef XXH_PROCESS8_64 +#endif + +/*! + * @internal + * @brief The implementation for @ref XXH64(). + * + * @param input , len , seed Directly passed from @ref XXH64(). + * @param align Whether @p input is aligned. + * @return The calculated hash. + */ +XXH_FORCE_INLINE XXH_PUREF xxh_u64 +XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align) +{ + xxh_u64 h64; + if (input==NULL) XXH_ASSERT(len == 0); + + if (len>=32) { + const xxh_u8* const bEnd = input + len; + const xxh_u8* const limit = bEnd - 31; + xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; + xxh_u64 v2 = seed + XXH_PRIME64_2; + xxh_u64 v3 = seed + 0; + xxh_u64 v4 = seed - XXH_PRIME64_1; + + do { + v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8; + v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8; + v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8; + v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8; + } while (input= 2 + /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ + XXH64_state_t state; + XXH64_reset(&state, seed); + XXH64_update(&state, (const xxh_u8*)input, len); + return XXH64_digest(&state); +#else + if (XXH_FORCE_ALIGN_CHECK) { + if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ + return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); + } } + + return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); + +#endif +} + +/******* Hash Streaming *******/ +#ifndef XXH_NO_STREAM +/*! @ingroup XXH64_family*/ +XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) +{ + return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); +} +/*! @ingroup XXH64_family */ +XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) +{ + XXH_free(statePtr); + return XXH_OK; +} + +/*! @ingroup XXH64_family */ +XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dstState, const XXH64_state_t* srcState) +{ + XXH_memcpy(dstState, srcState, sizeof(*dstState)); +} + +/*! @ingroup XXH64_family */ +XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed) +{ + XXH_ASSERT(statePtr != NULL); + memset(statePtr, 0, sizeof(*statePtr)); + statePtr->v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2; + statePtr->v[1] = seed + XXH_PRIME64_2; + statePtr->v[2] = seed + 0; + statePtr->v[3] = seed - XXH_PRIME64_1; + return XXH_OK; +} + +/*! @ingroup XXH64_family */ +XXH_PUBLIC_API XXH_errorcode +XXH64_update (XXH_NOESCAPE XXH64_state_t* state, XXH_NOESCAPE const void* input, size_t len) +{ + if (input==NULL) { + XXH_ASSERT(len == 0); + return XXH_OK; + } + + { const xxh_u8* p = (const xxh_u8*)input; + const xxh_u8* const bEnd = p + len; + + state->total_len += len; + + if (state->memsize + len < 32) { /* fill in tmp buffer */ + XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len); + state->memsize += (xxh_u32)len; + return XXH_OK; + } + + if (state->memsize) { /* tmp buffer is full */ + XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize); + state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0)); + state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1)); + state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2)); + state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3)); + p += 32 - state->memsize; + state->memsize = 0; + } + + if (p+32 <= bEnd) { + const xxh_u8* const limit = bEnd - 32; + + do { + state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8; + state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8; + state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8; + state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8; + } while (p<=limit); + + } + + if (p < bEnd) { + XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); + state->memsize = (unsigned)(bEnd-p); + } + } + + return XXH_OK; +} + + +/*! @ingroup XXH64_family */ +XXH_PUBLIC_API XXH64_hash_t XXH64_digest(XXH_NOESCAPE const XXH64_state_t* state) +{ + xxh_u64 h64; + + if (state->total_len >= 32) { + h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18); + h64 = XXH64_mergeRound(h64, state->v[0]); + h64 = XXH64_mergeRound(h64, state->v[1]); + h64 = XXH64_mergeRound(h64, state->v[2]); + h64 = XXH64_mergeRound(h64, state->v[3]); + } else { + h64 = state->v[2] /*seed*/ + XXH_PRIME64_5; + } + + h64 += (xxh_u64) state->total_len; + + return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned); +} +#endif /* !XXH_NO_STREAM */ + +/******* Canonical representation *******/ + +/*! @ingroup XXH64_family */ +XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash) +{ + XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); + if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); + XXH_memcpy(dst, &hash, sizeof(*dst)); +} + +/*! @ingroup XXH64_family */ +XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src) +{ + return XXH_readBE64(src); +} + +#if defined (__cplusplus) +} +#endif + +#ifndef XXH_NO_XXH3 + +/* ********************************************************************* +* XXH3 +* New generation hash designed for speed on small keys and vectorization +************************************************************************ */ +/*! + * @} + * @defgroup XXH3_impl XXH3 implementation + * @ingroup impl + * @{ + */ + +/* === Compiler specifics === */ + +#if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */ +# define XXH_RESTRICT /* disable */ +#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */ +# define XXH_RESTRICT restrict +#elif (defined (__GNUC__) && ((__GNUC__ > 3) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))) \ + || (defined (__clang__)) \ + || (defined (_MSC_VER) && (_MSC_VER >= 1400)) \ + || (defined (__INTEL_COMPILER) && (__INTEL_COMPILER >= 1300)) +/* + * There are a LOT more compilers that recognize __restrict but this + * covers the major ones. + */ +# define XXH_RESTRICT __restrict +#else +# define XXH_RESTRICT /* disable */ +#endif + +#if (defined(__GNUC__) && (__GNUC__ >= 3)) \ + || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \ + || defined(__clang__) +# define XXH_likely(x) __builtin_expect(x, 1) +# define XXH_unlikely(x) __builtin_expect(x, 0) +#else +# define XXH_likely(x) (x) +# define XXH_unlikely(x) (x) +#endif + +#ifndef XXH_HAS_INCLUDE +# ifdef __has_include +/* + * Not defined as XXH_HAS_INCLUDE(x) (function-like) because + * this causes segfaults in Apple Clang 4.2 (on Mac OS X 10.7 Lion) + */ +# define XXH_HAS_INCLUDE __has_include +# else +# define XXH_HAS_INCLUDE(x) 0 +# endif +#endif + +#if defined(__GNUC__) || defined(__clang__) +# if defined(__ARM_FEATURE_SVE) +# include +# endif +# if defined(__ARM_NEON__) || defined(__ARM_NEON) \ + || (defined(_M_ARM) && _M_ARM >= 7) \ + || defined(_M_ARM64) || defined(_M_ARM64EC) \ + || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE()) /* WASM SIMD128 via SIMDe */ +# define inline __inline__ /* circumvent a clang bug */ +# include +# undef inline +# elif defined(__AVX2__) +# include +# elif defined(__SSE2__) +# include +# endif +#endif + +#if defined(_MSC_VER) +# include +#endif + +/* + * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while + * remaining a true 64-bit/128-bit hash function. + * + * This is done by prioritizing a subset of 64-bit operations that can be + * emulated without too many steps on the average 32-bit machine. + * + * For example, these two lines seem similar, and run equally fast on 64-bit: + * + * xxh_u64 x; + * x ^= (x >> 47); // good + * x ^= (x >> 13); // bad + * + * However, to a 32-bit machine, there is a major difference. + * + * x ^= (x >> 47) looks like this: + * + * x.lo ^= (x.hi >> (47 - 32)); + * + * while x ^= (x >> 13) looks like this: + * + * // note: funnel shifts are not usually cheap. + * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13)); + * x.hi ^= (x.hi >> 13); + * + * The first one is significantly faster than the second, simply because the + * shift is larger than 32. This means: + * - All the bits we need are in the upper 32 bits, so we can ignore the lower + * 32 bits in the shift. + * - The shift result will always fit in the lower 32 bits, and therefore, + * we can ignore the upper 32 bits in the xor. + * + * Thanks to this optimization, XXH3 only requires these features to be efficient: + * + * - Usable unaligned access + * - A 32-bit or 64-bit ALU + * - If 32-bit, a decent ADC instruction + * - A 32 or 64-bit multiply with a 64-bit result + * - For the 128-bit variant, a decent byteswap helps short inputs. + * + * The first two are already required by XXH32, and almost all 32-bit and 64-bit + * platforms which can run XXH32 can run XXH3 efficiently. + * + * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one + * notable exception. + * + * First of all, Thumb-1 lacks support for the UMULL instruction which + * performs the important long multiply. This means numerous __aeabi_lmul + * calls. + * + * Second of all, the 8 functional registers are just not enough. + * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need + * Lo registers, and this shuffling results in thousands more MOVs than A32. + * + * A32 and T32 don't have this limitation. They can access all 14 registers, + * do a 32->64 multiply with UMULL, and the flexible operand allowing free + * shifts is helpful, too. + * + * Therefore, we do a quick sanity check. + * + * If compiling Thumb-1 for a target which supports ARM instructions, we will + * emit a warning, as it is not a "sane" platform to compile for. + * + * Usually, if this happens, it is because of an accident and you probably need + * to specify -march, as you likely meant to compile for a newer architecture. + * + * Credit: large sections of the vectorial and asm source code paths + * have been contributed by @easyaspi314 + */ +#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM) +# warning "XXH3 is highly inefficient without ARM or Thumb-2." +#endif + +/* ========================================== + * Vectorization detection + * ========================================== */ + +#ifdef XXH_DOXYGEN +/*! + * @ingroup tuning + * @brief Overrides the vectorization implementation chosen for XXH3. + * + * Can be defined to 0 to disable SIMD or any of the values mentioned in + * @ref XXH_VECTOR_TYPE. + * + * If this is not defined, it uses predefined macros to determine the best + * implementation. + */ +# define XXH_VECTOR XXH_SCALAR +/*! + * @ingroup tuning + * @brief Possible values for @ref XXH_VECTOR. + * + * Note that these are actually implemented as macros. + * + * If this is not defined, it is detected automatically. + * internal macro XXH_X86DISPATCH overrides this. + */ +enum XXH_VECTOR_TYPE /* fake enum */ { + XXH_SCALAR = 0, /*!< Portable scalar version */ + XXH_SSE2 = 1, /*!< + * SSE2 for Pentium 4, Opteron, all x86_64. + * + * @note SSE2 is also guaranteed on Windows 10, macOS, and + * Android x86. + */ + XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */ + XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */ + XXH_NEON = 4, /*!< + * NEON for most ARMv7-A, all AArch64, and WASM SIMD128 + * via the SIMDeverywhere polyfill provided with the + * Emscripten SDK. + */ + XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */ + XXH_SVE = 6, /*!< SVE for some ARMv8-A and ARMv9-A */ +}; +/*! + * @ingroup tuning + * @brief Selects the minimum alignment for XXH3's accumulators. + * + * When using SIMD, this should match the alignment required for said vector + * type, so, for example, 32 for AVX2. + * + * Default: Auto detected. + */ +# define XXH_ACC_ALIGN 8 +#endif + +/* Actual definition */ +#ifndef XXH_DOXYGEN +# define XXH_SCALAR 0 +# define XXH_SSE2 1 +# define XXH_AVX2 2 +# define XXH_AVX512 3 +# define XXH_NEON 4 +# define XXH_VSX 5 +# define XXH_SVE 6 +#endif + +#ifndef XXH_VECTOR /* can be defined on command line */ +# if defined(__ARM_FEATURE_SVE) +# define XXH_VECTOR XXH_SVE +# elif ( \ + defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \ + || defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \ + || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE()) /* wasm simd128 via SIMDe */ \ + ) && ( \ + defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \ + || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \ + ) +# define XXH_VECTOR XXH_NEON +# elif defined(__AVX512F__) +# define XXH_VECTOR XXH_AVX512 +# elif defined(__AVX2__) +# define XXH_VECTOR XXH_AVX2 +# elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2)) +# define XXH_VECTOR XXH_SSE2 +# elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \ + || (defined(__s390x__) && defined(__VEC__)) \ + && defined(__GNUC__) /* TODO: IBM XL */ +# define XXH_VECTOR XXH_VSX +# else +# define XXH_VECTOR XXH_SCALAR +# endif +#endif + +/* __ARM_FEATURE_SVE is only supported by GCC & Clang. */ +#if (XXH_VECTOR == XXH_SVE) && !defined(__ARM_FEATURE_SVE) +# ifdef _MSC_VER +# pragma warning(once : 4606) +# else +# warning "__ARM_FEATURE_SVE isn't supported. Use SCALAR instead." +# endif +# undef XXH_VECTOR +# define XXH_VECTOR XXH_SCALAR +#endif + +/* + * Controls the alignment of the accumulator, + * for compatibility with aligned vector loads, which are usually faster. + */ +#ifndef XXH_ACC_ALIGN +# if defined(XXH_X86DISPATCH) +# define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */ +# elif XXH_VECTOR == XXH_SCALAR /* scalar */ +# define XXH_ACC_ALIGN 8 +# elif XXH_VECTOR == XXH_SSE2 /* sse2 */ +# define XXH_ACC_ALIGN 16 +# elif XXH_VECTOR == XXH_AVX2 /* avx2 */ +# define XXH_ACC_ALIGN 32 +# elif XXH_VECTOR == XXH_NEON /* neon */ +# define XXH_ACC_ALIGN 16 +# elif XXH_VECTOR == XXH_VSX /* vsx */ +# define XXH_ACC_ALIGN 16 +# elif XXH_VECTOR == XXH_AVX512 /* avx512 */ +# define XXH_ACC_ALIGN 64 +# elif XXH_VECTOR == XXH_SVE /* sve */ +# define XXH_ACC_ALIGN 64 +# endif +#endif + +#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \ + || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512 +# define XXH_SEC_ALIGN XXH_ACC_ALIGN +#elif XXH_VECTOR == XXH_SVE +# define XXH_SEC_ALIGN XXH_ACC_ALIGN +#else +# define XXH_SEC_ALIGN 8 +#endif + +#if defined(__GNUC__) || defined(__clang__) +# define XXH_ALIASING __attribute__((may_alias)) +#else +# define XXH_ALIASING /* nothing */ +#endif + +/* + * UGLY HACK: + * GCC usually generates the best code with -O3 for xxHash. + * + * However, when targeting AVX2, it is overzealous in its unrolling resulting + * in code roughly 3/4 the speed of Clang. + * + * There are other issues, such as GCC splitting _mm256_loadu_si256 into + * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which + * only applies to Sandy and Ivy Bridge... which don't even support AVX2. + * + * That is why when compiling the AVX2 version, it is recommended to use either + * -O2 -mavx2 -march=haswell + * or + * -O2 -mavx2 -mno-avx256-split-unaligned-load + * for decent performance, or to use Clang instead. + * + * Fortunately, we can control the first one with a pragma that forces GCC into + * -O2, but the other one we can't control without "failed to inline always + * inline function due to target mismatch" warnings. + */ +#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ + && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ + && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */ +# pragma GCC push_options +# pragma GCC optimize("-O2") +#endif + +#if defined (__cplusplus) +extern "C" { +#endif + +#if XXH_VECTOR == XXH_NEON + +/* + * UGLY HACK: While AArch64 GCC on Linux does not seem to care, on macOS, GCC -O3 + * optimizes out the entire hashLong loop because of the aliasing violation. + * + * However, GCC is also inefficient at load-store optimization with vld1q/vst1q, + * so the only option is to mark it as aliasing. + */ +typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING; + +/*! + * @internal + * @brief `vld1q_u64` but faster and alignment-safe. + * + * On AArch64, unaligned access is always safe, but on ARMv7-a, it is only + * *conditionally* safe (`vld1` has an alignment bit like `movdq[ua]` in x86). + * + * GCC for AArch64 sees `vld1q_u8` as an intrinsic instead of a load, so it + * prohibits load-store optimizations. Therefore, a direct dereference is used. + * + * Otherwise, `vld1q_u8` is used with `vreinterpretq_u8_u64` to do a safe + * unaligned load. + */ +#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) +XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) /* silence -Wcast-align */ +{ + return *(xxh_aliasing_uint64x2_t const *)ptr; +} +#else +XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) +{ + return vreinterpretq_u64_u8(vld1q_u8((uint8_t const*)ptr)); +} +#endif + +/*! + * @internal + * @brief `vmlal_u32` on low and high halves of a vector. + * + * This is a workaround for AArch64 GCC < 11 which implemented arm_neon.h with + * inline assembly and were therefore incapable of merging the `vget_{low, high}_u32` + * with `vmlal_u32`. + */ +#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 11 +XXH_FORCE_INLINE uint64x2_t +XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) +{ + /* Inline assembly is the only way */ + __asm__("umlal %0.2d, %1.2s, %2.2s" : "+w" (acc) : "w" (lhs), "w" (rhs)); + return acc; +} +XXH_FORCE_INLINE uint64x2_t +XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) +{ + /* This intrinsic works as expected */ + return vmlal_high_u32(acc, lhs, rhs); +} +#else +/* Portable intrinsic versions */ +XXH_FORCE_INLINE uint64x2_t +XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) +{ + return vmlal_u32(acc, vget_low_u32(lhs), vget_low_u32(rhs)); +} +/*! @copydoc XXH_vmlal_low_u32 + * Assume the compiler converts this to vmlal_high_u32 on aarch64 */ +XXH_FORCE_INLINE uint64x2_t +XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) +{ + return vmlal_u32(acc, vget_high_u32(lhs), vget_high_u32(rhs)); +} +#endif + +/*! + * @ingroup tuning + * @brief Controls the NEON to scalar ratio for XXH3 + * + * This can be set to 2, 4, 6, or 8. + * + * ARM Cortex CPUs are _very_ sensitive to how their pipelines are used. + * + * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but only 2 of those + * can be NEON. If you are only using NEON instructions, you are only using 2/3 of the CPU + * bandwidth. + * + * This is even more noticeable on the more advanced cores like the Cortex-A76 which + * can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once. + * + * Therefore, to make the most out of the pipeline, it is beneficial to run 6 NEON lanes + * and 2 scalar lanes, which is chosen by default. + * + * This does not apply to Apple processors or 32-bit processors, which run better with + * full NEON. These will default to 8. Additionally, size-optimized builds run 8 lanes. + * + * This change benefits CPUs with large micro-op buffers without negatively affecting + * most other CPUs: + * + * | Chipset | Dispatch type | NEON only | 6:2 hybrid | Diff. | + * |:----------------------|:--------------------|----------:|-----------:|------:| + * | Snapdragon 730 (A76) | 2 NEON/8 micro-ops | 8.8 GB/s | 10.1 GB/s | ~16% | + * | Snapdragon 835 (A73) | 2 NEON/3 micro-ops | 5.1 GB/s | 5.3 GB/s | ~5% | + * | Marvell PXA1928 (A53) | In-order dual-issue | 1.9 GB/s | 1.9 GB/s | 0% | + * | Apple M1 | 4 NEON/8 micro-ops | 37.3 GB/s | 36.1 GB/s | ~-3% | + * + * It also seems to fix some bad codegen on GCC, making it almost as fast as clang. + * + * When using WASM SIMD128, if this is 2 or 6, SIMDe will scalarize 2 of the lanes meaning + * it effectively becomes worse 4. + * + * @see XXH3_accumulate_512_neon() + */ +# ifndef XXH3_NEON_LANES +# if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \ + && !defined(__APPLE__) && XXH_SIZE_OPT <= 0 +# define XXH3_NEON_LANES 6 +# else +# define XXH3_NEON_LANES XXH_ACC_NB +# endif +# endif +#endif /* XXH_VECTOR == XXH_NEON */ + +#if defined (__cplusplus) +} /* extern "C" */ +#endif + +/* + * VSX and Z Vector helpers. + * + * This is very messy, and any pull requests to clean this up are welcome. + * + * There are a lot of problems with supporting VSX and s390x, due to + * inconsistent intrinsics, spotty coverage, and multiple endiannesses. + */ +#if XXH_VECTOR == XXH_VSX +/* Annoyingly, these headers _may_ define three macros: `bool`, `vector`, + * and `pixel`. This is a problem for obvious reasons. + * + * These keywords are unnecessary; the spec literally says they are + * equivalent to `__bool`, `__vector`, and `__pixel` and may be undef'd + * after including the header. + * + * We use pragma push_macro/pop_macro to keep the namespace clean. */ +# pragma push_macro("bool") +# pragma push_macro("vector") +# pragma push_macro("pixel") +/* silence potential macro redefined warnings */ +# undef bool +# undef vector +# undef pixel + +# if defined(__s390x__) +# include +# else +# include +# endif + +/* Restore the original macro values, if applicable. */ +# pragma pop_macro("pixel") +# pragma pop_macro("vector") +# pragma pop_macro("bool") + +typedef __vector unsigned long long xxh_u64x2; +typedef __vector unsigned char xxh_u8x16; +typedef __vector unsigned xxh_u32x4; + +/* + * UGLY HACK: Similar to aarch64 macOS GCC, s390x GCC has the same aliasing issue. + */ +typedef xxh_u64x2 xxh_aliasing_u64x2 XXH_ALIASING; + +# ifndef XXH_VSX_BE +# if defined(__BIG_ENDIAN__) \ + || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) +# define XXH_VSX_BE 1 +# elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__ +# warning "-maltivec=be is not recommended. Please use native endianness." +# define XXH_VSX_BE 1 +# else +# define XXH_VSX_BE 0 +# endif +# endif /* !defined(XXH_VSX_BE) */ + +# if XXH_VSX_BE +# if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__)) +# define XXH_vec_revb vec_revb +# else +#if defined (__cplusplus) +extern "C" { +#endif +/*! + * A polyfill for POWER9's vec_revb(). + */ +XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) +{ + xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, + 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; + return vec_perm(val, val, vByteSwap); +} +#if defined (__cplusplus) +} /* extern "C" */ +#endif +# endif +# endif /* XXH_VSX_BE */ + +#if defined (__cplusplus) +extern "C" { +#endif +/*! + * Performs an unaligned vector load and byte swaps it on big endian. + */ +XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) +{ + xxh_u64x2 ret; + XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2)); +# if XXH_VSX_BE + ret = XXH_vec_revb(ret); +# endif + return ret; +} + +/* + * vec_mulo and vec_mule are very problematic intrinsics on PowerPC + * + * These intrinsics weren't added until GCC 8, despite existing for a while, + * and they are endian dependent. Also, their meaning swap depending on version. + * */ +# if defined(__s390x__) + /* s390x is always big endian, no issue on this platform */ +# define XXH_vec_mulo vec_mulo +# define XXH_vec_mule vec_mule +# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) && !defined(__ibmxl__) +/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */ + /* The IBM XL Compiler (which defined __clang__) only implements the vec_* operations */ +# define XXH_vec_mulo __builtin_altivec_vmulouw +# define XXH_vec_mule __builtin_altivec_vmuleuw +# else +/* gcc needs inline assembly */ +/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */ +XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) +{ + xxh_u64x2 result; + __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); + return result; +} +XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) +{ + xxh_u64x2 result; + __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); + return result; +} +# endif /* XXH_vec_mulo, XXH_vec_mule */ + +#if defined (__cplusplus) +} /* extern "C" */ +#endif + +#endif /* XXH_VECTOR == XXH_VSX */ + +#if XXH_VECTOR == XXH_SVE +#define ACCRND(acc, offset) \ +do { \ + svuint64_t input_vec = svld1_u64(mask, xinput + offset); \ + svuint64_t secret_vec = svld1_u64(mask, xsecret + offset); \ + svuint64_t mixed = sveor_u64_x(mask, secret_vec, input_vec); \ + svuint64_t swapped = svtbl_u64(input_vec, kSwap); \ + svuint64_t mixed_lo = svextw_u64_x(mask, mixed); \ + svuint64_t mixed_hi = svlsr_n_u64_x(mask, mixed, 32); \ + svuint64_t mul = svmad_u64_x(mask, mixed_lo, mixed_hi, swapped); \ + acc = svadd_u64_x(mask, acc, mul); \ +} while (0) +#endif /* XXH_VECTOR == XXH_SVE */ + +/* prefetch + * can be disabled, by declaring XXH_NO_PREFETCH build macro */ +#if defined(XXH_NO_PREFETCH) +# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ +#else +# if XXH_SIZE_OPT >= 1 +# define XXH_PREFETCH(ptr) (void)(ptr) +# elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */ +# include /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ +# define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0) +# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) +# define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) +# else +# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ +# endif +#endif /* XXH_NO_PREFETCH */ + +#if defined (__cplusplus) +extern "C" { +#endif +/* ========================================== + * XXH3 default settings + * ========================================== */ + +#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */ + +#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN) +# error "default keyset is not large enough" +#endif + +/*! Pseudorandom secret taken directly from FARSH. */ +XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = { + 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, + 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, + 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, + 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, + 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, + 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, + 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, + 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, + 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, + 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, + 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, + 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, +}; + +static const xxh_u64 PRIME_MX1 = 0x165667919E3779F9ULL; /*!< 0b0001011001010110011001111001000110011110001101110111100111111001 */ +static const xxh_u64 PRIME_MX2 = 0x9FB21C651E98DF25ULL; /*!< 0b1001111110110010000111000110010100011110100110001101111100100101 */ + +#ifdef XXH_OLD_NAMES +# define kSecret XXH3_kSecret +#endif + +#ifdef XXH_DOXYGEN +/*! + * @brief Calculates a 32-bit to 64-bit long multiply. + * + * Implemented as a macro. + * + * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't + * need to (but it shouldn't need to anyways, it is about 7 instructions to do + * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we + * use that instead of the normal method. + * + * If you are compiling for platforms like Thumb-1 and don't have a better option, + * you may also want to write your own long multiply routine here. + * + * @param x, y Numbers to be multiplied + * @return 64-bit product of the low 32 bits of @p x and @p y. + */ +XXH_FORCE_INLINE xxh_u64 +XXH_mult32to64(xxh_u64 x, xxh_u64 y) +{ + return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF); +} +#elif defined(_MSC_VER) && defined(_M_IX86) +# define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y)) +#else +/* + * Downcast + upcast is usually better than masking on older compilers like + * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers. + * + * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands + * and perform a full 64x64 multiply -- entirely redundant on 32-bit. + */ +# define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y)) +#endif + +/*! + * @brief Calculates a 64->128-bit long multiply. + * + * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar + * version. + * + * @param lhs , rhs The 64-bit integers to be multiplied + * @return The 128-bit result represented in an @ref XXH128_hash_t. + */ +static XXH128_hash_t +XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) +{ + /* + * GCC/Clang __uint128_t method. + * + * On most 64-bit targets, GCC and Clang define a __uint128_t type. + * This is usually the best way as it usually uses a native long 64-bit + * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64. + * + * Usually. + * + * Despite being a 32-bit platform, Clang (and emscripten) define this type + * despite not having the arithmetic for it. This results in a laggy + * compiler builtin call which calculates a full 128-bit multiply. + * In that case it is best to use the portable one. + * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677 + */ +#if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) \ + && defined(__SIZEOF_INT128__) \ + || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) + + __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs; + XXH128_hash_t r128; + r128.low64 = (xxh_u64)(product); + r128.high64 = (xxh_u64)(product >> 64); + return r128; + + /* + * MSVC for x64's _umul128 method. + * + * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct); + * + * This compiles to single operand MUL on x64. + */ +#elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC) + +#ifndef _MSC_VER +# pragma intrinsic(_umul128) +#endif + xxh_u64 product_high; + xxh_u64 const product_low = _umul128(lhs, rhs, &product_high); + XXH128_hash_t r128; + r128.low64 = product_low; + r128.high64 = product_high; + return r128; + + /* + * MSVC for ARM64's __umulh method. + * + * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method. + */ +#elif defined(_M_ARM64) || defined(_M_ARM64EC) + +#ifndef _MSC_VER +# pragma intrinsic(__umulh) +#endif + XXH128_hash_t r128; + r128.low64 = lhs * rhs; + r128.high64 = __umulh(lhs, rhs); + return r128; + +#else + /* + * Portable scalar method. Optimized for 32-bit and 64-bit ALUs. + * + * This is a fast and simple grade school multiply, which is shown below + * with base 10 arithmetic instead of base 0x100000000. + * + * 9 3 // D2 lhs = 93 + * x 7 5 // D2 rhs = 75 + * ---------- + * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15 + * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45 + * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21 + * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63 + * --------- + * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27 + * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67 + * --------- + * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975 + * + * The reasons for adding the products like this are: + * 1. It avoids manual carry tracking. Just like how + * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX. + * This avoids a lot of complexity. + * + * 2. It hints for, and on Clang, compiles to, the powerful UMAAL + * instruction available in ARM's Digital Signal Processing extension + * in 32-bit ARMv6 and later, which is shown below: + * + * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm) + * { + * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm; + * *RdLo = (xxh_u32)(product & 0xFFFFFFFF); + * *RdHi = (xxh_u32)(product >> 32); + * } + * + * This instruction was designed for efficient long multiplication, and + * allows this to be calculated in only 4 instructions at speeds + * comparable to some 64-bit ALUs. + * + * 3. It isn't terrible on other platforms. Usually this will be a couple + * of 32-bit ADD/ADCs. + */ + + /* First calculate all of the cross products. */ + xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF); + xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF); + xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32); + xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32); + + /* Now add the products together. These will never overflow. */ + xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi; + xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi; + xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF); + + XXH128_hash_t r128; + r128.low64 = lower; + r128.high64 = upper; + return r128; +#endif +} + +/*! + * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it. + * + * The reason for the separate function is to prevent passing too many structs + * around by value. This will hopefully inline the multiply, but we don't force it. + * + * @param lhs , rhs The 64-bit integers to multiply + * @return The low 64 bits of the product XOR'd by the high 64 bits. + * @see XXH_mult64to128() + */ +static xxh_u64 +XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) +{ + XXH128_hash_t product = XXH_mult64to128(lhs, rhs); + return product.low64 ^ product.high64; +} + +/*! Seems to produce slightly better code on GCC for some reason. */ +XXH_FORCE_INLINE XXH_CONSTF xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) +{ + XXH_ASSERT(0 <= shift && shift < 64); + return v64 ^ (v64 >> shift); +} + +/* + * This is a fast avalanche stage, + * suitable when input bits are already partially mixed + */ +static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) +{ + h64 = XXH_xorshift64(h64, 37); + h64 *= PRIME_MX1; + h64 = XXH_xorshift64(h64, 32); + return h64; +} + +/* + * This is a stronger avalanche, + * inspired by Pelle Evensen's rrmxmx + * preferable when input has not been previously mixed + */ +static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len) +{ + /* this mix is inspired by Pelle Evensen's rrmxmx */ + h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24); + h64 *= PRIME_MX2; + h64 ^= (h64 >> 35) + len ; + h64 *= PRIME_MX2; + return XXH_xorshift64(h64, 28); +} + + +/* ========================================== + * Short keys + * ========================================== + * One of the shortcomings of XXH32 and XXH64 was that their performance was + * sub-optimal on short lengths. It used an iterative algorithm which strongly + * favored lengths that were a multiple of 4 or 8. + * + * Instead of iterating over individual inputs, we use a set of single shot + * functions which piece together a range of lengths and operate in constant time. + * + * Additionally, the number of multiplies has been significantly reduced. This + * reduces latency, especially when emulating 64-bit multiplies on 32-bit. + * + * Depending on the platform, this may or may not be faster than XXH32, but it + * is almost guaranteed to be faster than XXH64. + */ + +/* + * At very short lengths, there isn't enough input to fully hide secrets, or use + * the entire secret. + * + * There is also only a limited amount of mixing we can do before significantly + * impacting performance. + * + * Therefore, we use different sections of the secret and always mix two secret + * samples with an XOR. This should have no effect on performance on the + * seedless or withSeed variants because everything _should_ be constant folded + * by modern compilers. + * + * The XOR mixing hides individual parts of the secret and increases entropy. + * + * This adds an extra layer of strength for custom secrets. + */ +XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t +XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) +{ + XXH_ASSERT(input != NULL); + XXH_ASSERT(1 <= len && len <= 3); + XXH_ASSERT(secret != NULL); + /* + * len = 1: combined = { input[0], 0x01, input[0], input[0] } + * len = 2: combined = { input[1], 0x02, input[0], input[1] } + * len = 3: combined = { input[2], 0x03, input[0], input[1] } + */ + { xxh_u8 const c1 = input[0]; + xxh_u8 const c2 = input[len >> 1]; + xxh_u8 const c3 = input[len - 1]; + xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) + | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); + xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; + xxh_u64 const keyed = (xxh_u64)combined ^ bitflip; + return XXH64_avalanche(keyed); + } +} + +XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t +XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) +{ + XXH_ASSERT(input != NULL); + XXH_ASSERT(secret != NULL); + XXH_ASSERT(4 <= len && len <= 8); + seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; + { xxh_u32 const input1 = XXH_readLE32(input); + xxh_u32 const input2 = XXH_readLE32(input + len - 4); + xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed; + xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32); + xxh_u64 const keyed = input64 ^ bitflip; + return XXH3_rrmxmx(keyed, len); + } +} + +XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t +XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) +{ + XXH_ASSERT(input != NULL); + XXH_ASSERT(secret != NULL); + XXH_ASSERT(9 <= len && len <= 16); + { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed; + xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed; + xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1; + xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2; + xxh_u64 const acc = len + + XXH_swap64(input_lo) + input_hi + + XXH3_mul128_fold64(input_lo, input_hi); + return XXH3_avalanche(acc); + } +} + +XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t +XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) +{ + XXH_ASSERT(len <= 16); + { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed); + if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed); + if (len) return XXH3_len_1to3_64b(input, len, secret, seed); + return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64))); + } +} + +/* + * DISCLAIMER: There are known *seed-dependent* multicollisions here due to + * multiplication by zero, affecting hashes of lengths 17 to 240. + * + * However, they are very unlikely. + * + * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all + * unseeded non-cryptographic hashes, it does not attempt to defend itself + * against specially crafted inputs, only random inputs. + * + * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes + * cancelling out the secret is taken an arbitrary number of times (addressed + * in XXH3_accumulate_512), this collision is very unlikely with random inputs + * and/or proper seeding: + * + * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a + * function that is only called up to 16 times per hash with up to 240 bytes of + * input. + * + * This is not too bad for a non-cryptographic hash function, especially with + * only 64 bit outputs. + * + * The 128-bit variant (which trades some speed for strength) is NOT affected + * by this, although it is always a good idea to use a proper seed if you care + * about strength. + */ +XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input, + const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64) +{ +#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ + && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \ + && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */ + /* + * UGLY HACK: + * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in + * slower code. + * + * By forcing seed64 into a register, we disrupt the cost model and + * cause it to scalarize. See `XXH32_round()` + * + * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600, + * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on + * GCC 9.2, despite both emitting scalar code. + * + * GCC generates much better scalar code than Clang for the rest of XXH3, + * which is why finding a more optimal codepath is an interest. + */ + XXH_COMPILER_GUARD(seed64); +#endif + { xxh_u64 const input_lo = XXH_readLE64(input); + xxh_u64 const input_hi = XXH_readLE64(input+8); + return XXH3_mul128_fold64( + input_lo ^ (XXH_readLE64(secret) + seed64), + input_hi ^ (XXH_readLE64(secret+8) - seed64) + ); + } +} + +/* For mid range keys, XXH3 uses a Mum-hash variant. */ +XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t +XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len, + const xxh_u8* XXH_RESTRICT secret, size_t secretSize, + XXH64_hash_t seed) +{ + XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; + XXH_ASSERT(16 < len && len <= 128); + + { xxh_u64 acc = len * XXH_PRIME64_1; +#if XXH_SIZE_OPT >= 1 + /* Smaller and cleaner, but slightly slower. */ + unsigned int i = (unsigned int)(len - 1) / 32; + do { + acc += XXH3_mix16B(input+16 * i, secret+32*i, seed); + acc += XXH3_mix16B(input+len-16*(i+1), secret+32*i+16, seed); + } while (i-- != 0); +#else + if (len > 32) { + if (len > 64) { + if (len > 96) { + acc += XXH3_mix16B(input+48, secret+96, seed); + acc += XXH3_mix16B(input+len-64, secret+112, seed); + } + acc += XXH3_mix16B(input+32, secret+64, seed); + acc += XXH3_mix16B(input+len-48, secret+80, seed); + } + acc += XXH3_mix16B(input+16, secret+32, seed); + acc += XXH3_mix16B(input+len-32, secret+48, seed); + } + acc += XXH3_mix16B(input+0, secret+0, seed); + acc += XXH3_mix16B(input+len-16, secret+16, seed); +#endif + return XXH3_avalanche(acc); + } +} + +/*! + * @brief Maximum size of "short" key in bytes. + */ +#define XXH3_MIDSIZE_MAX 240 + +XXH_NO_INLINE XXH_PUREF XXH64_hash_t +XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, + const xxh_u8* XXH_RESTRICT secret, size_t secretSize, + XXH64_hash_t seed) +{ + XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; + XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); + + #define XXH3_MIDSIZE_STARTOFFSET 3 + #define XXH3_MIDSIZE_LASTOFFSET 17 + + { xxh_u64 acc = len * XXH_PRIME64_1; + xxh_u64 acc_end; + unsigned int const nbRounds = (unsigned int)len / 16; + unsigned int i; + XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); + for (i=0; i<8; i++) { + acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed); + } + /* last bytes */ + acc_end = XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed); + XXH_ASSERT(nbRounds >= 8); + acc = XXH3_avalanche(acc); +#if defined(__clang__) /* Clang */ \ + && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ + && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ + /* + * UGLY HACK: + * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86. + * In everywhere else, it uses scalar code. + * + * For 64->128-bit multiplies, even if the NEON was 100% optimal, it + * would still be slower than UMAAL (see XXH_mult64to128). + * + * Unfortunately, Clang doesn't handle the long multiplies properly and + * converts them to the nonexistent "vmulq_u64" intrinsic, which is then + * scalarized into an ugly mess of VMOV.32 instructions. + * + * This mess is difficult to avoid without turning autovectorization + * off completely, but they are usually relatively minor and/or not + * worth it to fix. + * + * This loop is the easiest to fix, as unlike XXH32, this pragma + * _actually works_ because it is a loop vectorization instead of an + * SLP vectorization. + */ + #pragma clang loop vectorize(disable) +#endif + for (i=8 ; i < nbRounds; i++) { + /* + * Prevents clang for unrolling the acc loop and interleaving with this one. + */ + XXH_COMPILER_GUARD(acc); + acc_end += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed); + } + return XXH3_avalanche(acc + acc_end); + } +} + + +/* ======= Long Keys ======= */ + +#define XXH_STRIPE_LEN 64 +#define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */ +#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64)) + +#ifdef XXH_OLD_NAMES +# define STRIPE_LEN XXH_STRIPE_LEN +# define ACC_NB XXH_ACC_NB +#endif + +#ifndef XXH_PREFETCH_DIST +# ifdef __clang__ +# define XXH_PREFETCH_DIST 320 +# else +# if (XXH_VECTOR == XXH_AVX512) +# define XXH_PREFETCH_DIST 512 +# else +# define XXH_PREFETCH_DIST 384 +# endif +# endif /* __clang__ */ +#endif /* XXH_PREFETCH_DIST */ + +/* + * These macros are to generate an XXH3_accumulate() function. + * The two arguments select the name suffix and target attribute. + * + * The name of this symbol is XXH3_accumulate_() and it calls + * XXH3_accumulate_512_(). + * + * It may be useful to hand implement this function if the compiler fails to + * optimize the inline function. + */ +#define XXH3_ACCUMULATE_TEMPLATE(name) \ +void \ +XXH3_accumulate_##name(xxh_u64* XXH_RESTRICT acc, \ + const xxh_u8* XXH_RESTRICT input, \ + const xxh_u8* XXH_RESTRICT secret, \ + size_t nbStripes) \ +{ \ + size_t n; \ + for (n = 0; n < nbStripes; n++ ) { \ + const xxh_u8* const in = input + n*XXH_STRIPE_LEN; \ + XXH_PREFETCH(in + XXH_PREFETCH_DIST); \ + XXH3_accumulate_512_##name( \ + acc, \ + in, \ + secret + n*XXH_SECRET_CONSUME_RATE); \ + } \ +} + + +XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64) +{ + if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64); + XXH_memcpy(dst, &v64, sizeof(v64)); +} + +/* Several intrinsic functions below are supposed to accept __int64 as argument, + * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ . + * However, several environments do not define __int64 type, + * requiring a workaround. + */ +#if !defined (__VMS) \ + && (defined (__cplusplus) \ + || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) + typedef int64_t xxh_i64; +#else + /* the following type must have a width of 64-bit */ + typedef long long xxh_i64; +#endif + + +/* + * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized. + * + * It is a hardened version of UMAC, based off of FARSH's implementation. + * + * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD + * implementations, and it is ridiculously fast. + * + * We harden it by mixing the original input to the accumulators as well as the product. + * + * This means that in the (relatively likely) case of a multiply by zero, the + * original input is preserved. + * + * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve + * cross-pollination, as otherwise the upper and lower halves would be + * essentially independent. + * + * This doesn't matter on 64-bit hashes since they all get merged together in + * the end, so we skip the extra step. + * + * Both XXH3_64bits and XXH3_128bits use this subroutine. + */ + +#if (XXH_VECTOR == XXH_AVX512) \ + || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0) + +#ifndef XXH_TARGET_AVX512 +# define XXH_TARGET_AVX512 /* disable attribute target */ +#endif + +XXH_FORCE_INLINE XXH_TARGET_AVX512 void +XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc, + const void* XXH_RESTRICT input, + const void* XXH_RESTRICT secret) +{ + __m512i* const xacc = (__m512i *) acc; + XXH_ASSERT((((size_t)acc) & 63) == 0); + XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); + + { + /* data_vec = input[0]; */ + __m512i const data_vec = _mm512_loadu_si512 (input); + /* key_vec = secret[0]; */ + __m512i const key_vec = _mm512_loadu_si512 (secret); + /* data_key = data_vec ^ key_vec; */ + __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); + /* data_key_lo = data_key >> 32; */ + __m512i const data_key_lo = _mm512_srli_epi64 (data_key, 32); + /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ + __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo); + /* xacc[0] += swap(data_vec); */ + __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2)); + __m512i const sum = _mm512_add_epi64(*xacc, data_swap); + /* xacc[0] += product; */ + *xacc = _mm512_add_epi64(product, sum); + } +} +XXH_FORCE_INLINE XXH_TARGET_AVX512 XXH3_ACCUMULATE_TEMPLATE(avx512) + +/* + * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing. + * + * Multiplication isn't perfect, as explained by Google in HighwayHash: + * + * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to + * // varying degrees. In descending order of goodness, bytes + * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32. + * // As expected, the upper and lower bytes are much worse. + * + * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291 + * + * Since our algorithm uses a pseudorandom secret to add some variance into the + * mix, we don't need to (or want to) mix as often or as much as HighwayHash does. + * + * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid + * extraction. + * + * Both XXH3_64bits and XXH3_128bits use this subroutine. + */ + +XXH_FORCE_INLINE XXH_TARGET_AVX512 void +XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) +{ + XXH_ASSERT((((size_t)acc) & 63) == 0); + XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); + { __m512i* const xacc = (__m512i*) acc; + const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1); + + /* xacc[0] ^= (xacc[0] >> 47) */ + __m512i const acc_vec = *xacc; + __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47); + /* xacc[0] ^= secret; */ + __m512i const key_vec = _mm512_loadu_si512 (secret); + __m512i const data_key = _mm512_ternarylogic_epi32(key_vec, acc_vec, shifted, 0x96 /* key_vec ^ acc_vec ^ shifted */); + + /* xacc[0] *= XXH_PRIME32_1; */ + __m512i const data_key_hi = _mm512_srli_epi64 (data_key, 32); + __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32); + __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32); + *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32)); + } +} + +XXH_FORCE_INLINE XXH_TARGET_AVX512 void +XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64) +{ + XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0); + XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64); + XXH_ASSERT(((size_t)customSecret & 63) == 0); + (void)(&XXH_writeLE64); + { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i); + __m512i const seed_pos = _mm512_set1_epi64((xxh_i64)seed64); + __m512i const seed = _mm512_mask_sub_epi64(seed_pos, 0xAA, _mm512_set1_epi8(0), seed_pos); + + const __m512i* const src = (const __m512i*) ((const void*) XXH3_kSecret); + __m512i* const dest = ( __m512i*) customSecret; + int i; + XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */ + XXH_ASSERT(((size_t)dest & 63) == 0); + for (i=0; i < nbRounds; ++i) { + dest[i] = _mm512_add_epi64(_mm512_load_si512(src + i), seed); + } } +} + +#endif + +#if (XXH_VECTOR == XXH_AVX2) \ + || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0) + +#ifndef XXH_TARGET_AVX2 +# define XXH_TARGET_AVX2 /* disable attribute target */ +#endif + +XXH_FORCE_INLINE XXH_TARGET_AVX2 void +XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc, + const void* XXH_RESTRICT input, + const void* XXH_RESTRICT secret) +{ + XXH_ASSERT((((size_t)acc) & 31) == 0); + { __m256i* const xacc = (__m256i *) acc; + /* Unaligned. This is mainly for pointer arithmetic, and because + * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ + const __m256i* const xinput = (const __m256i *) input; + /* Unaligned. This is mainly for pointer arithmetic, and because + * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ + const __m256i* const xsecret = (const __m256i *) secret; + + size_t i; + for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { + /* data_vec = xinput[i]; */ + __m256i const data_vec = _mm256_loadu_si256 (xinput+i); + /* key_vec = xsecret[i]; */ + __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); + /* data_key = data_vec ^ key_vec; */ + __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); + /* data_key_lo = data_key >> 32; */ + __m256i const data_key_lo = _mm256_srli_epi64 (data_key, 32); + /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ + __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo); + /* xacc[i] += swap(data_vec); */ + __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); + __m256i const sum = _mm256_add_epi64(xacc[i], data_swap); + /* xacc[i] += product; */ + xacc[i] = _mm256_add_epi64(product, sum); + } } +} +XXH_FORCE_INLINE XXH_TARGET_AVX2 XXH3_ACCUMULATE_TEMPLATE(avx2) + +XXH_FORCE_INLINE XXH_TARGET_AVX2 void +XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) +{ + XXH_ASSERT((((size_t)acc) & 31) == 0); + { __m256i* const xacc = (__m256i*) acc; + /* Unaligned. This is mainly for pointer arithmetic, and because + * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ + const __m256i* const xsecret = (const __m256i *) secret; + const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1); + + size_t i; + for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { + /* xacc[i] ^= (xacc[i] >> 47) */ + __m256i const acc_vec = xacc[i]; + __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47); + __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted); + /* xacc[i] ^= xsecret; */ + __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); + __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); + + /* xacc[i] *= XXH_PRIME32_1; */ + __m256i const data_key_hi = _mm256_srli_epi64 (data_key, 32); + __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32); + __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32); + xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32)); + } + } +} + +XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) +{ + XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0); + XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6); + XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64); + (void)(&XXH_writeLE64); + XXH_PREFETCH(customSecret); + { __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64); + + const __m256i* const src = (const __m256i*) ((const void*) XXH3_kSecret); + __m256i* dest = ( __m256i*) customSecret; + +# if defined(__GNUC__) || defined(__clang__) + /* + * On GCC & Clang, marking 'dest' as modified will cause the compiler: + * - do not extract the secret from sse registers in the internal loop + * - use less common registers, and avoid pushing these reg into stack + */ + XXH_COMPILER_GUARD(dest); +# endif + XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */ + XXH_ASSERT(((size_t)dest & 31) == 0); + + /* GCC -O2 need unroll loop manually */ + dest[0] = _mm256_add_epi64(_mm256_load_si256(src+0), seed); + dest[1] = _mm256_add_epi64(_mm256_load_si256(src+1), seed); + dest[2] = _mm256_add_epi64(_mm256_load_si256(src+2), seed); + dest[3] = _mm256_add_epi64(_mm256_load_si256(src+3), seed); + dest[4] = _mm256_add_epi64(_mm256_load_si256(src+4), seed); + dest[5] = _mm256_add_epi64(_mm256_load_si256(src+5), seed); + } +} + +#endif + +/* x86dispatch always generates SSE2 */ +#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH) + +#ifndef XXH_TARGET_SSE2 +# define XXH_TARGET_SSE2 /* disable attribute target */ +#endif + +XXH_FORCE_INLINE XXH_TARGET_SSE2 void +XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc, + const void* XXH_RESTRICT input, + const void* XXH_RESTRICT secret) +{ + /* SSE2 is just a half-scale version of the AVX2 version. */ + XXH_ASSERT((((size_t)acc) & 15) == 0); + { __m128i* const xacc = (__m128i *) acc; + /* Unaligned. This is mainly for pointer arithmetic, and because + * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ + const __m128i* const xinput = (const __m128i *) input; + /* Unaligned. This is mainly for pointer arithmetic, and because + * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ + const __m128i* const xsecret = (const __m128i *) secret; + + size_t i; + for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { + /* data_vec = xinput[i]; */ + __m128i const data_vec = _mm_loadu_si128 (xinput+i); + /* key_vec = xsecret[i]; */ + __m128i const key_vec = _mm_loadu_si128 (xsecret+i); + /* data_key = data_vec ^ key_vec; */ + __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); + /* data_key_lo = data_key >> 32; */ + __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); + /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ + __m128i const product = _mm_mul_epu32 (data_key, data_key_lo); + /* xacc[i] += swap(data_vec); */ + __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2)); + __m128i const sum = _mm_add_epi64(xacc[i], data_swap); + /* xacc[i] += product; */ + xacc[i] = _mm_add_epi64(product, sum); + } } +} +XXH_FORCE_INLINE XXH_TARGET_SSE2 XXH3_ACCUMULATE_TEMPLATE(sse2) + +XXH_FORCE_INLINE XXH_TARGET_SSE2 void +XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) +{ + XXH_ASSERT((((size_t)acc) & 15) == 0); + { __m128i* const xacc = (__m128i*) acc; + /* Unaligned. This is mainly for pointer arithmetic, and because + * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ + const __m128i* const xsecret = (const __m128i *) secret; + const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1); + + size_t i; + for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { + /* xacc[i] ^= (xacc[i] >> 47) */ + __m128i const acc_vec = xacc[i]; + __m128i const shifted = _mm_srli_epi64 (acc_vec, 47); + __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted); + /* xacc[i] ^= xsecret[i]; */ + __m128i const key_vec = _mm_loadu_si128 (xsecret+i); + __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); + + /* xacc[i] *= XXH_PRIME32_1; */ + __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); + __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32); + __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32); + xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32)); + } + } +} + +XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) +{ + XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); + (void)(&XXH_writeLE64); + { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i); + +# if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900 + /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */ + XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) }; + __m128i const seed = _mm_load_si128((__m128i const*)seed64x2); +# else + __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64); +# endif + int i; + + const void* const src16 = XXH3_kSecret; + __m128i* dst16 = (__m128i*) customSecret; +# if defined(__GNUC__) || defined(__clang__) + /* + * On GCC & Clang, marking 'dest' as modified will cause the compiler: + * - do not extract the secret from sse registers in the internal loop + * - use less common registers, and avoid pushing these reg into stack + */ + XXH_COMPILER_GUARD(dst16); +# endif + XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */ + XXH_ASSERT(((size_t)dst16 & 15) == 0); + + for (i=0; i < nbRounds; ++i) { + dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed); + } } +} + +#endif + +#if (XXH_VECTOR == XXH_NEON) + +/* forward declarations for the scalar routines */ +XXH_FORCE_INLINE void +XXH3_scalarRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT input, + void const* XXH_RESTRICT secret, size_t lane); + +XXH_FORCE_INLINE void +XXH3_scalarScrambleRound(void* XXH_RESTRICT acc, + void const* XXH_RESTRICT secret, size_t lane); + +/*! + * @internal + * @brief The bulk processing loop for NEON and WASM SIMD128. + * + * The NEON code path is actually partially scalar when running on AArch64. This + * is to optimize the pipelining and can have up to 15% speedup depending on the + * CPU, and it also mitigates some GCC codegen issues. + * + * @see XXH3_NEON_LANES for configuring this and details about this optimization. + * + * NEON's 32-bit to 64-bit long multiply takes a half vector of 32-bit + * integers instead of the other platforms which mask full 64-bit vectors, + * so the setup is more complicated than just shifting right. + * + * Additionally, there is an optimization for 4 lanes at once noted below. + * + * Since, as stated, the most optimal amount of lanes for Cortexes is 6, + * there needs to be *three* versions of the accumulate operation used + * for the remaining 2 lanes. + * + * WASM's SIMD128 uses SIMDe's arm_neon.h polyfill because the intrinsics overlap + * nearly perfectly. + */ + +XXH_FORCE_INLINE void +XXH3_accumulate_512_neon( void* XXH_RESTRICT acc, + const void* XXH_RESTRICT input, + const void* XXH_RESTRICT secret) +{ + XXH_ASSERT((((size_t)acc) & 15) == 0); + XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0); + { /* GCC for darwin arm64 does not like aliasing here */ + xxh_aliasing_uint64x2_t* const xacc = (xxh_aliasing_uint64x2_t*) acc; + /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */ + uint8_t const* xinput = (const uint8_t *) input; + uint8_t const* xsecret = (const uint8_t *) secret; + + size_t i; +#ifdef __wasm_simd128__ + /* + * On WASM SIMD128, Clang emits direct address loads when XXH3_kSecret + * is constant propagated, which results in it converting it to this + * inside the loop: + * + * a = v128.load(XXH3_kSecret + 0 + $secret_offset, offset = 0) + * b = v128.load(XXH3_kSecret + 16 + $secret_offset, offset = 0) + * ... + * + * This requires a full 32-bit address immediate (and therefore a 6 byte + * instruction) as well as an add for each offset. + * + * Putting an asm guard prevents it from folding (at the cost of losing + * the alignment hint), and uses the free offset in `v128.load` instead + * of adding secret_offset each time which overall reduces code size by + * about a kilobyte and improves performance. + */ + XXH_COMPILER_GUARD(xsecret); +#endif + /* Scalar lanes use the normal scalarRound routine */ + for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) { + XXH3_scalarRound(acc, input, secret, i); + } + i = 0; + /* 4 NEON lanes at a time. */ + for (; i+1 < XXH3_NEON_LANES / 2; i+=2) { + /* data_vec = xinput[i]; */ + uint64x2_t data_vec_1 = XXH_vld1q_u64(xinput + (i * 16)); + uint64x2_t data_vec_2 = XXH_vld1q_u64(xinput + ((i+1) * 16)); + /* key_vec = xsecret[i]; */ + uint64x2_t key_vec_1 = XXH_vld1q_u64(xsecret + (i * 16)); + uint64x2_t key_vec_2 = XXH_vld1q_u64(xsecret + ((i+1) * 16)); + /* data_swap = swap(data_vec) */ + uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1); + uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1); + /* data_key = data_vec ^ key_vec; */ + uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1); + uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2); + + /* + * If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a + * de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to + * get one vector with the low 32 bits of each lane, and one vector + * with the high 32 bits of each lane. + * + * The intrinsic returns a double vector because the original ARMv7-a + * instruction modified both arguments in place. AArch64 and SIMD128 emit + * two instructions from this intrinsic. + * + * [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ] + * [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ] + */ + uint32x4x2_t unzipped = vuzpq_u32( + vreinterpretq_u32_u64(data_key_1), + vreinterpretq_u32_u64(data_key_2) + ); + /* data_key_lo = data_key & 0xFFFFFFFF */ + uint32x4_t data_key_lo = unzipped.val[0]; + /* data_key_hi = data_key >> 32 */ + uint32x4_t data_key_hi = unzipped.val[1]; + /* + * Then, we can split the vectors horizontally and multiply which, as for most + * widening intrinsics, have a variant that works on both high half vectors + * for free on AArch64. A similar instruction is available on SIMD128. + * + * sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi + */ + uint64x2_t sum_1 = XXH_vmlal_low_u32(data_swap_1, data_key_lo, data_key_hi); + uint64x2_t sum_2 = XXH_vmlal_high_u32(data_swap_2, data_key_lo, data_key_hi); + /* + * Clang reorders + * a += b * c; // umlal swap.2d, dkl.2s, dkh.2s + * c += a; // add acc.2d, acc.2d, swap.2d + * to + * c += a; // add acc.2d, acc.2d, swap.2d + * c += b * c; // umlal acc.2d, dkl.2s, dkh.2s + * + * While it would make sense in theory since the addition is faster, + * for reasons likely related to umlal being limited to certain NEON + * pipelines, this is worse. A compiler guard fixes this. + */ + XXH_COMPILER_GUARD_CLANG_NEON(sum_1); + XXH_COMPILER_GUARD_CLANG_NEON(sum_2); + /* xacc[i] = acc_vec + sum; */ + xacc[i] = vaddq_u64(xacc[i], sum_1); + xacc[i+1] = vaddq_u64(xacc[i+1], sum_2); + } + /* Operate on the remaining NEON lanes 2 at a time. */ + for (; i < XXH3_NEON_LANES / 2; i++) { + /* data_vec = xinput[i]; */ + uint64x2_t data_vec = XXH_vld1q_u64(xinput + (i * 16)); + /* key_vec = xsecret[i]; */ + uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16)); + /* acc_vec_2 = swap(data_vec) */ + uint64x2_t data_swap = vextq_u64(data_vec, data_vec, 1); + /* data_key = data_vec ^ key_vec; */ + uint64x2_t data_key = veorq_u64(data_vec, key_vec); + /* For two lanes, just use VMOVN and VSHRN. */ + /* data_key_lo = data_key & 0xFFFFFFFF; */ + uint32x2_t data_key_lo = vmovn_u64(data_key); + /* data_key_hi = data_key >> 32; */ + uint32x2_t data_key_hi = vshrn_n_u64(data_key, 32); + /* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi; */ + uint64x2_t sum = vmlal_u32(data_swap, data_key_lo, data_key_hi); + /* Same Clang workaround as before */ + XXH_COMPILER_GUARD_CLANG_NEON(sum); + /* xacc[i] = acc_vec + sum; */ + xacc[i] = vaddq_u64 (xacc[i], sum); + } + } +} +XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(neon) + +XXH_FORCE_INLINE void +XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) +{ + XXH_ASSERT((((size_t)acc) & 15) == 0); + + { xxh_aliasing_uint64x2_t* xacc = (xxh_aliasing_uint64x2_t*) acc; + uint8_t const* xsecret = (uint8_t const*) secret; + + size_t i; + /* WASM uses operator overloads and doesn't need these. */ +#ifndef __wasm_simd128__ + /* { prime32_1, prime32_1 } */ + uint32x2_t const kPrimeLo = vdup_n_u32(XXH_PRIME32_1); + /* { 0, prime32_1, 0, prime32_1 } */ + uint32x4_t const kPrimeHi = vreinterpretq_u32_u64(vdupq_n_u64((xxh_u64)XXH_PRIME32_1 << 32)); +#endif + + /* AArch64 uses both scalar and neon at the same time */ + for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) { + XXH3_scalarScrambleRound(acc, secret, i); + } + for (i=0; i < XXH3_NEON_LANES / 2; i++) { + /* xacc[i] ^= (xacc[i] >> 47); */ + uint64x2_t acc_vec = xacc[i]; + uint64x2_t shifted = vshrq_n_u64(acc_vec, 47); + uint64x2_t data_vec = veorq_u64(acc_vec, shifted); + + /* xacc[i] ^= xsecret[i]; */ + uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16)); + uint64x2_t data_key = veorq_u64(data_vec, key_vec); + /* xacc[i] *= XXH_PRIME32_1 */ +#ifdef __wasm_simd128__ + /* SIMD128 has multiply by u64x2, use it instead of expanding and scalarizing */ + xacc[i] = data_key * XXH_PRIME32_1; +#else + /* + * Expanded version with portable NEON intrinsics + * + * lo(x) * lo(y) + (hi(x) * lo(y) << 32) + * + * prod_hi = hi(data_key) * lo(prime) << 32 + * + * Since we only need 32 bits of this multiply a trick can be used, reinterpreting the vector + * as a uint32x4_t and multiplying by { 0, prime, 0, prime } to cancel out the unwanted bits + * and avoid the shift. + */ + uint32x4_t prod_hi = vmulq_u32 (vreinterpretq_u32_u64(data_key), kPrimeHi); + /* Extract low bits for vmlal_u32 */ + uint32x2_t data_key_lo = vmovn_u64(data_key); + /* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */ + xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo); +#endif + } + } +} +#endif + +#if (XXH_VECTOR == XXH_VSX) + +XXH_FORCE_INLINE void +XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc, + const void* XXH_RESTRICT input, + const void* XXH_RESTRICT secret) +{ + /* presumed aligned */ + xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc; + xxh_u8 const* const xinput = (xxh_u8 const*) input; /* no alignment restriction */ + xxh_u8 const* const xsecret = (xxh_u8 const*) secret; /* no alignment restriction */ + xxh_u64x2 const v32 = { 32, 32 }; + size_t i; + for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { + /* data_vec = xinput[i]; */ + xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + 16*i); + /* key_vec = xsecret[i]; */ + xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i); + xxh_u64x2 const data_key = data_vec ^ key_vec; + /* shuffled = (data_key << 32) | (data_key >> 32); */ + xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32); + /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */ + xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled); + /* acc_vec = xacc[i]; */ + xxh_u64x2 acc_vec = xacc[i]; + acc_vec += product; + + /* swap high and low halves */ +#ifdef __s390x__ + acc_vec += vec_permi(data_vec, data_vec, 2); +#else + acc_vec += vec_xxpermdi(data_vec, data_vec, 2); +#endif + xacc[i] = acc_vec; + } +} +XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(vsx) + +XXH_FORCE_INLINE void +XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) +{ + XXH_ASSERT((((size_t)acc) & 15) == 0); + + { xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc; + const xxh_u8* const xsecret = (const xxh_u8*) secret; + /* constants */ + xxh_u64x2 const v32 = { 32, 32 }; + xxh_u64x2 const v47 = { 47, 47 }; + xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 }; + size_t i; + for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { + /* xacc[i] ^= (xacc[i] >> 47); */ + xxh_u64x2 const acc_vec = xacc[i]; + xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47); + + /* xacc[i] ^= xsecret[i]; */ + xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i); + xxh_u64x2 const data_key = data_vec ^ key_vec; + + /* xacc[i] *= XXH_PRIME32_1 */ + /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */ + xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime); + /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */ + xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime); + xacc[i] = prod_odd + (prod_even << v32); + } } +} + +#endif + +#if (XXH_VECTOR == XXH_SVE) + +XXH_FORCE_INLINE void +XXH3_accumulate_512_sve( void* XXH_RESTRICT acc, + const void* XXH_RESTRICT input, + const void* XXH_RESTRICT secret) +{ + uint64_t *xacc = (uint64_t *)acc; + const uint64_t *xinput = (const uint64_t *)(const void *)input; + const uint64_t *xsecret = (const uint64_t *)(const void *)secret; + svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1); + uint64_t element_count = svcntd(); + if (element_count >= 8) { + svbool_t mask = svptrue_pat_b64(SV_VL8); + svuint64_t vacc = svld1_u64(mask, xacc); + ACCRND(vacc, 0); + svst1_u64(mask, xacc, vacc); + } else if (element_count == 2) { /* sve128 */ + svbool_t mask = svptrue_pat_b64(SV_VL2); + svuint64_t acc0 = svld1_u64(mask, xacc + 0); + svuint64_t acc1 = svld1_u64(mask, xacc + 2); + svuint64_t acc2 = svld1_u64(mask, xacc + 4); + svuint64_t acc3 = svld1_u64(mask, xacc + 6); + ACCRND(acc0, 0); + ACCRND(acc1, 2); + ACCRND(acc2, 4); + ACCRND(acc3, 6); + svst1_u64(mask, xacc + 0, acc0); + svst1_u64(mask, xacc + 2, acc1); + svst1_u64(mask, xacc + 4, acc2); + svst1_u64(mask, xacc + 6, acc3); + } else { + svbool_t mask = svptrue_pat_b64(SV_VL4); + svuint64_t acc0 = svld1_u64(mask, xacc + 0); + svuint64_t acc1 = svld1_u64(mask, xacc + 4); + ACCRND(acc0, 0); + ACCRND(acc1, 4); + svst1_u64(mask, xacc + 0, acc0); + svst1_u64(mask, xacc + 4, acc1); + } +} + +XXH_FORCE_INLINE void +XXH3_accumulate_sve(xxh_u64* XXH_RESTRICT acc, + const xxh_u8* XXH_RESTRICT input, + const xxh_u8* XXH_RESTRICT secret, + size_t nbStripes) +{ + if (nbStripes != 0) { + uint64_t *xacc = (uint64_t *)acc; + const uint64_t *xinput = (const uint64_t *)(const void *)input; + const uint64_t *xsecret = (const uint64_t *)(const void *)secret; + svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1); + uint64_t element_count = svcntd(); + if (element_count >= 8) { + svbool_t mask = svptrue_pat_b64(SV_VL8); + svuint64_t vacc = svld1_u64(mask, xacc + 0); + do { + /* svprfd(svbool_t, void *, enum svfprop); */ + svprfd(mask, xinput + 128, SV_PLDL1STRM); + ACCRND(vacc, 0); + xinput += 8; + xsecret += 1; + nbStripes--; + } while (nbStripes != 0); + + svst1_u64(mask, xacc + 0, vacc); + } else if (element_count == 2) { /* sve128 */ + svbool_t mask = svptrue_pat_b64(SV_VL2); + svuint64_t acc0 = svld1_u64(mask, xacc + 0); + svuint64_t acc1 = svld1_u64(mask, xacc + 2); + svuint64_t acc2 = svld1_u64(mask, xacc + 4); + svuint64_t acc3 = svld1_u64(mask, xacc + 6); + do { + svprfd(mask, xinput + 128, SV_PLDL1STRM); + ACCRND(acc0, 0); + ACCRND(acc1, 2); + ACCRND(acc2, 4); + ACCRND(acc3, 6); + xinput += 8; + xsecret += 1; + nbStripes--; + } while (nbStripes != 0); + + svst1_u64(mask, xacc + 0, acc0); + svst1_u64(mask, xacc + 2, acc1); + svst1_u64(mask, xacc + 4, acc2); + svst1_u64(mask, xacc + 6, acc3); + } else { + svbool_t mask = svptrue_pat_b64(SV_VL4); + svuint64_t acc0 = svld1_u64(mask, xacc + 0); + svuint64_t acc1 = svld1_u64(mask, xacc + 4); + do { + svprfd(mask, xinput + 128, SV_PLDL1STRM); + ACCRND(acc0, 0); + ACCRND(acc1, 4); + xinput += 8; + xsecret += 1; + nbStripes--; + } while (nbStripes != 0); + + svst1_u64(mask, xacc + 0, acc0); + svst1_u64(mask, xacc + 4, acc1); + } + } +} + +#endif + +/* scalar variants - universal */ + +#if defined(__aarch64__) && (defined(__GNUC__) || defined(__clang__)) +/* + * In XXH3_scalarRound(), GCC and Clang have a similar codegen issue, where they + * emit an excess mask and a full 64-bit multiply-add (MADD X-form). + * + * While this might not seem like much, as AArch64 is a 64-bit architecture, only + * big Cortex designs have a full 64-bit multiplier. + * + * On the little cores, the smaller 32-bit multiplier is used, and full 64-bit + * multiplies expand to 2-3 multiplies in microcode. This has a major penalty + * of up to 4 latency cycles and 2 stall cycles in the multiply pipeline. + * + * Thankfully, AArch64 still provides the 32-bit long multiply-add (UMADDL) which does + * not have this penalty and does the mask automatically. + */ +XXH_FORCE_INLINE xxh_u64 +XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc) +{ + xxh_u64 ret; + /* note: %x = 64-bit register, %w = 32-bit register */ + __asm__("umaddl %x0, %w1, %w2, %x3" : "=r" (ret) : "r" (lhs), "r" (rhs), "r" (acc)); + return ret; +} +#else +XXH_FORCE_INLINE xxh_u64 +XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc) +{ + return XXH_mult32to64((xxh_u32)lhs, (xxh_u32)rhs) + acc; +} +#endif + +/*! + * @internal + * @brief Scalar round for @ref XXH3_accumulate_512_scalar(). + * + * This is extracted to its own function because the NEON path uses a combination + * of NEON and scalar. + */ +XXH_FORCE_INLINE void +XXH3_scalarRound(void* XXH_RESTRICT acc, + void const* XXH_RESTRICT input, + void const* XXH_RESTRICT secret, + size_t lane) +{ + xxh_u64* xacc = (xxh_u64*) acc; + xxh_u8 const* xinput = (xxh_u8 const*) input; + xxh_u8 const* xsecret = (xxh_u8 const*) secret; + XXH_ASSERT(lane < XXH_ACC_NB); + XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0); + { + xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8); + xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8); + xacc[lane ^ 1] += data_val; /* swap adjacent lanes */ + xacc[lane] = XXH_mult32to64_add64(data_key /* & 0xFFFFFFFF */, data_key >> 32, xacc[lane]); + } +} + +/*! + * @internal + * @brief Processes a 64 byte block of data using the scalar path. + */ +XXH_FORCE_INLINE void +XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc, + const void* XXH_RESTRICT input, + const void* XXH_RESTRICT secret) +{ + size_t i; + /* ARM GCC refuses to unroll this loop, resulting in a 24% slowdown on ARMv6. */ +#if defined(__GNUC__) && !defined(__clang__) \ + && (defined(__arm__) || defined(__thumb2__)) \ + && defined(__ARM_FEATURE_UNALIGNED) /* no unaligned access just wastes bytes */ \ + && XXH_SIZE_OPT <= 0 +# pragma GCC unroll 8 +#endif + for (i=0; i < XXH_ACC_NB; i++) { + XXH3_scalarRound(acc, input, secret, i); + } +} +XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(scalar) + +/*! + * @internal + * @brief Scalar scramble step for @ref XXH3_scrambleAcc_scalar(). + * + * This is extracted to its own function because the NEON path uses a combination + * of NEON and scalar. + */ +XXH_FORCE_INLINE void +XXH3_scalarScrambleRound(void* XXH_RESTRICT acc, + void const* XXH_RESTRICT secret, + size_t lane) +{ + xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ + const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ + XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0); + XXH_ASSERT(lane < XXH_ACC_NB); + { + xxh_u64 const key64 = XXH_readLE64(xsecret + lane * 8); + xxh_u64 acc64 = xacc[lane]; + acc64 = XXH_xorshift64(acc64, 47); + acc64 ^= key64; + acc64 *= XXH_PRIME32_1; + xacc[lane] = acc64; + } +} + +/*! + * @internal + * @brief Scrambles the accumulators after a large chunk has been read + */ +XXH_FORCE_INLINE void +XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) +{ + size_t i; + for (i=0; i < XXH_ACC_NB; i++) { + XXH3_scalarScrambleRound(acc, secret, i); + } +} + +XXH_FORCE_INLINE void +XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64) +{ + /* + * We need a separate pointer for the hack below, + * which requires a non-const pointer. + * Any decent compiler will optimize this out otherwise. + */ + const xxh_u8* kSecretPtr = XXH3_kSecret; + XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); + +#if defined(__GNUC__) && defined(__aarch64__) + /* + * UGLY HACK: + * GCC and Clang generate a bunch of MOV/MOVK pairs for aarch64, and they are + * placed sequentially, in order, at the top of the unrolled loop. + * + * While MOVK is great for generating constants (2 cycles for a 64-bit + * constant compared to 4 cycles for LDR), it fights for bandwidth with + * the arithmetic instructions. + * + * I L S + * MOVK + * MOVK + * MOVK + * MOVK + * ADD + * SUB STR + * STR + * By forcing loads from memory (as the asm line causes the compiler to assume + * that XXH3_kSecretPtr has been changed), the pipelines are used more + * efficiently: + * I L S + * LDR + * ADD LDR + * SUB STR + * STR + * + * See XXH3_NEON_LANES for details on the pipsline. + * + * XXH3_64bits_withSeed, len == 256, Snapdragon 835 + * without hack: 2654.4 MB/s + * with hack: 3202.9 MB/s + */ + XXH_COMPILER_GUARD(kSecretPtr); +#endif + { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16; + int i; + for (i=0; i < nbRounds; i++) { + /* + * The asm hack causes the compiler to assume that kSecretPtr aliases with + * customSecret, and on aarch64, this prevented LDP from merging two + * loads together for free. Putting the loads together before the stores + * properly generates LDP. + */ + xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64; + xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64; + XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo); + XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi); + } } +} + + +typedef void (*XXH3_f_accumulate)(xxh_u64* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, size_t); +typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*); +typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64); + + +#if (XXH_VECTOR == XXH_AVX512) + +#define XXH3_accumulate_512 XXH3_accumulate_512_avx512 +#define XXH3_accumulate XXH3_accumulate_avx512 +#define XXH3_scrambleAcc XXH3_scrambleAcc_avx512 +#define XXH3_initCustomSecret XXH3_initCustomSecret_avx512 + +#elif (XXH_VECTOR == XXH_AVX2) + +#define XXH3_accumulate_512 XXH3_accumulate_512_avx2 +#define XXH3_accumulate XXH3_accumulate_avx2 +#define XXH3_scrambleAcc XXH3_scrambleAcc_avx2 +#define XXH3_initCustomSecret XXH3_initCustomSecret_avx2 + +#elif (XXH_VECTOR == XXH_SSE2) + +#define XXH3_accumulate_512 XXH3_accumulate_512_sse2 +#define XXH3_accumulate XXH3_accumulate_sse2 +#define XXH3_scrambleAcc XXH3_scrambleAcc_sse2 +#define XXH3_initCustomSecret XXH3_initCustomSecret_sse2 + +#elif (XXH_VECTOR == XXH_NEON) + +#define XXH3_accumulate_512 XXH3_accumulate_512_neon +#define XXH3_accumulate XXH3_accumulate_neon +#define XXH3_scrambleAcc XXH3_scrambleAcc_neon +#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar + +#elif (XXH_VECTOR == XXH_VSX) + +#define XXH3_accumulate_512 XXH3_accumulate_512_vsx +#define XXH3_accumulate XXH3_accumulate_vsx +#define XXH3_scrambleAcc XXH3_scrambleAcc_vsx +#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar + +#elif (XXH_VECTOR == XXH_SVE) +#define XXH3_accumulate_512 XXH3_accumulate_512_sve +#define XXH3_accumulate XXH3_accumulate_sve +#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar +#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar + +#else /* scalar */ + +#define XXH3_accumulate_512 XXH3_accumulate_512_scalar +#define XXH3_accumulate XXH3_accumulate_scalar +#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar +#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar + +#endif + +#if XXH_SIZE_OPT >= 1 /* don't do SIMD for initialization */ +# undef XXH3_initCustomSecret +# define XXH3_initCustomSecret XXH3_initCustomSecret_scalar +#endif + +XXH_FORCE_INLINE void +XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc, + const xxh_u8* XXH_RESTRICT input, size_t len, + const xxh_u8* XXH_RESTRICT secret, size_t secretSize, + XXH3_f_accumulate f_acc, + XXH3_f_scrambleAcc f_scramble) +{ + size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; + size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock; + size_t const nb_blocks = (len - 1) / block_len; + + size_t n; + + XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); + + for (n = 0; n < nb_blocks; n++) { + f_acc(acc, input + n*block_len, secret, nbStripesPerBlock); + f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN); + } + + /* last partial block */ + XXH_ASSERT(len > XXH_STRIPE_LEN); + { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN; + XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE)); + f_acc(acc, input + nb_blocks*block_len, secret, nbStripes); + + /* last stripe */ + { const xxh_u8* const p = input + len - XXH_STRIPE_LEN; +#define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */ + XXH3_accumulate_512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START); + } } +} + +XXH_FORCE_INLINE xxh_u64 +XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret) +{ + return XXH3_mul128_fold64( + acc[0] ^ XXH_readLE64(secret), + acc[1] ^ XXH_readLE64(secret+8) ); +} + +static XXH64_hash_t +XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start) +{ + xxh_u64 result64 = start; + size_t i = 0; + + for (i = 0; i < 4; i++) { + result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i); +#if defined(__clang__) /* Clang */ \ + && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \ + && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ + && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ + /* + * UGLY HACK: + * Prevent autovectorization on Clang ARMv7-a. Exact same problem as + * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b. + * XXH3_64bits, len == 256, Snapdragon 835: + * without hack: 2063.7 MB/s + * with hack: 2560.7 MB/s + */ + XXH_COMPILER_GUARD(result64); +#endif + } + + return XXH3_avalanche(result64); +} + +#define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \ + XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 } + +XXH_FORCE_INLINE XXH64_hash_t +XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len, + const void* XXH_RESTRICT secret, size_t secretSize, + XXH3_f_accumulate f_acc, + XXH3_f_scrambleAcc f_scramble) +{ + XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; + + XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc, f_scramble); + + /* converge into final hash */ + XXH_STATIC_ASSERT(sizeof(acc) == 64); + /* do not align on 8, so that the secret is different from the accumulator */ +#define XXH_SECRET_MERGEACCS_START 11 + XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); + return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1); +} + +/* + * It's important for performance to transmit secret's size (when it's static) + * so that the compiler can properly optimize the vectorized loop. + * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set. + * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE + * breaks -Og, this is XXH_NO_INLINE. + */ +XXH3_WITH_SECRET_INLINE XXH64_hash_t +XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len, + XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) +{ + (void)seed64; + return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate, XXH3_scrambleAcc); +} + +/* + * It's preferable for performance that XXH3_hashLong is not inlined, + * as it results in a smaller function for small data, easier to the instruction cache. + * Note that inside this no_inline function, we do inline the internal loop, + * and provide a statically defined secret size to allow optimization of vector loop. + */ +XXH_NO_INLINE XXH_PUREF XXH64_hash_t +XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len, + XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) +{ + (void)seed64; (void)secret; (void)secretLen; + return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate, XXH3_scrambleAcc); +} + +/* + * XXH3_hashLong_64b_withSeed(): + * Generate a custom key based on alteration of default XXH3_kSecret with the seed, + * and then use this key for long mode hashing. + * + * This operation is decently fast but nonetheless costs a little bit of time. + * Try to avoid it whenever possible (typically when seed==0). + * + * It's important for performance that XXH3_hashLong is not inlined. Not sure + * why (uop cache maybe?), but the difference is large and easily measurable. + */ +XXH_FORCE_INLINE XXH64_hash_t +XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len, + XXH64_hash_t seed, + XXH3_f_accumulate f_acc, + XXH3_f_scrambleAcc f_scramble, + XXH3_f_initCustomSecret f_initSec) +{ +#if XXH_SIZE_OPT <= 0 + if (seed == 0) + return XXH3_hashLong_64b_internal(input, len, + XXH3_kSecret, sizeof(XXH3_kSecret), + f_acc, f_scramble); +#endif + { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; + f_initSec(secret, seed); + return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret), + f_acc, f_scramble); + } +} + +/* + * It's important for performance that XXH3_hashLong is not inlined. + */ +XXH_NO_INLINE XXH64_hash_t +XXH3_hashLong_64b_withSeed(const void* XXH_RESTRICT input, size_t len, + XXH64_hash_t seed, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) +{ + (void)secret; (void)secretLen; + return XXH3_hashLong_64b_withSeed_internal(input, len, seed, + XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret); +} + + +typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t, + XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t); + +XXH_FORCE_INLINE XXH64_hash_t +XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len, + XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, + XXH3_hashLong64_f f_hashLong) +{ + XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); + /* + * If an action is to be taken if `secretLen` condition is not respected, + * it should be done here. + * For now, it's a contract pre-condition. + * Adding a check and a branch here would cost performance at every hash. + * Also, note that function signature doesn't offer room to return an error. + */ + if (len <= 16) + return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); + if (len <= 128) + return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); + if (len <= XXH3_MIDSIZE_MAX) + return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); + return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen); +} + + +/* === Public entry point === */ + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length) +{ + return XXH3_64bits_internal(input, length, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default); +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH64_hash_t +XXH3_64bits_withSecret(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize) +{ + return XXH3_64bits_internal(input, length, 0, secret, secretSize, XXH3_hashLong_64b_withSecret); +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH64_hash_t +XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed) +{ + return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed); +} + +XXH_PUBLIC_API XXH64_hash_t +XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) +{ + if (length <= XXH3_MIDSIZE_MAX) + return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); + return XXH3_hashLong_64b_withSecret(input, length, seed, (const xxh_u8*)secret, secretSize); +} + + +/* === XXH3 streaming === */ +#ifndef XXH_NO_STREAM +/* + * Malloc's a pointer that is always aligned to align. + * + * This must be freed with `XXH_alignedFree()`. + * + * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte + * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2 + * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON. + * + * This underalignment previously caused a rather obvious crash which went + * completely unnoticed due to XXH3_createState() not actually being tested. + * Credit to RedSpah for noticing this bug. + * + * The alignment is done manually: Functions like posix_memalign or _mm_malloc + * are avoided: To maintain portability, we would have to write a fallback + * like this anyways, and besides, testing for the existence of library + * functions without relying on external build tools is impossible. + * + * The method is simple: Overallocate, manually align, and store the offset + * to the original behind the returned pointer. + * + * Align must be a power of 2 and 8 <= align <= 128. + */ +static XXH_MALLOCF void* XXH_alignedMalloc(size_t s, size_t align) +{ + XXH_ASSERT(align <= 128 && align >= 8); /* range check */ + XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */ + XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */ + { /* Overallocate to make room for manual realignment and an offset byte */ + xxh_u8* base = (xxh_u8*)XXH_malloc(s + align); + if (base != NULL) { + /* + * Get the offset needed to align this pointer. + * + * Even if the returned pointer is aligned, there will always be + * at least one byte to store the offset to the original pointer. + */ + size_t offset = align - ((size_t)base & (align - 1)); /* base % align */ + /* Add the offset for the now-aligned pointer */ + xxh_u8* ptr = base + offset; + + XXH_ASSERT((size_t)ptr % align == 0); + + /* Store the offset immediately before the returned pointer. */ + ptr[-1] = (xxh_u8)offset; + return ptr; + } + return NULL; + } +} +/* + * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass + * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout. + */ +static void XXH_alignedFree(void* p) +{ + if (p != NULL) { + xxh_u8* ptr = (xxh_u8*)p; + /* Get the offset byte we added in XXH_malloc. */ + xxh_u8 offset = ptr[-1]; + /* Free the original malloc'd pointer */ + xxh_u8* base = ptr - offset; + XXH_free(base); + } +} +/*! @ingroup XXH3_family */ +/*! + * @brief Allocate an @ref XXH3_state_t. + * + * @return An allocated pointer of @ref XXH3_state_t on success. + * @return `NULL` on failure. + * + * @note Must be freed with XXH3_freeState(). + */ +XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void) +{ + XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64); + if (state==NULL) return NULL; + XXH3_INITSTATE(state); + return state; +} + +/*! @ingroup XXH3_family */ +/*! + * @brief Frees an @ref XXH3_state_t. + * + * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState(). + * + * @return @ref XXH_OK. + * + * @note Must be allocated with XXH3_createState(). + */ +XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr) +{ + XXH_alignedFree(statePtr); + return XXH_OK; +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API void +XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state) +{ + XXH_memcpy(dst_state, src_state, sizeof(*dst_state)); +} + +static void +XXH3_reset_internal(XXH3_state_t* statePtr, + XXH64_hash_t seed, + const void* secret, size_t secretSize) +{ + size_t const initStart = offsetof(XXH3_state_t, bufferedSize); + size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart; + XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart); + XXH_ASSERT(statePtr != NULL); + /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */ + memset((char*)statePtr + initStart, 0, initLength); + statePtr->acc[0] = XXH_PRIME32_3; + statePtr->acc[1] = XXH_PRIME64_1; + statePtr->acc[2] = XXH_PRIME64_2; + statePtr->acc[3] = XXH_PRIME64_3; + statePtr->acc[4] = XXH_PRIME64_4; + statePtr->acc[5] = XXH_PRIME32_2; + statePtr->acc[6] = XXH_PRIME64_5; + statePtr->acc[7] = XXH_PRIME32_1; + statePtr->seed = seed; + statePtr->useSeed = (seed != 0); + statePtr->extSecret = (const unsigned char*)secret; + XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); + statePtr->secretLimit = secretSize - XXH_STRIPE_LEN; + statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE; +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH_errorcode +XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr) +{ + if (statePtr == NULL) return XXH_ERROR; + XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); + return XXH_OK; +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH_errorcode +XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize) +{ + if (statePtr == NULL) return XXH_ERROR; + XXH3_reset_internal(statePtr, 0, secret, secretSize); + if (secret == NULL) return XXH_ERROR; + if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; + return XXH_OK; +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH_errorcode +XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed) +{ + if (statePtr == NULL) return XXH_ERROR; + if (seed==0) return XXH3_64bits_reset(statePtr); + if ((seed != statePtr->seed) || (statePtr->extSecret != NULL)) + XXH3_initCustomSecret(statePtr->customSecret, seed); + XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE); + return XXH_OK; +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH_errorcode +XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64) +{ + if (statePtr == NULL) return XXH_ERROR; + if (secret == NULL) return XXH_ERROR; + if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; + XXH3_reset_internal(statePtr, seed64, secret, secretSize); + statePtr->useSeed = 1; /* always, even if seed64==0 */ + return XXH_OK; +} + +/*! + * @internal + * @brief Processes a large input for XXH3_update() and XXH3_digest_long(). + * + * Unlike XXH3_hashLong_internal_loop(), this can process data that overlaps a block. + * + * @param acc Pointer to the 8 accumulator lanes + * @param nbStripesSoFarPtr In/out pointer to the number of leftover stripes in the block* + * @param nbStripesPerBlock Number of stripes in a block + * @param input Input pointer + * @param nbStripes Number of stripes to process + * @param secret Secret pointer + * @param secretLimit Offset of the last block in @p secret + * @param f_acc Pointer to an XXH3_accumulate implementation + * @param f_scramble Pointer to an XXH3_scrambleAcc implementation + * @return Pointer past the end of @p input after processing + */ +XXH_FORCE_INLINE const xxh_u8 * +XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc, + size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock, + const xxh_u8* XXH_RESTRICT input, size_t nbStripes, + const xxh_u8* XXH_RESTRICT secret, size_t secretLimit, + XXH3_f_accumulate f_acc, + XXH3_f_scrambleAcc f_scramble) +{ + const xxh_u8* initialSecret = secret + *nbStripesSoFarPtr * XXH_SECRET_CONSUME_RATE; + /* Process full blocks */ + if (nbStripes >= (nbStripesPerBlock - *nbStripesSoFarPtr)) { + /* Process the initial partial block... */ + size_t nbStripesThisIter = nbStripesPerBlock - *nbStripesSoFarPtr; + + do { + /* Accumulate and scramble */ + f_acc(acc, input, initialSecret, nbStripesThisIter); + f_scramble(acc, secret + secretLimit); + input += nbStripesThisIter * XXH_STRIPE_LEN; + nbStripes -= nbStripesThisIter; + /* Then continue the loop with the full block size */ + nbStripesThisIter = nbStripesPerBlock; + initialSecret = secret; + } while (nbStripes >= nbStripesPerBlock); + *nbStripesSoFarPtr = 0; + } + /* Process a partial block */ + if (nbStripes > 0) { + f_acc(acc, input, initialSecret, nbStripes); + input += nbStripes * XXH_STRIPE_LEN; + *nbStripesSoFarPtr += nbStripes; + } + /* Return end pointer */ + return input; +} + +#ifndef XXH3_STREAM_USE_STACK +# if XXH_SIZE_OPT <= 0 && !defined(__clang__) /* clang doesn't need additional stack space */ +# define XXH3_STREAM_USE_STACK 1 +# endif +#endif +/* + * Both XXH3_64bits_update and XXH3_128bits_update use this routine. + */ +XXH_FORCE_INLINE XXH_errorcode +XXH3_update(XXH3_state_t* XXH_RESTRICT const state, + const xxh_u8* XXH_RESTRICT input, size_t len, + XXH3_f_accumulate f_acc, + XXH3_f_scrambleAcc f_scramble) +{ + if (input==NULL) { + XXH_ASSERT(len == 0); + return XXH_OK; + } + + XXH_ASSERT(state != NULL); + { const xxh_u8* const bEnd = input + len; + const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; +#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1 + /* For some reason, gcc and MSVC seem to suffer greatly + * when operating accumulators directly into state. + * Operating into stack space seems to enable proper optimization. + * clang, on the other hand, doesn't seem to need this trick */ + XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8]; + XXH_memcpy(acc, state->acc, sizeof(acc)); +#else + xxh_u64* XXH_RESTRICT const acc = state->acc; +#endif + state->totalLen += len; + XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE); + + /* small input : just fill in tmp buffer */ + if (len <= XXH3_INTERNALBUFFER_SIZE - state->bufferedSize) { + XXH_memcpy(state->buffer + state->bufferedSize, input, len); + state->bufferedSize += (XXH32_hash_t)len; + return XXH_OK; + } + + /* total input is now > XXH3_INTERNALBUFFER_SIZE */ + #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN) + XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */ + + /* + * Internal buffer is partially filled (always, except at beginning) + * Complete it, then consume it. + */ + if (state->bufferedSize) { + size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize; + XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize); + input += loadSize; + XXH3_consumeStripes(acc, + &state->nbStripesSoFar, state->nbStripesPerBlock, + state->buffer, XXH3_INTERNALBUFFER_STRIPES, + secret, state->secretLimit, + f_acc, f_scramble); + state->bufferedSize = 0; + } + XXH_ASSERT(input < bEnd); + if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) { + size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN; + input = XXH3_consumeStripes(acc, + &state->nbStripesSoFar, state->nbStripesPerBlock, + input, nbStripes, + secret, state->secretLimit, + f_acc, f_scramble); + XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); + + } + /* Some remaining input (always) : buffer it */ + XXH_ASSERT(input < bEnd); + XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE); + XXH_ASSERT(state->bufferedSize == 0); + XXH_memcpy(state->buffer, input, (size_t)(bEnd-input)); + state->bufferedSize = (XXH32_hash_t)(bEnd-input); +#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1 + /* save stack accumulators into state */ + XXH_memcpy(state->acc, acc, sizeof(acc)); +#endif + } + + return XXH_OK; +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH_errorcode +XXH3_64bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len) +{ + return XXH3_update(state, (const xxh_u8*)input, len, + XXH3_accumulate, XXH3_scrambleAcc); +} + + +XXH_FORCE_INLINE void +XXH3_digest_long (XXH64_hash_t* acc, + const XXH3_state_t* state, + const unsigned char* secret) +{ + xxh_u8 lastStripe[XXH_STRIPE_LEN]; + const xxh_u8* lastStripePtr; + + /* + * Digest on a local copy. This way, the state remains unaltered, and it can + * continue ingesting more input afterwards. + */ + XXH_memcpy(acc, state->acc, sizeof(state->acc)); + if (state->bufferedSize >= XXH_STRIPE_LEN) { + /* Consume remaining stripes then point to remaining data in buffer */ + size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN; + size_t nbStripesSoFar = state->nbStripesSoFar; + XXH3_consumeStripes(acc, + &nbStripesSoFar, state->nbStripesPerBlock, + state->buffer, nbStripes, + secret, state->secretLimit, + XXH3_accumulate, XXH3_scrambleAcc); + lastStripePtr = state->buffer + state->bufferedSize - XXH_STRIPE_LEN; + } else { /* bufferedSize < XXH_STRIPE_LEN */ + /* Copy to temp buffer */ + size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize; + XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */ + XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize); + XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize); + lastStripePtr = lastStripe; + } + /* Last stripe */ + XXH3_accumulate_512(acc, + lastStripePtr, + secret + state->secretLimit - XXH_SECRET_LASTACC_START); +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* state) +{ + const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; + if (state->totalLen > XXH3_MIDSIZE_MAX) { + XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; + XXH3_digest_long(acc, state, secret); + return XXH3_mergeAccs(acc, + secret + XXH_SECRET_MERGEACCS_START, + (xxh_u64)state->totalLen * XXH_PRIME64_1); + } + /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */ + if (state->useSeed) + return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); + return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), + secret, state->secretLimit + XXH_STRIPE_LEN); +} +#endif /* !XXH_NO_STREAM */ + + +/* ========================================== + * XXH3 128 bits (a.k.a XXH128) + * ========================================== + * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant, + * even without counting the significantly larger output size. + * + * For example, extra steps are taken to avoid the seed-dependent collisions + * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B). + * + * This strength naturally comes at the cost of some speed, especially on short + * lengths. Note that longer hashes are about as fast as the 64-bit version + * due to it using only a slight modification of the 64-bit loop. + * + * XXH128 is also more oriented towards 64-bit machines. It is still extremely + * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64). + */ + +XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t +XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) +{ + /* A doubled version of 1to3_64b with different constants. */ + XXH_ASSERT(input != NULL); + XXH_ASSERT(1 <= len && len <= 3); + XXH_ASSERT(secret != NULL); + /* + * len = 1: combinedl = { input[0], 0x01, input[0], input[0] } + * len = 2: combinedl = { input[1], 0x02, input[0], input[1] } + * len = 3: combinedl = { input[2], 0x03, input[0], input[1] } + */ + { xxh_u8 const c1 = input[0]; + xxh_u8 const c2 = input[len >> 1]; + xxh_u8 const c3 = input[len - 1]; + xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24) + | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); + xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13); + xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; + xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed; + xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl; + xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph; + XXH128_hash_t h128; + h128.low64 = XXH64_avalanche(keyed_lo); + h128.high64 = XXH64_avalanche(keyed_hi); + return h128; + } +} + +XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t +XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) +{ + XXH_ASSERT(input != NULL); + XXH_ASSERT(secret != NULL); + XXH_ASSERT(4 <= len && len <= 8); + seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; + { xxh_u32 const input_lo = XXH_readLE32(input); + xxh_u32 const input_hi = XXH_readLE32(input + len - 4); + xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32); + xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed; + xxh_u64 const keyed = input_64 ^ bitflip; + + /* Shift len to the left to ensure it is even, this avoids even multiplies. */ + XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2)); + + m128.high64 += (m128.low64 << 1); + m128.low64 ^= (m128.high64 >> 3); + + m128.low64 = XXH_xorshift64(m128.low64, 35); + m128.low64 *= PRIME_MX2; + m128.low64 = XXH_xorshift64(m128.low64, 28); + m128.high64 = XXH3_avalanche(m128.high64); + return m128; + } +} + +XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t +XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) +{ + XXH_ASSERT(input != NULL); + XXH_ASSERT(secret != NULL); + XXH_ASSERT(9 <= len && len <= 16); + { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed; + xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed; + xxh_u64 const input_lo = XXH_readLE64(input); + xxh_u64 input_hi = XXH_readLE64(input + len - 8); + XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1); + /* + * Put len in the middle of m128 to ensure that the length gets mixed to + * both the low and high bits in the 128x64 multiply below. + */ + m128.low64 += (xxh_u64)(len - 1) << 54; + input_hi ^= bitfliph; + /* + * Add the high 32 bits of input_hi to the high 32 bits of m128, then + * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to + * the high 64 bits of m128. + * + * The best approach to this operation is different on 32-bit and 64-bit. + */ + if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */ + /* + * 32-bit optimized version, which is more readable. + * + * On 32-bit, it removes an ADC and delays a dependency between the two + * halves of m128.high64, but it generates an extra mask on 64-bit. + */ + m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2); + } else { + /* + * 64-bit optimized (albeit more confusing) version. + * + * Uses some properties of addition and multiplication to remove the mask: + * + * Let: + * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF) + * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000) + * c = XXH_PRIME32_2 + * + * a + (b * c) + * Inverse Property: x + y - x == y + * a + (b * (1 + c - 1)) + * Distributive Property: x * (y + z) == (x * y) + (x * z) + * a + (b * 1) + (b * (c - 1)) + * Identity Property: x * 1 == x + * a + b + (b * (c - 1)) + * + * Substitute a, b, and c: + * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) + * + * Since input_hi.hi + input_hi.lo == input_hi, we get this: + * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) + */ + m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1); + } + /* m128 ^= XXH_swap64(m128 >> 64); */ + m128.low64 ^= XXH_swap64(m128.high64); + + { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */ + XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2); + h128.high64 += m128.high64 * XXH_PRIME64_2; + + h128.low64 = XXH3_avalanche(h128.low64); + h128.high64 = XXH3_avalanche(h128.high64); + return h128; + } } +} + +/* + * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN + */ +XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t +XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) +{ + XXH_ASSERT(len <= 16); + { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed); + if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed); + if (len) return XXH3_len_1to3_128b(input, len, secret, seed); + { XXH128_hash_t h128; + xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72); + xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88); + h128.low64 = XXH64_avalanche(seed ^ bitflipl); + h128.high64 = XXH64_avalanche( seed ^ bitfliph); + return h128; + } } +} + +/* + * A bit slower than XXH3_mix16B, but handles multiply by zero better. + */ +XXH_FORCE_INLINE XXH128_hash_t +XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2, + const xxh_u8* secret, XXH64_hash_t seed) +{ + acc.low64 += XXH3_mix16B (input_1, secret+0, seed); + acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8); + acc.high64 += XXH3_mix16B (input_2, secret+16, seed); + acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8); + return acc; +} + + +XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t +XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len, + const xxh_u8* XXH_RESTRICT secret, size_t secretSize, + XXH64_hash_t seed) +{ + XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; + XXH_ASSERT(16 < len && len <= 128); + + { XXH128_hash_t acc; + acc.low64 = len * XXH_PRIME64_1; + acc.high64 = 0; + +#if XXH_SIZE_OPT >= 1 + { + /* Smaller, but slightly slower. */ + unsigned int i = (unsigned int)(len - 1) / 32; + do { + acc = XXH128_mix32B(acc, input+16*i, input+len-16*(i+1), secret+32*i, seed); + } while (i-- != 0); + } +#else + if (len > 32) { + if (len > 64) { + if (len > 96) { + acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed); + } + acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed); + } + acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed); + } + acc = XXH128_mix32B(acc, input, input+len-16, secret, seed); +#endif + { XXH128_hash_t h128; + h128.low64 = acc.low64 + acc.high64; + h128.high64 = (acc.low64 * XXH_PRIME64_1) + + (acc.high64 * XXH_PRIME64_4) + + ((len - seed) * XXH_PRIME64_2); + h128.low64 = XXH3_avalanche(h128.low64); + h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); + return h128; + } + } +} + +XXH_NO_INLINE XXH_PUREF XXH128_hash_t +XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, + const xxh_u8* XXH_RESTRICT secret, size_t secretSize, + XXH64_hash_t seed) +{ + XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; + XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); + + { XXH128_hash_t acc; + unsigned i; + acc.low64 = len * XXH_PRIME64_1; + acc.high64 = 0; + /* + * We set as `i` as offset + 32. We do this so that unchanged + * `len` can be used as upper bound. This reaches a sweet spot + * where both x86 and aarch64 get simple agen and good codegen + * for the loop. + */ + for (i = 32; i < 160; i += 32) { + acc = XXH128_mix32B(acc, + input + i - 32, + input + i - 16, + secret + i - 32, + seed); + } + acc.low64 = XXH3_avalanche(acc.low64); + acc.high64 = XXH3_avalanche(acc.high64); + /* + * NB: `i <= len` will duplicate the last 32-bytes if + * len % 32 was zero. This is an unfortunate necessity to keep + * the hash result stable. + */ + for (i=160; i <= len; i += 32) { + acc = XXH128_mix32B(acc, + input + i - 32, + input + i - 16, + secret + XXH3_MIDSIZE_STARTOFFSET + i - 160, + seed); + } + /* last bytes */ + acc = XXH128_mix32B(acc, + input + len - 16, + input + len - 32, + secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, + (XXH64_hash_t)0 - seed); + + { XXH128_hash_t h128; + h128.low64 = acc.low64 + acc.high64; + h128.high64 = (acc.low64 * XXH_PRIME64_1) + + (acc.high64 * XXH_PRIME64_4) + + ((len - seed) * XXH_PRIME64_2); + h128.low64 = XXH3_avalanche(h128.low64); + h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); + return h128; + } + } +} + +XXH_FORCE_INLINE XXH128_hash_t +XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len, + const xxh_u8* XXH_RESTRICT secret, size_t secretSize, + XXH3_f_accumulate f_acc, + XXH3_f_scrambleAcc f_scramble) +{ + XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; + + XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc, f_scramble); + + /* converge into final hash */ + XXH_STATIC_ASSERT(sizeof(acc) == 64); + XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); + { XXH128_hash_t h128; + h128.low64 = XXH3_mergeAccs(acc, + secret + XXH_SECRET_MERGEACCS_START, + (xxh_u64)len * XXH_PRIME64_1); + h128.high64 = XXH3_mergeAccs(acc, + secret + secretSize + - sizeof(acc) - XXH_SECRET_MERGEACCS_START, + ~((xxh_u64)len * XXH_PRIME64_2)); + return h128; + } +} + +/* + * It's important for performance that XXH3_hashLong() is not inlined. + */ +XXH_NO_INLINE XXH_PUREF XXH128_hash_t +XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len, + XXH64_hash_t seed64, + const void* XXH_RESTRICT secret, size_t secretLen) +{ + (void)seed64; (void)secret; (void)secretLen; + return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), + XXH3_accumulate, XXH3_scrambleAcc); +} + +/* + * It's important for performance to pass @p secretLen (when it's static) + * to the compiler, so that it can properly optimize the vectorized loop. + * + * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE + * breaks -Og, this is XXH_NO_INLINE. + */ +XXH3_WITH_SECRET_INLINE XXH128_hash_t +XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len, + XXH64_hash_t seed64, + const void* XXH_RESTRICT secret, size_t secretLen) +{ + (void)seed64; + return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen, + XXH3_accumulate, XXH3_scrambleAcc); +} + +XXH_FORCE_INLINE XXH128_hash_t +XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len, + XXH64_hash_t seed64, + XXH3_f_accumulate f_acc, + XXH3_f_scrambleAcc f_scramble, + XXH3_f_initCustomSecret f_initSec) +{ + if (seed64 == 0) + return XXH3_hashLong_128b_internal(input, len, + XXH3_kSecret, sizeof(XXH3_kSecret), + f_acc, f_scramble); + { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; + f_initSec(secret, seed64); + return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret), + f_acc, f_scramble); + } +} + +/* + * It's important for performance that XXH3_hashLong is not inlined. + */ +XXH_NO_INLINE XXH128_hash_t +XXH3_hashLong_128b_withSeed(const void* input, size_t len, + XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen) +{ + (void)secret; (void)secretLen; + return XXH3_hashLong_128b_withSeed_internal(input, len, seed64, + XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret); +} + +typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t, + XXH64_hash_t, const void* XXH_RESTRICT, size_t); + +XXH_FORCE_INLINE XXH128_hash_t +XXH3_128bits_internal(const void* input, size_t len, + XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, + XXH3_hashLong128_f f_hl128) +{ + XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); + /* + * If an action is to be taken if `secret` conditions are not respected, + * it should be done here. + * For now, it's a contract pre-condition. + * Adding a check and a branch here would cost performance at every hash. + */ + if (len <= 16) + return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); + if (len <= 128) + return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); + if (len <= XXH3_MIDSIZE_MAX) + return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); + return f_hl128(input, len, seed64, secret, secretLen); +} + + +/* === Public XXH128 API === */ + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* input, size_t len) +{ + return XXH3_128bits_internal(input, len, 0, + XXH3_kSecret, sizeof(XXH3_kSecret), + XXH3_hashLong_128b_default); +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH128_hash_t +XXH3_128bits_withSecret(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize) +{ + return XXH3_128bits_internal(input, len, 0, + (const xxh_u8*)secret, secretSize, + XXH3_hashLong_128b_withSecret); +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH128_hash_t +XXH3_128bits_withSeed(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed) +{ + return XXH3_128bits_internal(input, len, seed, + XXH3_kSecret, sizeof(XXH3_kSecret), + XXH3_hashLong_128b_withSeed); +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH128_hash_t +XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) +{ + if (len <= XXH3_MIDSIZE_MAX) + return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); + return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize); +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH128_hash_t +XXH128(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed) +{ + return XXH3_128bits_withSeed(input, len, seed); +} + + +/* === XXH3 128-bit streaming === */ +#ifndef XXH_NO_STREAM +/* + * All initialization and update functions are identical to 64-bit streaming variant. + * The only difference is the finalization routine. + */ + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH_errorcode +XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr) +{ + return XXH3_64bits_reset(statePtr); +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH_errorcode +XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize) +{ + return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize); +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH_errorcode +XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed) +{ + return XXH3_64bits_reset_withSeed(statePtr, seed); +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH_errorcode +XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) +{ + return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed); +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH_errorcode +XXH3_128bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len) +{ + return XXH3_64bits_update(state, input, len); +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* state) +{ + const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; + if (state->totalLen > XXH3_MIDSIZE_MAX) { + XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; + XXH3_digest_long(acc, state, secret); + XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); + { XXH128_hash_t h128; + h128.low64 = XXH3_mergeAccs(acc, + secret + XXH_SECRET_MERGEACCS_START, + (xxh_u64)state->totalLen * XXH_PRIME64_1); + h128.high64 = XXH3_mergeAccs(acc, + secret + state->secretLimit + XXH_STRIPE_LEN + - sizeof(acc) - XXH_SECRET_MERGEACCS_START, + ~((xxh_u64)state->totalLen * XXH_PRIME64_2)); + return h128; + } + } + /* len <= XXH3_MIDSIZE_MAX : short code */ + if (state->seed) + return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); + return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), + secret, state->secretLimit + XXH_STRIPE_LEN); +} +#endif /* !XXH_NO_STREAM */ +/* 128-bit utility functions */ + +/* return : 1 is equal, 0 if different */ +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) +{ + /* note : XXH128_hash_t is compact, it has no padding byte */ + return !(memcmp(&h1, &h2, sizeof(h1))); +} + +/* This prototype is compatible with stdlib's qsort(). + * @return : >0 if *h128_1 > *h128_2 + * <0 if *h128_1 < *h128_2 + * =0 if *h128_1 == *h128_2 */ +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2) +{ + XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1; + XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2; + int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64); + /* note : bets that, in most cases, hash values are different */ + if (hcmp) return hcmp; + return (h1.low64 > h2.low64) - (h2.low64 > h1.low64); +} + + +/*====== Canonical representation ======*/ +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API void +XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash) +{ + XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t)); + if (XXH_CPU_LITTLE_ENDIAN) { + hash.high64 = XXH_swap64(hash.high64); + hash.low64 = XXH_swap64(hash.low64); + } + XXH_memcpy(dst, &hash.high64, sizeof(hash.high64)); + XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64)); +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH128_hash_t +XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src) +{ + XXH128_hash_t h; + h.high64 = XXH_readBE64(src); + h.low64 = XXH_readBE64(src->digest + 8); + return h; +} + + + +/* ========================================== + * Secret generators + * ========================================== + */ +#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x)) + +XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128) +{ + XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 ); + XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 ); +} + +/*! @ingroup XXH3_family */ +XXH_PUBLIC_API XXH_errorcode +XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize) +{ +#if (XXH_DEBUGLEVEL >= 1) + XXH_ASSERT(secretBuffer != NULL); + XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); +#else + /* production mode, assert() are disabled */ + if (secretBuffer == NULL) return XXH_ERROR; + if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; +#endif + + if (customSeedSize == 0) { + customSeed = XXH3_kSecret; + customSeedSize = XXH_SECRET_DEFAULT_SIZE; + } +#if (XXH_DEBUGLEVEL >= 1) + XXH_ASSERT(customSeed != NULL); +#else + if (customSeed == NULL) return XXH_ERROR; +#endif + + /* Fill secretBuffer with a copy of customSeed - repeat as needed */ + { size_t pos = 0; + while (pos < secretSize) { + size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize); + memcpy((char*)secretBuffer + pos, customSeed, toCopy); + pos += toCopy; + } } + + { size_t const nbSeg16 = secretSize / 16; + size_t n; + XXH128_canonical_t scrambler; + XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0)); + for (n=0; n +#include +#include + +#if defined(__GNUC__) && __GNUC__ >= 4 +# define ZSTD_memcpy(d,s,l) __builtin_memcpy((d),(s),(l)) +# define ZSTD_memmove(d,s,l) __builtin_memmove((d),(s),(l)) +# define ZSTD_memset(p,v,l) __builtin_memset((p),(v),(l)) +#else +# define ZSTD_memcpy(d,s,l) memcpy((d),(s),(l)) +# define ZSTD_memmove(d,s,l) memmove((d),(s),(l)) +# define ZSTD_memset(p,v,l) memset((p),(v),(l)) +#endif + +#endif /* ZSTD_DEPS_COMMON */ + +/* Need: + * ZSTD_malloc() + * ZSTD_free() + * ZSTD_calloc() + */ +#ifdef ZSTD_DEPS_NEED_MALLOC +#ifndef ZSTD_DEPS_MALLOC +#define ZSTD_DEPS_MALLOC + +#include + +#define ZSTD_malloc(s) malloc(s) +#define ZSTD_calloc(n,s) calloc((n), (s)) +#define ZSTD_free(p) free((p)) + +#endif /* ZSTD_DEPS_MALLOC */ +#endif /* ZSTD_DEPS_NEED_MALLOC */ + +/* + * Provides 64-bit math support. + * Need: + * U64 ZSTD_div64(U64 dividend, U32 divisor) + */ +#ifdef ZSTD_DEPS_NEED_MATH64 +#ifndef ZSTD_DEPS_MATH64 +#define ZSTD_DEPS_MATH64 + +#define ZSTD_div64(dividend, divisor) ((dividend) / (divisor)) + +#endif /* ZSTD_DEPS_MATH64 */ +#endif /* ZSTD_DEPS_NEED_MATH64 */ + +/* Need: + * assert() + */ +#ifdef ZSTD_DEPS_NEED_ASSERT +#ifndef ZSTD_DEPS_ASSERT +#define ZSTD_DEPS_ASSERT + +#include + +#endif /* ZSTD_DEPS_ASSERT */ +#endif /* ZSTD_DEPS_NEED_ASSERT */ + +/* Need: + * ZSTD_DEBUG_PRINT() + */ +#ifdef ZSTD_DEPS_NEED_IO +#ifndef ZSTD_DEPS_IO +#define ZSTD_DEPS_IO + +#include +#define ZSTD_DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__) + +#endif /* ZSTD_DEPS_IO */ +#endif /* ZSTD_DEPS_NEED_IO */ + +/* Only requested when is known to be present. + * Need: + * intptr_t + */ +#ifdef ZSTD_DEPS_NEED_STDINT +#ifndef ZSTD_DEPS_STDINT +#define ZSTD_DEPS_STDINT + +#include + +#endif /* ZSTD_DEPS_STDINT */ +#endif /* ZSTD_DEPS_NEED_STDINT */ diff --git a/src/third-party/zstd/common/zstd_internal.h b/src/third-party/zstd/common/zstd_internal.h new file mode 100644 index 0000000000000..2789a359122ca --- /dev/null +++ b/src/third-party/zstd/common/zstd_internal.h @@ -0,0 +1,324 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_CCOMMON_H_MODULE +#define ZSTD_CCOMMON_H_MODULE + +/* this module contains definitions which must be identical + * across compression, decompression and dictBuilder. + * It also contains a few functions useful to at least 2 of them + * and which benefit from being inlined */ + +/*-************************************* +* Dependencies +***************************************/ +#include "compiler.h" +#include "cpu.h" +#include "mem.h" +#include "debug.h" /* assert, DEBUGLOG, RAWLOG, g_debuglevel */ +#include "error_private.h" +#define ZSTD_STATIC_LINKING_ONLY +#include "../zstd.h" +#define FSE_STATIC_LINKING_ONLY +#include "fse.h" +#include "huf.h" +#ifndef XXH_STATIC_LINKING_ONLY +# define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */ +#endif +#include "xxhash.h" /* XXH_reset, update, digest */ +#ifndef ZSTD_NO_TRACE +# include "zstd_trace.h" +#else +# define ZSTD_TRACE 0 +#endif + +/* ---- static assert (debug) --- */ +#define ZSTD_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) +#define ZSTD_isError ERR_isError /* for inlining */ +#define FSE_isError ERR_isError +#define HUF_isError ERR_isError + + +/*-************************************* +* shared macros +***************************************/ +#undef MIN +#undef MAX +#define MIN(a,b) ((a)<(b) ? (a) : (b)) +#define MAX(a,b) ((a)>(b) ? (a) : (b)) +#define BOUNDED(min,val,max) (MAX(min,MIN(val,max))) + + +/*-************************************* +* Common constants +***************************************/ +#define ZSTD_OPT_NUM (1<<12) + +#define ZSTD_REP_NUM 3 /* number of repcodes */ +static UNUSED_ATTR const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 }; + +#define KB *(1 <<10) +#define MB *(1 <<20) +#define GB *(1U<<30) + +#define BIT7 128 +#define BIT6 64 +#define BIT5 32 +#define BIT4 16 +#define BIT1 2 +#define BIT0 1 + +#define ZSTD_WINDOWLOG_ABSOLUTEMIN 10 +static UNUSED_ATTR const size_t ZSTD_fcs_fieldSize[4] = { 0, 2, 4, 8 }; +static UNUSED_ATTR const size_t ZSTD_did_fieldSize[4] = { 0, 1, 2, 4 }; + +#define ZSTD_FRAMEIDSIZE 4 /* magic number size */ + +#define ZSTD_BLOCKHEADERSIZE 3 /* C standard doesn't allow `static const` variable to be init using another `static const` variable */ +static UNUSED_ATTR const size_t ZSTD_blockHeaderSize = ZSTD_BLOCKHEADERSIZE; +typedef enum { bt_raw, bt_rle, bt_compressed, bt_reserved } blockType_e; + +#define ZSTD_FRAMECHECKSUMSIZE 4 + +#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */ +#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */) /* for a non-null block */ +#define MIN_LITERALS_FOR_4_STREAMS 6 + +typedef enum { set_basic, set_rle, set_compressed, set_repeat } SymbolEncodingType_e; + +#define LONGNBSEQ 0x7F00 + +#define MINMATCH 3 + +#define Litbits 8 +#define LitHufLog 11 +#define MaxLit ((1<= WILDCOPY_VECLEN || diff <= -WILDCOPY_VECLEN); + /* Separate out the first COPY16() call because the copy length is + * almost certain to be short, so the branches have different + * probabilities. Since it is almost certain to be short, only do + * one COPY16() in the first call. Then, do two calls per loop since + * at that point it is more likely to have a high trip count. + */ + ZSTD_copy16(op, ip); + if (16 >= length) return; + op += 16; + ip += 16; + do { + COPY16(op, ip); + COPY16(op, ip); + } + while (op < oend); + } +} + +MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize) +{ + size_t const length = MIN(dstCapacity, srcSize); + if (length > 0) { + ZSTD_memcpy(dst, src, length); + } + return length; +} + +/* define "workspace is too large" as this number of times larger than needed */ +#define ZSTD_WORKSPACETOOLARGE_FACTOR 3 + +/* when workspace is continuously too large + * during at least this number of times, + * context's memory usage is considered wasteful, + * because it's sized to handle a worst case scenario which rarely happens. + * In which case, resize it down to free some memory */ +#define ZSTD_WORKSPACETOOLARGE_MAXDURATION 128 + +/* Controls whether the input/output buffer is buffered or stable. */ +typedef enum { + ZSTD_bm_buffered = 0, /* Buffer the input/output */ + ZSTD_bm_stable = 1 /* ZSTD_inBuffer/ZSTD_outBuffer is stable */ +} ZSTD_bufferMode_e; + + +/*-******************************************* +* Private declarations +*********************************************/ + +/** + * Contains the compressed frame size and an upper-bound for the decompressed frame size. + * Note: before using `compressedSize`, check for errors using ZSTD_isError(). + * similarly, before using `decompressedBound`, check for errors using: + * `decompressedBound != ZSTD_CONTENTSIZE_ERROR` + */ +typedef struct { + size_t nbBlocks; + size_t compressedSize; + unsigned long long decompressedBound; +} ZSTD_frameSizeInfo; /* decompress & legacy */ + +/* ZSTD_invalidateRepCodes() : + * ensures next compression will not use repcodes from previous block. + * Note : only works with regular variant; + * do not use with extDict variant ! */ +void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx); /* zstdmt, adaptive_compression (shouldn't get this definition from here) */ + + +typedef struct { + blockType_e blockType; + U32 lastBlock; + U32 origSize; +} blockProperties_t; /* declared here for decompress and fullbench */ + +/*! ZSTD_getcBlockSize() : + * Provides the size of compressed block from block header `src` */ +/* Used by: decompress, fullbench */ +size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, + blockProperties_t* bpPtr); + +/*! ZSTD_decodeSeqHeaders() : + * decode sequence header from src */ +/* Used by: zstd_decompress_block, fullbench */ +size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr, + const void* src, size_t srcSize); + +/** + * @returns true iff the CPU supports dynamic BMI2 dispatch. + */ +MEM_STATIC int ZSTD_cpuSupportsBmi2(void) +{ + ZSTD_cpuid_t cpuid = ZSTD_cpuid(); + return ZSTD_cpuid_bmi1(cpuid) && ZSTD_cpuid_bmi2(cpuid); +} + +#endif /* ZSTD_CCOMMON_H_MODULE */ diff --git a/src/third-party/zstd/common/zstd_trace.h b/src/third-party/zstd/common/zstd_trace.h new file mode 100644 index 0000000000000..d8eec100758fa --- /dev/null +++ b/src/third-party/zstd/common/zstd_trace.h @@ -0,0 +1,156 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_TRACE_H +#define ZSTD_TRACE_H + +#include + +/* weak symbol support + * For now, enable conservatively: + * - Only GNUC + * - Only ELF + * - Only x86-64, i386, aarch64 and risc-v. + * Also, explicitly disable on platforms known not to work so they aren't + * forgotten in the future. + */ +#if !defined(ZSTD_HAVE_WEAK_SYMBOLS) && \ + defined(__GNUC__) && defined(__ELF__) && \ + (defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || \ + defined(_M_IX86) || defined(__aarch64__) || defined(__riscv)) && \ + !defined(__APPLE__) && !defined(_WIN32) && !defined(__MINGW32__) && \ + !defined(__CYGWIN__) && !defined(_AIX) +# define ZSTD_HAVE_WEAK_SYMBOLS 1 +#else +# define ZSTD_HAVE_WEAK_SYMBOLS 0 +#endif +#if ZSTD_HAVE_WEAK_SYMBOLS +# define ZSTD_WEAK_ATTR __attribute__((__weak__)) +#else +# define ZSTD_WEAK_ATTR +#endif + +/* Only enable tracing when weak symbols are available. */ +#ifndef ZSTD_TRACE +# define ZSTD_TRACE ZSTD_HAVE_WEAK_SYMBOLS +#endif + +#if ZSTD_TRACE + +struct ZSTD_CCtx_s; +struct ZSTD_DCtx_s; +struct ZSTD_CCtx_params_s; + +typedef struct { + /** + * ZSTD_VERSION_NUMBER + * + * This is guaranteed to be the first member of ZSTD_trace. + * Otherwise, this struct is not stable between versions. If + * the version number does not match your expectation, you + * should not interpret the rest of the struct. + */ + unsigned version; + /** + * Non-zero if streaming (de)compression is used. + */ + int streaming; + /** + * The dictionary ID. + */ + unsigned dictionaryID; + /** + * Is the dictionary cold? + * Only set on decompression. + */ + int dictionaryIsCold; + /** + * The dictionary size or zero if no dictionary. + */ + size_t dictionarySize; + /** + * The uncompressed size of the data. + */ + size_t uncompressedSize; + /** + * The compressed size of the data. + */ + size_t compressedSize; + /** + * The fully resolved CCtx parameters (NULL on decompression). + */ + struct ZSTD_CCtx_params_s const* params; + /** + * The ZSTD_CCtx pointer (NULL on decompression). + */ + struct ZSTD_CCtx_s const* cctx; + /** + * The ZSTD_DCtx pointer (NULL on compression). + */ + struct ZSTD_DCtx_s const* dctx; +} ZSTD_Trace; + +/** + * A tracing context. It must be 0 when tracing is disabled. + * Otherwise, any non-zero value returned by a tracing begin() + * function is presented to any subsequent calls to end(). + * + * Any non-zero value is treated as tracing is enabled and not + * interpreted by the library. + * + * Two possible uses are: + * * A timestamp for when the begin() function was called. + * * A unique key identifying the (de)compression, like the + * address of the [dc]ctx pointer if you need to track + * more information than just a timestamp. + */ +typedef unsigned long long ZSTD_TraceCtx; + +/** + * Trace the beginning of a compression call. + * @param cctx The dctx pointer for the compression. + * It can be used as a key to map begin() to end(). + * @returns Non-zero if tracing is enabled. The return value is + * passed to ZSTD_trace_compress_end(). + */ +ZSTD_WEAK_ATTR ZSTD_TraceCtx ZSTD_trace_compress_begin( + struct ZSTD_CCtx_s const* cctx); + +/** + * Trace the end of a compression call. + * @param ctx The return value of ZSTD_trace_compress_begin(). + * @param trace The zstd tracing info. + */ +ZSTD_WEAK_ATTR void ZSTD_trace_compress_end( + ZSTD_TraceCtx ctx, + ZSTD_Trace const* trace); + +/** + * Trace the beginning of a decompression call. + * @param dctx The dctx pointer for the decompression. + * It can be used as a key to map begin() to end(). + * @returns Non-zero if tracing is enabled. The return value is + * passed to ZSTD_trace_compress_end(). + */ +ZSTD_WEAK_ATTR ZSTD_TraceCtx ZSTD_trace_decompress_begin( + struct ZSTD_DCtx_s const* dctx); + +/** + * Trace the end of a decompression call. + * @param ctx The return value of ZSTD_trace_decompress_begin(). + * @param trace The zstd tracing info. + */ +ZSTD_WEAK_ATTR void ZSTD_trace_decompress_end( + ZSTD_TraceCtx ctx, + ZSTD_Trace const* trace); + +#endif /* ZSTD_TRACE */ + +#endif /* ZSTD_TRACE_H */ diff --git a/src/third-party/zstd/compress/clevels.h b/src/third-party/zstd/compress/clevels.h new file mode 100644 index 0000000000000..c18da465f3211 --- /dev/null +++ b/src/third-party/zstd/compress/clevels.h @@ -0,0 +1,134 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_CLEVELS_H +#define ZSTD_CLEVELS_H + +#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_compressionParameters */ +#include "../zstd.h" + +/*-===== Pre-defined compression levels =====-*/ + +#define ZSTD_MAX_CLEVEL 22 + +#ifdef __GNUC__ +__attribute__((__unused__)) +#endif + +static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL+1] = { +{ /* "default" - for any srcSize > 256 KB */ + /* W, C, H, S, L, TL, strat */ + { 19, 12, 13, 1, 6, 1, ZSTD_fast }, /* base for negative levels */ + { 19, 13, 14, 1, 7, 0, ZSTD_fast }, /* level 1 */ + { 20, 15, 16, 1, 6, 0, ZSTD_fast }, /* level 2 */ + { 21, 16, 17, 1, 5, 0, ZSTD_dfast }, /* level 3 */ + { 21, 18, 18, 1, 5, 0, ZSTD_dfast }, /* level 4 */ + { 21, 18, 19, 3, 5, 2, ZSTD_greedy }, /* level 5 */ + { 21, 18, 19, 3, 5, 4, ZSTD_lazy }, /* level 6 */ + { 21, 19, 20, 4, 5, 8, ZSTD_lazy }, /* level 7 */ + { 21, 19, 20, 4, 5, 16, ZSTD_lazy2 }, /* level 8 */ + { 22, 20, 21, 4, 5, 16, ZSTD_lazy2 }, /* level 9 */ + { 22, 21, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 10 */ + { 22, 21, 22, 6, 5, 16, ZSTD_lazy2 }, /* level 11 */ + { 22, 22, 23, 6, 5, 32, ZSTD_lazy2 }, /* level 12 */ + { 22, 22, 22, 4, 5, 32, ZSTD_btlazy2 }, /* level 13 */ + { 22, 22, 23, 5, 5, 32, ZSTD_btlazy2 }, /* level 14 */ + { 22, 23, 23, 6, 5, 32, ZSTD_btlazy2 }, /* level 15 */ + { 22, 22, 22, 5, 5, 48, ZSTD_btopt }, /* level 16 */ + { 23, 23, 22, 5, 4, 64, ZSTD_btopt }, /* level 17 */ + { 23, 23, 22, 6, 3, 64, ZSTD_btultra }, /* level 18 */ + { 23, 24, 22, 7, 3,256, ZSTD_btultra2}, /* level 19 */ + { 25, 25, 23, 7, 3,256, ZSTD_btultra2}, /* level 20 */ + { 26, 26, 24, 7, 3,512, ZSTD_btultra2}, /* level 21 */ + { 27, 27, 25, 9, 3,999, ZSTD_btultra2}, /* level 22 */ +}, +{ /* for srcSize <= 256 KB */ + /* W, C, H, S, L, T, strat */ + { 18, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */ + { 18, 13, 14, 1, 6, 0, ZSTD_fast }, /* level 1 */ + { 18, 14, 14, 1, 5, 0, ZSTD_dfast }, /* level 2 */ + { 18, 16, 16, 1, 4, 0, ZSTD_dfast }, /* level 3 */ + { 18, 16, 17, 3, 5, 2, ZSTD_greedy }, /* level 4.*/ + { 18, 17, 18, 5, 5, 2, ZSTD_greedy }, /* level 5.*/ + { 18, 18, 19, 3, 5, 4, ZSTD_lazy }, /* level 6.*/ + { 18, 18, 19, 4, 4, 4, ZSTD_lazy }, /* level 7 */ + { 18, 18, 19, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */ + { 18, 18, 19, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */ + { 18, 18, 19, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */ + { 18, 18, 19, 5, 4, 12, ZSTD_btlazy2 }, /* level 11.*/ + { 18, 19, 19, 7, 4, 12, ZSTD_btlazy2 }, /* level 12.*/ + { 18, 18, 19, 4, 4, 16, ZSTD_btopt }, /* level 13 */ + { 18, 18, 19, 4, 3, 32, ZSTD_btopt }, /* level 14.*/ + { 18, 18, 19, 6, 3,128, ZSTD_btopt }, /* level 15.*/ + { 18, 19, 19, 6, 3,128, ZSTD_btultra }, /* level 16.*/ + { 18, 19, 19, 8, 3,256, ZSTD_btultra }, /* level 17.*/ + { 18, 19, 19, 6, 3,128, ZSTD_btultra2}, /* level 18.*/ + { 18, 19, 19, 8, 3,256, ZSTD_btultra2}, /* level 19.*/ + { 18, 19, 19, 10, 3,512, ZSTD_btultra2}, /* level 20.*/ + { 18, 19, 19, 12, 3,512, ZSTD_btultra2}, /* level 21.*/ + { 18, 19, 19, 13, 3,999, ZSTD_btultra2}, /* level 22.*/ +}, +{ /* for srcSize <= 128 KB */ + /* W, C, H, S, L, T, strat */ + { 17, 12, 12, 1, 5, 1, ZSTD_fast }, /* base for negative levels */ + { 17, 12, 13, 1, 6, 0, ZSTD_fast }, /* level 1 */ + { 17, 13, 15, 1, 5, 0, ZSTD_fast }, /* level 2 */ + { 17, 15, 16, 2, 5, 0, ZSTD_dfast }, /* level 3 */ + { 17, 17, 17, 2, 4, 0, ZSTD_dfast }, /* level 4 */ + { 17, 16, 17, 3, 4, 2, ZSTD_greedy }, /* level 5 */ + { 17, 16, 17, 3, 4, 4, ZSTD_lazy }, /* level 6 */ + { 17, 16, 17, 3, 4, 8, ZSTD_lazy2 }, /* level 7 */ + { 17, 16, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */ + { 17, 16, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */ + { 17, 16, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */ + { 17, 17, 17, 5, 4, 8, ZSTD_btlazy2 }, /* level 11 */ + { 17, 18, 17, 7, 4, 12, ZSTD_btlazy2 }, /* level 12 */ + { 17, 18, 17, 3, 4, 12, ZSTD_btopt }, /* level 13.*/ + { 17, 18, 17, 4, 3, 32, ZSTD_btopt }, /* level 14.*/ + { 17, 18, 17, 6, 3,256, ZSTD_btopt }, /* level 15.*/ + { 17, 18, 17, 6, 3,128, ZSTD_btultra }, /* level 16.*/ + { 17, 18, 17, 8, 3,256, ZSTD_btultra }, /* level 17.*/ + { 17, 18, 17, 10, 3,512, ZSTD_btultra }, /* level 18.*/ + { 17, 18, 17, 5, 3,256, ZSTD_btultra2}, /* level 19.*/ + { 17, 18, 17, 7, 3,512, ZSTD_btultra2}, /* level 20.*/ + { 17, 18, 17, 9, 3,512, ZSTD_btultra2}, /* level 21.*/ + { 17, 18, 17, 11, 3,999, ZSTD_btultra2}, /* level 22.*/ +}, +{ /* for srcSize <= 16 KB */ + /* W, C, H, S, L, T, strat */ + { 14, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */ + { 14, 14, 15, 1, 5, 0, ZSTD_fast }, /* level 1 */ + { 14, 14, 15, 1, 4, 0, ZSTD_fast }, /* level 2 */ + { 14, 14, 15, 2, 4, 0, ZSTD_dfast }, /* level 3 */ + { 14, 14, 14, 4, 4, 2, ZSTD_greedy }, /* level 4 */ + { 14, 14, 14, 3, 4, 4, ZSTD_lazy }, /* level 5.*/ + { 14, 14, 14, 4, 4, 8, ZSTD_lazy2 }, /* level 6 */ + { 14, 14, 14, 6, 4, 8, ZSTD_lazy2 }, /* level 7 */ + { 14, 14, 14, 8, 4, 8, ZSTD_lazy2 }, /* level 8.*/ + { 14, 15, 14, 5, 4, 8, ZSTD_btlazy2 }, /* level 9.*/ + { 14, 15, 14, 9, 4, 8, ZSTD_btlazy2 }, /* level 10.*/ + { 14, 15, 14, 3, 4, 12, ZSTD_btopt }, /* level 11.*/ + { 14, 15, 14, 4, 3, 24, ZSTD_btopt }, /* level 12.*/ + { 14, 15, 14, 5, 3, 32, ZSTD_btultra }, /* level 13.*/ + { 14, 15, 15, 6, 3, 64, ZSTD_btultra }, /* level 14.*/ + { 14, 15, 15, 7, 3,256, ZSTD_btultra }, /* level 15.*/ + { 14, 15, 15, 5, 3, 48, ZSTD_btultra2}, /* level 16.*/ + { 14, 15, 15, 6, 3,128, ZSTD_btultra2}, /* level 17.*/ + { 14, 15, 15, 7, 3,256, ZSTD_btultra2}, /* level 18.*/ + { 14, 15, 15, 8, 3,256, ZSTD_btultra2}, /* level 19.*/ + { 14, 15, 15, 8, 3,512, ZSTD_btultra2}, /* level 20.*/ + { 14, 15, 15, 9, 3,512, ZSTD_btultra2}, /* level 21.*/ + { 14, 15, 15, 10, 3,999, ZSTD_btultra2}, /* level 22.*/ +}, +}; + + + +#endif /* ZSTD_CLEVELS_H */ diff --git a/src/third-party/zstd/compress/fse_compress.c b/src/third-party/zstd/compress/fse_compress.c new file mode 100644 index 0000000000000..1ce3cf16ac10c --- /dev/null +++ b/src/third-party/zstd/compress/fse_compress.c @@ -0,0 +1,625 @@ +/* ****************************************************************** + * FSE : Finite State Entropy encoder + * Copyright (c) Meta Platforms, Inc. and affiliates. + * + * You can contact the author at : + * - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy + * - Public forum : https://groups.google.com/forum/#!forum/lz4c + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. +****************************************************************** */ + +/* ************************************************************** +* Includes +****************************************************************/ +#include "../common/compiler.h" +#include "../common/mem.h" /* U32, U16, etc. */ +#include "../common/debug.h" /* assert, DEBUGLOG */ +#include "hist.h" /* HIST_count_wksp */ +#include "../common/bitstream.h" +#define FSE_STATIC_LINKING_ONLY +#include "../common/fse.h" +#include "../common/error_private.h" +#define ZSTD_DEPS_NEED_MALLOC +#define ZSTD_DEPS_NEED_MATH64 +#include "../common/zstd_deps.h" /* ZSTD_memset */ +#include "../common/bits.h" /* ZSTD_highbit32 */ + + +/* ************************************************************** +* Error Management +****************************************************************/ +#define FSE_isError ERR_isError + + +/* ************************************************************** +* Templates +****************************************************************/ +/* + designed to be included + for type-specific functions (template emulation in C) + Objective is to write these functions only once, for improved maintenance +*/ + +/* safety checks */ +#ifndef FSE_FUNCTION_EXTENSION +# error "FSE_FUNCTION_EXTENSION must be defined" +#endif +#ifndef FSE_FUNCTION_TYPE +# error "FSE_FUNCTION_TYPE must be defined" +#endif + +/* Function names */ +#define FSE_CAT(X,Y) X##Y +#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y) +#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y) + + +/* Function templates */ + +/* FSE_buildCTable_wksp() : + * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`). + * wkspSize should be sized to handle worst case situation, which is `1<>1 : 1) ; + FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT); + U32 const step = FSE_TABLESTEP(tableSize); + U32 const maxSV1 = maxSymbolValue+1; + + U16* cumul = (U16*)workSpace; /* size = maxSV1 */ + FSE_FUNCTION_TYPE* const tableSymbol = (FSE_FUNCTION_TYPE*)(cumul + (maxSV1+1)); /* size = tableSize */ + + U32 highThreshold = tableSize-1; + + assert(((size_t)workSpace & 1) == 0); /* Must be 2 bytes-aligned */ + if (FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) > wkspSize) return ERROR(tableLog_tooLarge); + /* CTable header */ + tableU16[-2] = (U16) tableLog; + tableU16[-1] = (U16) maxSymbolValue; + assert(tableLog < 16); /* required for threshold strategy to work */ + + /* For explanations on how to distribute symbol values over the table : + * https://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */ + + #ifdef __clang_analyzer__ + ZSTD_memset(tableSymbol, 0, sizeof(*tableSymbol) * tableSize); /* useless initialization, just to keep scan-build happy */ + #endif + + /* symbol start positions */ + { U32 u; + cumul[0] = 0; + for (u=1; u <= maxSV1; u++) { + if (normalizedCounter[u-1]==-1) { /* Low proba symbol */ + cumul[u] = cumul[u-1] + 1; + tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u-1); + } else { + assert(normalizedCounter[u-1] >= 0); + cumul[u] = cumul[u-1] + (U16)normalizedCounter[u-1]; + assert(cumul[u] >= cumul[u-1]); /* no overflow */ + } } + cumul[maxSV1] = (U16)(tableSize+1); + } + + /* Spread symbols */ + if (highThreshold == tableSize - 1) { + /* Case for no low prob count symbols. Lay down 8 bytes at a time + * to reduce branch misses since we are operating on a small block + */ + BYTE* const spread = tableSymbol + tableSize; /* size = tableSize + 8 (may write beyond tableSize) */ + { U64 const add = 0x0101010101010101ull; + size_t pos = 0; + U64 sv = 0; + U32 s; + for (s=0; s=0); + pos += (size_t)n; + } + } + /* Spread symbols across the table. Lack of lowprob symbols means that + * we don't need variable sized inner loop, so we can unroll the loop and + * reduce branch misses. + */ + { size_t position = 0; + size_t s; + size_t const unroll = 2; /* Experimentally determined optimal unroll */ + assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */ + for (s = 0; s < (size_t)tableSize; s += unroll) { + size_t u; + for (u = 0; u < unroll; ++u) { + size_t const uPosition = (position + (u * step)) & tableMask; + tableSymbol[uPosition] = spread[s + u]; + } + position = (position + (unroll * step)) & tableMask; + } + assert(position == 0); /* Must have initialized all positions */ + } + } else { + U32 position = 0; + U32 symbol; + for (symbol=0; symbol highThreshold) + position = (position + step) & tableMask; /* Low proba area */ + } } + assert(position==0); /* Must have initialized all positions */ + } + + /* Build table */ + { U32 u; for (u=0; u 1); + { U32 const maxBitsOut = tableLog - ZSTD_highbit32 ((U32)normalizedCounter[s]-1); + U32 const minStatePlus = (U32)normalizedCounter[s] << maxBitsOut; + symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus; + symbolTT[s].deltaFindState = (int)(total - (unsigned)normalizedCounter[s]); + total += (unsigned)normalizedCounter[s]; + } } } } + +#if 0 /* debug : symbol costs */ + DEBUGLOG(5, "\n --- table statistics : "); + { U32 symbol; + for (symbol=0; symbol<=maxSymbolValue; symbol++) { + DEBUGLOG(5, "%3u: w=%3i, maxBits=%u, fracBits=%.2f", + symbol, normalizedCounter[symbol], + FSE_getMaxNbBits(symbolTT, symbol), + (double)FSE_bitCost(symbolTT, tableLog, symbol, 8) / 256); + } } +#endif + + return 0; +} + + + +#ifndef FSE_COMMONDEFS_ONLY + +/*-************************************************************** +* FSE NCount encoding +****************************************************************/ +size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog) +{ + size_t const maxHeaderSize = (((maxSymbolValue+1) * tableLog + + 4 /* bitCount initialized at 4 */ + + 2 /* first two symbols may use one additional bit each */) / 8) + + 1 /* round up to whole nb bytes */ + + 2 /* additional two bytes for bitstream flush */; + return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */ +} + +static size_t +FSE_writeNCount_generic (void* header, size_t headerBufferSize, + const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, + unsigned writeIsSafe) +{ + BYTE* const ostart = (BYTE*) header; + BYTE* out = ostart; + BYTE* const oend = ostart + headerBufferSize; + int nbBits; + const int tableSize = 1 << tableLog; + int remaining; + int threshold; + U32 bitStream = 0; + int bitCount = 0; + unsigned symbol = 0; + unsigned const alphabetSize = maxSymbolValue + 1; + int previousIs0 = 0; + + /* Table Size */ + bitStream += (tableLog-FSE_MIN_TABLELOG) << bitCount; + bitCount += 4; + + /* Init */ + remaining = tableSize+1; /* +1 for extra accuracy */ + threshold = tableSize; + nbBits = (int)tableLog+1; + + while ((symbol < alphabetSize) && (remaining>1)) { /* stops at 1 */ + if (previousIs0) { + unsigned start = symbol; + while ((symbol < alphabetSize) && !normalizedCounter[symbol]) symbol++; + if (symbol == alphabetSize) break; /* incorrect distribution */ + while (symbol >= start+24) { + start+=24; + bitStream += 0xFFFFU << bitCount; + if ((!writeIsSafe) && (out > oend-2)) + return ERROR(dstSize_tooSmall); /* Buffer overflow */ + out[0] = (BYTE) bitStream; + out[1] = (BYTE)(bitStream>>8); + out+=2; + bitStream>>=16; + } + while (symbol >= start+3) { + start+=3; + bitStream += 3U << bitCount; + bitCount += 2; + } + bitStream += (symbol-start) << bitCount; + bitCount += 2; + if (bitCount>16) { + if ((!writeIsSafe) && (out > oend - 2)) + return ERROR(dstSize_tooSmall); /* Buffer overflow */ + out[0] = (BYTE)bitStream; + out[1] = (BYTE)(bitStream>>8); + out += 2; + bitStream >>= 16; + bitCount -= 16; + } } + { int count = normalizedCounter[symbol++]; + int const max = (2*threshold-1) - remaining; + remaining -= count < 0 ? -count : count; + count++; /* +1 for extra accuracy */ + if (count>=threshold) + count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */ + bitStream += (U32)count << bitCount; + bitCount += nbBits; + bitCount -= (count>=1; } + } + if (bitCount>16) { + if ((!writeIsSafe) && (out > oend - 2)) + return ERROR(dstSize_tooSmall); /* Buffer overflow */ + out[0] = (BYTE)bitStream; + out[1] = (BYTE)(bitStream>>8); + out += 2; + bitStream >>= 16; + bitCount -= 16; + } } + + if (remaining != 1) + return ERROR(GENERIC); /* incorrect normalized distribution */ + assert(symbol <= alphabetSize); + + /* flush remaining bitStream */ + if ((!writeIsSafe) && (out > oend - 2)) + return ERROR(dstSize_tooSmall); /* Buffer overflow */ + out[0] = (BYTE)bitStream; + out[1] = (BYTE)(bitStream>>8); + out+= (bitCount+7) /8; + + assert(out >= ostart); + return (size_t)(out-ostart); +} + + +size_t FSE_writeNCount (void* buffer, size_t bufferSize, + const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog) +{ + if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported */ + if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported */ + + if (bufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog)) + return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 0); + + return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1 /* write in buffer is safe */); +} + + +/*-************************************************************** +* FSE Compression Code +****************************************************************/ + +/* provides the minimum logSize to safely represent a distribution */ +static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue) +{ + U32 minBitsSrc = ZSTD_highbit32((U32)(srcSize)) + 1; + U32 minBitsSymbols = ZSTD_highbit32(maxSymbolValue) + 2; + U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols; + assert(srcSize > 1); /* Not supported, RLE should be used instead */ + return minBits; +} + +unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus) +{ + U32 maxBitsSrc = ZSTD_highbit32((U32)(srcSize - 1)) - minus; + U32 tableLog = maxTableLog; + U32 minBits = FSE_minTableLog(srcSize, maxSymbolValue); + assert(srcSize > 1); /* Not supported, RLE should be used instead */ + if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG; + if (maxBitsSrc < tableLog) tableLog = maxBitsSrc; /* Accuracy can be reduced */ + if (minBits > tableLog) tableLog = minBits; /* Need a minimum to safely represent all symbol values */ + if (tableLog < FSE_MIN_TABLELOG) tableLog = FSE_MIN_TABLELOG; + if (tableLog > FSE_MAX_TABLELOG) tableLog = FSE_MAX_TABLELOG; + return tableLog; +} + +unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue) +{ + return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 2); +} + +/* Secondary normalization method. + To be used when primary method fails. */ + +static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count, size_t total, U32 maxSymbolValue, short lowProbCount) +{ + short const NOT_YET_ASSIGNED = -2; + U32 s; + U32 distributed = 0; + U32 ToDistribute; + + /* Init */ + U32 const lowThreshold = (U32)(total >> tableLog); + U32 lowOne = (U32)((total * 3) >> (tableLog + 1)); + + for (s=0; s<=maxSymbolValue; s++) { + if (count[s] == 0) { + norm[s]=0; + continue; + } + if (count[s] <= lowThreshold) { + norm[s] = lowProbCount; + distributed++; + total -= count[s]; + continue; + } + if (count[s] <= lowOne) { + norm[s] = 1; + distributed++; + total -= count[s]; + continue; + } + + norm[s]=NOT_YET_ASSIGNED; + } + ToDistribute = (1 << tableLog) - distributed; + + if (ToDistribute == 0) + return 0; + + if ((total / ToDistribute) > lowOne) { + /* risk of rounding to zero */ + lowOne = (U32)((total * 3) / (ToDistribute * 2)); + for (s=0; s<=maxSymbolValue; s++) { + if ((norm[s] == NOT_YET_ASSIGNED) && (count[s] <= lowOne)) { + norm[s] = 1; + distributed++; + total -= count[s]; + continue; + } } + ToDistribute = (1 << tableLog) - distributed; + } + + if (distributed == maxSymbolValue+1) { + /* all values are pretty poor; + probably incompressible data (should have already been detected); + find max, then give all remaining points to max */ + U32 maxV = 0, maxC = 0; + for (s=0; s<=maxSymbolValue; s++) + if (count[s] > maxC) { maxV=s; maxC=count[s]; } + norm[maxV] += (short)ToDistribute; + return 0; + } + + if (total == 0) { + /* all of the symbols were low enough for the lowOne or lowThreshold */ + for (s=0; ToDistribute > 0; s = (s+1)%(maxSymbolValue+1)) + if (norm[s] > 0) { ToDistribute--; norm[s]++; } + return 0; + } + + { U64 const vStepLog = 62 - tableLog; + U64 const mid = (1ULL << (vStepLog-1)) - 1; + U64 const rStep = ZSTD_div64((((U64)1<> vStepLog); + U32 const sEnd = (U32)(end >> vStepLog); + U32 const weight = sEnd - sStart; + if (weight < 1) + return ERROR(GENERIC); + norm[s] = (short)weight; + tmpTotal = end; + } } } + + return 0; +} + +size_t FSE_normalizeCount (short* normalizedCounter, unsigned tableLog, + const unsigned* count, size_t total, + unsigned maxSymbolValue, unsigned useLowProbCount) +{ + /* Sanity checks */ + if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG; + if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported size */ + if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported size */ + if (tableLog < FSE_minTableLog(total, maxSymbolValue)) return ERROR(GENERIC); /* Too small tableLog, compression potentially impossible */ + + { static U32 const rtbTable[] = { 0, 473195, 504333, 520860, 550000, 700000, 750000, 830000 }; + short const lowProbCount = useLowProbCount ? -1 : 1; + U64 const scale = 62 - tableLog; + U64 const step = ZSTD_div64((U64)1<<62, (U32)total); /* <== here, one division ! */ + U64 const vStep = 1ULL<<(scale-20); + int stillToDistribute = 1<> tableLog); + + for (s=0; s<=maxSymbolValue; s++) { + if (count[s] == total) return 0; /* rle special case */ + if (count[s] == 0) { normalizedCounter[s]=0; continue; } + if (count[s] <= lowThreshold) { + normalizedCounter[s] = lowProbCount; + stillToDistribute--; + } else { + short proba = (short)((count[s]*step) >> scale); + if (proba<8) { + U64 restToBeat = vStep * rtbTable[proba]; + proba += (count[s]*step) - ((U64)proba< restToBeat; + } + if (proba > largestP) { largestP=proba; largest=s; } + normalizedCounter[s] = proba; + stillToDistribute -= proba; + } } + if (-stillToDistribute >= (normalizedCounter[largest] >> 1)) { + /* corner case, need another normalization method */ + size_t const errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue, lowProbCount); + if (FSE_isError(errorCode)) return errorCode; + } + else normalizedCounter[largest] += (short)stillToDistribute; + } + +#if 0 + { /* Print Table (debug) */ + U32 s; + U32 nTotal = 0; + for (s=0; s<=maxSymbolValue; s++) + RAWLOG(2, "%3i: %4i \n", s, normalizedCounter[s]); + for (s=0; s<=maxSymbolValue; s++) + nTotal += abs(normalizedCounter[s]); + if (nTotal != (1U< FSE_MAX_TABLELOG*4+7 ) && (srcSize & 2)) { /* test bit 2 */ + FSE_encodeSymbol(&bitC, &CState2, *--ip); + FSE_encodeSymbol(&bitC, &CState1, *--ip); + FSE_FLUSHBITS(&bitC); + } + + /* 2 or 4 encoding per loop */ + while ( ip>istart ) { + + FSE_encodeSymbol(&bitC, &CState2, *--ip); + + if (sizeof(bitC.bitContainer)*8 < FSE_MAX_TABLELOG*2+7 ) /* this test must be static */ + FSE_FLUSHBITS(&bitC); + + FSE_encodeSymbol(&bitC, &CState1, *--ip); + + if (sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) { /* this test must be static */ + FSE_encodeSymbol(&bitC, &CState2, *--ip); + FSE_encodeSymbol(&bitC, &CState1, *--ip); + } + + FSE_FLUSHBITS(&bitC); + } + + FSE_flushCState(&bitC, &CState2); + FSE_flushCState(&bitC, &CState1); + return BIT_closeCStream(&bitC); +} + +size_t FSE_compress_usingCTable (void* dst, size_t dstSize, + const void* src, size_t srcSize, + const FSE_CTable* ct) +{ + unsigned const fast = (dstSize >= FSE_BLOCKBOUND(srcSize)); + + if (fast) + return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 1); + else + return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 0); +} + + +size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); } + +#endif /* FSE_COMMONDEFS_ONLY */ diff --git a/src/third-party/zstd/compress/hist.c b/src/third-party/zstd/compress/hist.c new file mode 100644 index 0000000000000..4ccf9a90a9ead --- /dev/null +++ b/src/third-party/zstd/compress/hist.c @@ -0,0 +1,191 @@ +/* ****************************************************************** + * hist : Histogram functions + * part of Finite State Entropy project + * Copyright (c) Meta Platforms, Inc. and affiliates. + * + * You can contact the author at : + * - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy + * - Public forum : https://groups.google.com/forum/#!forum/lz4c + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. +****************************************************************** */ + +/* --- dependencies --- */ +#include "../common/mem.h" /* U32, BYTE, etc. */ +#include "../common/debug.h" /* assert, DEBUGLOG */ +#include "../common/error_private.h" /* ERROR */ +#include "hist.h" + + +/* --- Error management --- */ +unsigned HIST_isError(size_t code) { return ERR_isError(code); } + +/*-************************************************************** + * Histogram functions + ****************************************************************/ +void HIST_add(unsigned* count, const void* src, size_t srcSize) +{ + const BYTE* ip = (const BYTE*)src; + const BYTE* const end = ip + srcSize; + + while (ip largestCount) largestCount = count[s]; + } + + return largestCount; +} + +typedef enum { trustInput, checkMaxSymbolValue } HIST_checkInput_e; + +/* HIST_count_parallel_wksp() : + * store histogram into 4 intermediate tables, recombined at the end. + * this design makes better use of OoO cpus, + * and is noticeably faster when some values are heavily repeated. + * But it needs some additional workspace for intermediate tables. + * `workSpace` must be a U32 table of size >= HIST_WKSP_SIZE_U32. + * @return : largest histogram frequency, + * or an error code (notably when histogram's alphabet is larger than *maxSymbolValuePtr) */ +static size_t HIST_count_parallel_wksp( + unsigned* count, unsigned* maxSymbolValuePtr, + const void* source, size_t sourceSize, + HIST_checkInput_e check, + U32* const workSpace) +{ + const BYTE* ip = (const BYTE*)source; + const BYTE* const iend = ip+sourceSize; + size_t const countSize = (*maxSymbolValuePtr + 1) * sizeof(*count); + unsigned max=0; + U32* const Counting1 = workSpace; + U32* const Counting2 = Counting1 + 256; + U32* const Counting3 = Counting2 + 256; + U32* const Counting4 = Counting3 + 256; + + /* safety checks */ + assert(*maxSymbolValuePtr <= 255); + if (!sourceSize) { + ZSTD_memset(count, 0, countSize); + *maxSymbolValuePtr = 0; + return 0; + } + ZSTD_memset(workSpace, 0, 4*256*sizeof(unsigned)); + + /* by stripes of 16 bytes */ + { U32 cached = MEM_read32(ip); ip += 4; + while (ip < iend-15) { + U32 c = cached; cached = MEM_read32(ip); ip += 4; + Counting1[(BYTE) c ]++; + Counting2[(BYTE)(c>>8) ]++; + Counting3[(BYTE)(c>>16)]++; + Counting4[ c>>24 ]++; + c = cached; cached = MEM_read32(ip); ip += 4; + Counting1[(BYTE) c ]++; + Counting2[(BYTE)(c>>8) ]++; + Counting3[(BYTE)(c>>16)]++; + Counting4[ c>>24 ]++; + c = cached; cached = MEM_read32(ip); ip += 4; + Counting1[(BYTE) c ]++; + Counting2[(BYTE)(c>>8) ]++; + Counting3[(BYTE)(c>>16)]++; + Counting4[ c>>24 ]++; + c = cached; cached = MEM_read32(ip); ip += 4; + Counting1[(BYTE) c ]++; + Counting2[(BYTE)(c>>8) ]++; + Counting3[(BYTE)(c>>16)]++; + Counting4[ c>>24 ]++; + } + ip-=4; + } + + /* finish last symbols */ + while (ip max) max = Counting1[s]; + } } + + { unsigned maxSymbolValue = 255; + while (!Counting1[maxSymbolValue]) maxSymbolValue--; + if (check && maxSymbolValue > *maxSymbolValuePtr) return ERROR(maxSymbolValue_tooSmall); + *maxSymbolValuePtr = maxSymbolValue; + ZSTD_memmove(count, Counting1, countSize); /* in case count & Counting1 are overlapping */ + } + return (size_t)max; +} + +/* HIST_countFast_wksp() : + * Same as HIST_countFast(), but using an externally provided scratch buffer. + * `workSpace` is a writable buffer which must be 4-bytes aligned, + * `workSpaceSize` must be >= HIST_WKSP_SIZE + */ +size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr, + const void* source, size_t sourceSize, + void* workSpace, size_t workSpaceSize) +{ + if (sourceSize < 1500) /* heuristic threshold */ + return HIST_count_simple(count, maxSymbolValuePtr, source, sourceSize); + if ((size_t)workSpace & 3) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */ + if (workSpaceSize < HIST_WKSP_SIZE) return ERROR(workSpace_tooSmall); + return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, trustInput, (U32*)workSpace); +} + +/* HIST_count_wksp() : + * Same as HIST_count(), but using an externally provided scratch buffer. + * `workSpace` size must be table of >= HIST_WKSP_SIZE_U32 unsigned */ +size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr, + const void* source, size_t sourceSize, + void* workSpace, size_t workSpaceSize) +{ + if ((size_t)workSpace & 3) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */ + if (workSpaceSize < HIST_WKSP_SIZE) return ERROR(workSpace_tooSmall); + if (*maxSymbolValuePtr < 255) + return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, checkMaxSymbolValue, (U32*)workSpace); + *maxSymbolValuePtr = 255; + return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, workSpace, workSpaceSize); +} + +#ifndef ZSTD_NO_UNUSED_FUNCTIONS +/* fast variant (unsafe : won't check if src contains values beyond count[] limit) */ +size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr, + const void* source, size_t sourceSize) +{ + unsigned tmpCounters[HIST_WKSP_SIZE_U32]; + return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, tmpCounters, sizeof(tmpCounters)); +} + +size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr, + const void* src, size_t srcSize) +{ + unsigned tmpCounters[HIST_WKSP_SIZE_U32]; + return HIST_count_wksp(count, maxSymbolValuePtr, src, srcSize, tmpCounters, sizeof(tmpCounters)); +} +#endif diff --git a/src/third-party/zstd/compress/hist.h b/src/third-party/zstd/compress/hist.h new file mode 100644 index 0000000000000..bea2a9ebff132 --- /dev/null +++ b/src/third-party/zstd/compress/hist.h @@ -0,0 +1,82 @@ +/* ****************************************************************** + * hist : Histogram functions + * part of Finite State Entropy project + * Copyright (c) Meta Platforms, Inc. and affiliates. + * + * You can contact the author at : + * - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy + * - Public forum : https://groups.google.com/forum/#!forum/lz4c + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. +****************************************************************** */ + +/* --- dependencies --- */ +#include "../common/zstd_deps.h" /* size_t */ + + +/* --- simple histogram functions --- */ + +/*! HIST_count(): + * Provides the precise count of each byte within a table 'count'. + * 'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1). + * Updates *maxSymbolValuePtr with actual largest symbol value detected. + * @return : count of the most frequent symbol (which isn't identified). + * or an error code, which can be tested using HIST_isError(). + * note : if return == srcSize, there is only one symbol. + */ +size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr, + const void* src, size_t srcSize); + +unsigned HIST_isError(size_t code); /**< tells if a return value is an error code */ + + +/* --- advanced histogram functions --- */ + +#define HIST_WKSP_SIZE_U32 1024 +#define HIST_WKSP_SIZE (HIST_WKSP_SIZE_U32 * sizeof(unsigned)) +/** HIST_count_wksp() : + * Same as HIST_count(), but using an externally provided scratch buffer. + * Benefit is this function will use very little stack space. + * `workSpace` is a writable buffer which must be 4-bytes aligned, + * `workSpaceSize` must be >= HIST_WKSP_SIZE + */ +size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr, + const void* src, size_t srcSize, + void* workSpace, size_t workSpaceSize); + +/** HIST_countFast() : + * same as HIST_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr. + * This function is unsafe, and will segfault if any value within `src` is `> *maxSymbolValuePtr` + */ +size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr, + const void* src, size_t srcSize); + +/** HIST_countFast_wksp() : + * Same as HIST_countFast(), but using an externally provided scratch buffer. + * `workSpace` is a writable buffer which must be 4-bytes aligned, + * `workSpaceSize` must be >= HIST_WKSP_SIZE + */ +size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr, + const void* src, size_t srcSize, + void* workSpace, size_t workSpaceSize); + +/*! HIST_count_simple() : + * Same as HIST_countFast(), this function is unsafe, + * and will segfault if any value within `src` is `> *maxSymbolValuePtr`. + * It is also a bit slower for large inputs. + * However, it does not need any additional memory (not even on stack). + * @return : count of the most frequent symbol. + * Note this function doesn't produce any error (i.e. it must succeed). + */ +unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr, + const void* src, size_t srcSize); + +/*! HIST_add() : + * Lowest level: just add nb of occurrences of characters from @src into @count. + * @count is not reset. @count array is presumed large enough (i.e. 1 KB). + @ This function does not need any additional stack memory. + */ +void HIST_add(unsigned* count, const void* src, size_t srcSize); diff --git a/src/third-party/zstd/compress/huf_compress.c b/src/third-party/zstd/compress/huf_compress.c new file mode 100644 index 0000000000000..ea000723209f9 --- /dev/null +++ b/src/third-party/zstd/compress/huf_compress.c @@ -0,0 +1,1464 @@ +/* ****************************************************************** + * Huffman encoder, part of New Generation Entropy library + * Copyright (c) Meta Platforms, Inc. and affiliates. + * + * You can contact the author at : + * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy + * - Public forum : https://groups.google.com/forum/#!forum/lz4c + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. +****************************************************************** */ + +/* ************************************************************** +* Compiler specifics +****************************************************************/ +#ifdef _MSC_VER /* Visual Studio */ +# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ +#endif + + +/* ************************************************************** +* Includes +****************************************************************/ +#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */ +#include "../common/compiler.h" +#include "../common/bitstream.h" +#include "hist.h" +#define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */ +#include "../common/fse.h" /* header compression */ +#include "../common/huf.h" +#include "../common/error_private.h" +#include "../common/bits.h" /* ZSTD_highbit32 */ + + +/* ************************************************************** +* Error Management +****************************************************************/ +#define HUF_isError ERR_isError +#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */ + + +/* ************************************************************** +* Required declarations +****************************************************************/ +typedef struct nodeElt_s { + U32 count; + U16 parent; + BYTE byte; + BYTE nbBits; +} nodeElt; + + +/* ************************************************************** +* Debug Traces +****************************************************************/ + +#if DEBUGLEVEL >= 2 + +static size_t showU32(const U32* arr, size_t size) +{ + size_t u; + for (u=0; u= add) { + assert(add < align); + assert(((size_t)aligned & mask) == 0); + *workspaceSizePtr -= add; + return aligned; + } else { + *workspaceSizePtr = 0; + return NULL; + } +} + + +/* HUF_compressWeights() : + * Same as FSE_compress(), but dedicated to huff0's weights compression. + * The use case needs much less stack memory. + * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX. + */ +#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6 + +typedef struct { + FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)]; + U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)]; + unsigned count[HUF_TABLELOG_MAX+1]; + S16 norm[HUF_TABLELOG_MAX+1]; +} HUF_CompressWeightsWksp; + +static size_t +HUF_compressWeights(void* dst, size_t dstSize, + const void* weightTable, size_t wtSize, + void* workspace, size_t workspaceSize) +{ + BYTE* const ostart = (BYTE*) dst; + BYTE* op = ostart; + BYTE* const oend = ostart + dstSize; + + unsigned maxSymbolValue = HUF_TABLELOG_MAX; + U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER; + HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32)); + + if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC); + + /* init conditions */ + if (wtSize <= 1) return 0; /* Not compressible */ + + /* Scan input and build symbol stats */ + { unsigned const maxCount = HIST_count_simple(wksp->count, &maxSymbolValue, weightTable, wtSize); /* never fails */ + if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */ + if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */ + } + + tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue); + CHECK_F( FSE_normalizeCount(wksp->norm, tableLog, wksp->count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) ); + + /* Write table description header */ + { CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), wksp->norm, maxSymbolValue, tableLog) ); + op += hSize; + } + + /* Compress */ + CHECK_F( FSE_buildCTable_wksp(wksp->CTable, wksp->norm, maxSymbolValue, tableLog, wksp->scratchBuffer, sizeof(wksp->scratchBuffer)) ); + { CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, wksp->CTable) ); + if (cSize == 0) return 0; /* not enough space for compressed data */ + op += cSize; + } + + return (size_t)(op-ostart); +} + +static size_t HUF_getNbBits(HUF_CElt elt) +{ + return elt & 0xFF; +} + +static size_t HUF_getNbBitsFast(HUF_CElt elt) +{ + return elt; +} + +static size_t HUF_getValue(HUF_CElt elt) +{ + return elt & ~(size_t)0xFF; +} + +static size_t HUF_getValueFast(HUF_CElt elt) +{ + return elt; +} + +static void HUF_setNbBits(HUF_CElt* elt, size_t nbBits) +{ + assert(nbBits <= HUF_TABLELOG_ABSOLUTEMAX); + *elt = nbBits; +} + +static void HUF_setValue(HUF_CElt* elt, size_t value) +{ + size_t const nbBits = HUF_getNbBits(*elt); + if (nbBits > 0) { + assert((value >> nbBits) == 0); + *elt |= value << (sizeof(HUF_CElt) * 8 - nbBits); + } +} + +HUF_CTableHeader HUF_readCTableHeader(HUF_CElt const* ctable) +{ + HUF_CTableHeader header; + ZSTD_memcpy(&header, ctable, sizeof(header)); + return header; +} + +static void HUF_writeCTableHeader(HUF_CElt* ctable, U32 tableLog, U32 maxSymbolValue) +{ + HUF_CTableHeader header; + HUF_STATIC_ASSERT(sizeof(ctable[0]) == sizeof(header)); + ZSTD_memset(&header, 0, sizeof(header)); + assert(tableLog < 256); + header.tableLog = (BYTE)tableLog; + assert(maxSymbolValue < 256); + header.maxSymbolValue = (BYTE)maxSymbolValue; + ZSTD_memcpy(ctable, &header, sizeof(header)); +} + +typedef struct { + HUF_CompressWeightsWksp wksp; + BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */ + BYTE huffWeight[HUF_SYMBOLVALUE_MAX]; +} HUF_WriteCTableWksp; + +size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize, + const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog, + void* workspace, size_t workspaceSize) +{ + HUF_CElt const* const ct = CTable + 1; + BYTE* op = (BYTE*)dst; + U32 n; + HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32)); + + HUF_STATIC_ASSERT(HUF_CTABLE_WORKSPACE_SIZE >= sizeof(HUF_WriteCTableWksp)); + + assert(HUF_readCTableHeader(CTable).maxSymbolValue == maxSymbolValue); + assert(HUF_readCTableHeader(CTable).tableLog == huffLog); + + /* check conditions */ + if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC); + if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge); + + /* convert to weight */ + wksp->bitsToWeight[0] = 0; + for (n=1; nbitsToWeight[n] = (BYTE)(huffLog + 1 - n); + for (n=0; nhuffWeight[n] = wksp->bitsToWeight[HUF_getNbBits(ct[n])]; + + /* attempt weights compression by FSE */ + if (maxDstSize < 1) return ERROR(dstSize_tooSmall); + { CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) ); + if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */ + op[0] = (BYTE)hSize; + return hSize+1; + } } + + /* write raw values as 4-bits (max : 15) */ + if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */ + if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */ + op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1)); + wksp->huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */ + for (n=0; nhuffWeight[n] << 4) + wksp->huffWeight[n+1]); + return ((maxSymbolValue+1)/2) + 1; +} + + +size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights) +{ + BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; /* init not required, even though some static analyzer may complain */ + U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */ + U32 tableLog = 0; + U32 nbSymbols = 0; + HUF_CElt* const ct = CTable + 1; + + /* get symbol weights */ + CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize)); + *hasZeroWeights = (rankVal[0] > 0); + + /* check result */ + if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); + if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall); + + *maxSymbolValuePtr = nbSymbols - 1; + + HUF_writeCTableHeader(CTable, tableLog, *maxSymbolValuePtr); + + /* Prepare base value per rank */ + { U32 n, nextRankStart = 0; + for (n=1; n<=tableLog; n++) { + U32 curr = nextRankStart; + nextRankStart += (rankVal[n] << (n-1)); + rankVal[n] = curr; + } } + + /* fill nbBits */ + { U32 n; for (n=0; nn=tableLog+1 */ + U16 valPerRank[HUF_TABLELOG_MAX+2] = {0}; + { U32 n; for (n=0; n0; n--) { /* start at n=tablelog <-> w=1 */ + valPerRank[n] = min; /* get starting value within each rank */ + min += nbPerRank[n]; + min >>= 1; + } } + /* assign value within rank, symbol order */ + { U32 n; for (n=0; n HUF_readCTableHeader(CTable).maxSymbolValue) + return 0; + return (U32)HUF_getNbBits(ct[symbolValue]); +} + + +/** + * HUF_setMaxHeight(): + * Try to enforce @targetNbBits on the Huffman tree described in @huffNode. + * + * It attempts to convert all nodes with nbBits > @targetNbBits + * to employ @targetNbBits instead. Then it adjusts the tree + * so that it remains a valid canonical Huffman tree. + * + * @pre The sum of the ranks of each symbol == 2^largestBits, + * where largestBits == huffNode[lastNonNull].nbBits. + * @post The sum of the ranks of each symbol == 2^largestBits, + * where largestBits is the return value (expected <= targetNbBits). + * + * @param huffNode The Huffman tree modified in place to enforce targetNbBits. + * It's presumed sorted, from most frequent to rarest symbol. + * @param lastNonNull The symbol with the lowest count in the Huffman tree. + * @param targetNbBits The allowed number of bits, which the Huffman tree + * may not respect. After this function the Huffman tree will + * respect targetNbBits. + * @return The maximum number of bits of the Huffman tree after adjustment. + */ +static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 targetNbBits) +{ + const U32 largestBits = huffNode[lastNonNull].nbBits; + /* early exit : no elt > targetNbBits, so the tree is already valid. */ + if (largestBits <= targetNbBits) return largestBits; + + DEBUGLOG(5, "HUF_setMaxHeight (targetNbBits = %u)", targetNbBits); + + /* there are several too large elements (at least >= 2) */ + { int totalCost = 0; + const U32 baseCost = 1 << (largestBits - targetNbBits); + int n = (int)lastNonNull; + + /* Adjust any ranks > targetNbBits to targetNbBits. + * Compute totalCost, which is how far the sum of the ranks is + * we are over 2^largestBits after adjust the offending ranks. + */ + while (huffNode[n].nbBits > targetNbBits) { + totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits)); + huffNode[n].nbBits = (BYTE)targetNbBits; + n--; + } + /* n stops at huffNode[n].nbBits <= targetNbBits */ + assert(huffNode[n].nbBits <= targetNbBits); + /* n end at index of smallest symbol using < targetNbBits */ + while (huffNode[n].nbBits == targetNbBits) --n; + + /* renorm totalCost from 2^largestBits to 2^targetNbBits + * note : totalCost is necessarily a multiple of baseCost */ + assert(((U32)totalCost & (baseCost - 1)) == 0); + totalCost >>= (largestBits - targetNbBits); + assert(totalCost > 0); + + /* repay normalized cost */ + { U32 const noSymbol = 0xF0F0F0F0; + U32 rankLast[HUF_TABLELOG_MAX+2]; + + /* Get pos of last (smallest = lowest cum. count) symbol per rank */ + ZSTD_memset(rankLast, 0xF0, sizeof(rankLast)); + { U32 currentNbBits = targetNbBits; + int pos; + for (pos=n ; pos >= 0; pos--) { + if (huffNode[pos].nbBits >= currentNbBits) continue; + currentNbBits = huffNode[pos].nbBits; /* < targetNbBits */ + rankLast[targetNbBits-currentNbBits] = (U32)pos; + } } + + while (totalCost > 0) { + /* Try to reduce the next power of 2 above totalCost because we + * gain back half the rank. + */ + U32 nBitsToDecrease = ZSTD_highbit32((U32)totalCost) + 1; + for ( ; nBitsToDecrease > 1; nBitsToDecrease--) { + U32 const highPos = rankLast[nBitsToDecrease]; + U32 const lowPos = rankLast[nBitsToDecrease-1]; + if (highPos == noSymbol) continue; + /* Decrease highPos if no symbols of lowPos or if it is + * not cheaper to remove 2 lowPos than highPos. + */ + if (lowPos == noSymbol) break; + { U32 const highTotal = huffNode[highPos].count; + U32 const lowTotal = 2 * huffNode[lowPos].count; + if (highTotal <= lowTotal) break; + } } + /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */ + assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1); + /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */ + while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol)) + nBitsToDecrease++; + assert(rankLast[nBitsToDecrease] != noSymbol); + /* Increase the number of bits to gain back half the rank cost. */ + totalCost -= 1 << (nBitsToDecrease-1); + huffNode[rankLast[nBitsToDecrease]].nbBits++; + + /* Fix up the new rank. + * If the new rank was empty, this symbol is now its smallest. + * Otherwise, this symbol will be the largest in the new rank so no adjustment. + */ + if (rankLast[nBitsToDecrease-1] == noSymbol) + rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease]; + /* Fix up the old rank. + * If the symbol was at position 0, meaning it was the highest weight symbol in the tree, + * it must be the only symbol in its rank, so the old rank now has no symbols. + * Otherwise, since the Huffman nodes are sorted by count, the previous position is now + * the smallest node in the rank. If the previous position belongs to a different rank, + * then the rank is now empty. + */ + if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */ + rankLast[nBitsToDecrease] = noSymbol; + else { + rankLast[nBitsToDecrease]--; + if (huffNode[rankLast[nBitsToDecrease]].nbBits != targetNbBits-nBitsToDecrease) + rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */ + } + } /* while (totalCost > 0) */ + + /* If we've removed too much weight, then we have to add it back. + * To avoid overshooting again, we only adjust the smallest rank. + * We take the largest nodes from the lowest rank 0 and move them + * to rank 1. There's guaranteed to be enough rank 0 symbols because + * TODO. + */ + while (totalCost < 0) { /* Sometimes, cost correction overshoot */ + /* special case : no rank 1 symbol (using targetNbBits-1); + * let's create one from largest rank 0 (using targetNbBits). + */ + if (rankLast[1] == noSymbol) { + while (huffNode[n].nbBits == targetNbBits) n--; + huffNode[n+1].nbBits--; + assert(n >= 0); + rankLast[1] = (U32)(n+1); + totalCost++; + continue; + } + huffNode[ rankLast[1] + 1 ].nbBits--; + rankLast[1]++; + totalCost ++; + } + } /* repay normalized cost */ + } /* there are several too large elements (at least >= 2) */ + + return targetNbBits; +} + +typedef struct { + U16 base; + U16 curr; +} rankPos; + +typedef nodeElt huffNodeTable[2 * (HUF_SYMBOLVALUE_MAX + 1)]; + +/* Number of buckets available for HUF_sort() */ +#define RANK_POSITION_TABLE_SIZE 192 + +typedef struct { + huffNodeTable huffNodeTbl; + rankPos rankPosition[RANK_POSITION_TABLE_SIZE]; +} HUF_buildCTable_wksp_tables; + +/* RANK_POSITION_DISTINCT_COUNT_CUTOFF == Cutoff point in HUF_sort() buckets for which we use log2 bucketing. + * Strategy is to use as many buckets as possible for representing distinct + * counts while using the remainder to represent all "large" counts. + * + * To satisfy this requirement for 192 buckets, we can do the following: + * Let buckets 0-166 represent distinct counts of [0, 166] + * Let buckets 166 to 192 represent all remaining counts up to RANK_POSITION_MAX_COUNT_LOG using log2 bucketing. + */ +#define RANK_POSITION_MAX_COUNT_LOG 32 +#define RANK_POSITION_LOG_BUCKETS_BEGIN ((RANK_POSITION_TABLE_SIZE - 1) - RANK_POSITION_MAX_COUNT_LOG - 1 /* == 158 */) +#define RANK_POSITION_DISTINCT_COUNT_CUTOFF (RANK_POSITION_LOG_BUCKETS_BEGIN + ZSTD_highbit32(RANK_POSITION_LOG_BUCKETS_BEGIN) /* == 166 */) + +/* Return the appropriate bucket index for a given count. See definition of + * RANK_POSITION_DISTINCT_COUNT_CUTOFF for explanation of bucketing strategy. + */ +static U32 HUF_getIndex(U32 const count) { + return (count < RANK_POSITION_DISTINCT_COUNT_CUTOFF) + ? count + : ZSTD_highbit32(count) + RANK_POSITION_LOG_BUCKETS_BEGIN; +} + +/* Helper swap function for HUF_quickSortPartition() */ +static void HUF_swapNodes(nodeElt* a, nodeElt* b) { + nodeElt tmp = *a; + *a = *b; + *b = tmp; +} + +/* Returns 0 if the huffNode array is not sorted by descending count */ +MEM_STATIC int HUF_isSorted(nodeElt huffNode[], U32 const maxSymbolValue1) { + U32 i; + for (i = 1; i < maxSymbolValue1; ++i) { + if (huffNode[i].count > huffNode[i-1].count) { + return 0; + } + } + return 1; +} + +/* Insertion sort by descending order */ +HINT_INLINE void HUF_insertionSort(nodeElt huffNode[], int const low, int const high) { + int i; + int const size = high-low+1; + huffNode += low; + for (i = 1; i < size; ++i) { + nodeElt const key = huffNode[i]; + int j = i - 1; + while (j >= 0 && huffNode[j].count < key.count) { + huffNode[j + 1] = huffNode[j]; + j--; + } + huffNode[j + 1] = key; + } +} + +/* Pivot helper function for quicksort. */ +static int HUF_quickSortPartition(nodeElt arr[], int const low, int const high) { + /* Simply select rightmost element as pivot. "Better" selectors like + * median-of-three don't experimentally appear to have any benefit. + */ + U32 const pivot = arr[high].count; + int i = low - 1; + int j = low; + for ( ; j < high; j++) { + if (arr[j].count > pivot) { + i++; + HUF_swapNodes(&arr[i], &arr[j]); + } + } + HUF_swapNodes(&arr[i + 1], &arr[high]); + return i + 1; +} + +/* Classic quicksort by descending with partially iterative calls + * to reduce worst case callstack size. + */ +static void HUF_simpleQuickSort(nodeElt arr[], int low, int high) { + int const kInsertionSortThreshold = 8; + if (high - low < kInsertionSortThreshold) { + HUF_insertionSort(arr, low, high); + return; + } + while (low < high) { + int const idx = HUF_quickSortPartition(arr, low, high); + if (idx - low < high - idx) { + HUF_simpleQuickSort(arr, low, idx - 1); + low = idx + 1; + } else { + HUF_simpleQuickSort(arr, idx + 1, high); + high = idx - 1; + } + } +} + +/** + * HUF_sort(): + * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order. + * This is a typical bucket sorting strategy that uses either quicksort or insertion sort to sort each bucket. + * + * @param[out] huffNode Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled. + * Must have (maxSymbolValue + 1) entries. + * @param[in] count Histogram of the symbols. + * @param[in] maxSymbolValue Maximum symbol value. + * @param rankPosition This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries. + */ +static void HUF_sort(nodeElt huffNode[], const unsigned count[], U32 const maxSymbolValue, rankPos rankPosition[]) { + U32 n; + U32 const maxSymbolValue1 = maxSymbolValue+1; + + /* Compute base and set curr to base. + * For symbol s let lowerRank = HUF_getIndex(count[n]) and rank = lowerRank + 1. + * See HUF_getIndex to see bucketing strategy. + * We attribute each symbol to lowerRank's base value, because we want to know where + * each rank begins in the output, so for rank R we want to count ranks R+1 and above. + */ + ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE); + for (n = 0; n < maxSymbolValue1; ++n) { + U32 lowerRank = HUF_getIndex(count[n]); + assert(lowerRank < RANK_POSITION_TABLE_SIZE - 1); + rankPosition[lowerRank].base++; + } + + assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0); + /* Set up the rankPosition table */ + for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) { + rankPosition[n-1].base += rankPosition[n].base; + rankPosition[n-1].curr = rankPosition[n-1].base; + } + + /* Insert each symbol into their appropriate bucket, setting up rankPosition table. */ + for (n = 0; n < maxSymbolValue1; ++n) { + U32 const c = count[n]; + U32 const r = HUF_getIndex(c) + 1; + U32 const pos = rankPosition[r].curr++; + assert(pos < maxSymbolValue1); + huffNode[pos].count = c; + huffNode[pos].byte = (BYTE)n; + } + + /* Sort each bucket. */ + for (n = RANK_POSITION_DISTINCT_COUNT_CUTOFF; n < RANK_POSITION_TABLE_SIZE - 1; ++n) { + int const bucketSize = rankPosition[n].curr - rankPosition[n].base; + U32 const bucketStartIdx = rankPosition[n].base; + if (bucketSize > 1) { + assert(bucketStartIdx < maxSymbolValue1); + HUF_simpleQuickSort(huffNode + bucketStartIdx, 0, bucketSize-1); + } + } + + assert(HUF_isSorted(huffNode, maxSymbolValue1)); +} + + +/** HUF_buildCTable_wksp() : + * Same as HUF_buildCTable(), but using externally allocated scratch buffer. + * `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables). + */ +#define STARTNODE (HUF_SYMBOLVALUE_MAX+1) + +/* HUF_buildTree(): + * Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree. + * + * @param huffNode The array sorted by HUF_sort(). Builds the Huffman tree in this array. + * @param maxSymbolValue The maximum symbol value. + * @return The smallest node in the Huffman tree (by count). + */ +static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue) +{ + nodeElt* const huffNode0 = huffNode - 1; + int nonNullRank; + int lowS, lowN; + int nodeNb = STARTNODE; + int n, nodeRoot; + DEBUGLOG(5, "HUF_buildTree (alphabet size = %u)", maxSymbolValue + 1); + /* init for parents */ + nonNullRank = (int)maxSymbolValue; + while(huffNode[nonNullRank].count == 0) nonNullRank--; + lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb; + huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count; + huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb; + nodeNb++; lowS-=2; + for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30); + huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */ + + /* create parents */ + while (nodeNb <= nodeRoot) { + int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++; + int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++; + huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count; + huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb; + nodeNb++; + } + + /* distribute weights (unlimited tree height) */ + huffNode[nodeRoot].nbBits = 0; + for (n=nodeRoot-1; n>=STARTNODE; n--) + huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1; + for (n=0; n<=nonNullRank; n++) + huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1; + + DEBUGLOG(6, "Initial distribution of bits completed (%zu sorted symbols)", showHNodeBits(huffNode, maxSymbolValue+1)); + + return nonNullRank; +} + +/** + * HUF_buildCTableFromTree(): + * Build the CTable given the Huffman tree in huffNode. + * + * @param[out] CTable The output Huffman CTable. + * @param huffNode The Huffman tree. + * @param nonNullRank The last and smallest node in the Huffman tree. + * @param maxSymbolValue The maximum symbol value. + * @param maxNbBits The exact maximum number of bits used in the Huffman tree. + */ +static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits) +{ + HUF_CElt* const ct = CTable + 1; + /* fill result into ctable (val, nbBits) */ + int n; + U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0}; + U16 valPerRank[HUF_TABLELOG_MAX+1] = {0}; + int const alphabetSize = (int)(maxSymbolValue + 1); + for (n=0; n<=nonNullRank; n++) + nbPerRank[huffNode[n].nbBits]++; + /* determine starting value per rank */ + { U16 min = 0; + for (n=(int)maxNbBits; n>0; n--) { + valPerRank[n] = min; /* get starting value within each rank */ + min += nbPerRank[n]; + min >>= 1; + } } + for (n=0; nhuffNodeTbl; + nodeElt* const huffNode = huffNode0+1; + int nonNullRank; + + HUF_STATIC_ASSERT(HUF_CTABLE_WORKSPACE_SIZE == sizeof(HUF_buildCTable_wksp_tables)); + + DEBUGLOG(5, "HUF_buildCTable_wksp (alphabet size = %u)", maxSymbolValue+1); + + /* safety checks */ + if (wkspSize < sizeof(HUF_buildCTable_wksp_tables)) + return ERROR(workSpace_tooSmall); + if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT; + if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) + return ERROR(maxSymbolValue_tooLarge); + ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable)); + + /* sort, decreasing order */ + HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition); + DEBUGLOG(6, "sorted symbols completed (%zu symbols)", showHNodeSymbols(huffNode, maxSymbolValue+1)); + + /* build tree */ + nonNullRank = HUF_buildTree(huffNode, maxSymbolValue); + + /* determine and enforce maxTableLog */ + maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits); + if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */ + + HUF_buildCTableFromTree(CTable, huffNode, nonNullRank, maxSymbolValue, maxNbBits); + + return maxNbBits; +} + +size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) +{ + HUF_CElt const* ct = CTable + 1; + size_t nbBits = 0; + int s; + for (s = 0; s <= (int)maxSymbolValue; ++s) { + nbBits += HUF_getNbBits(ct[s]) * count[s]; + } + return nbBits >> 3; +} + +int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) { + HUF_CTableHeader header = HUF_readCTableHeader(CTable); + HUF_CElt const* ct = CTable + 1; + int bad = 0; + int s; + + assert(header.tableLog <= HUF_TABLELOG_ABSOLUTEMAX); + + if (header.maxSymbolValue < maxSymbolValue) + return 0; + + for (s = 0; s <= (int)maxSymbolValue; ++s) { + bad |= (count[s] != 0) & (HUF_getNbBits(ct[s]) == 0); + } + return !bad; +} + +size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); } + +/** HUF_CStream_t: + * Huffman uses its own BIT_CStream_t implementation. + * There are three major differences from BIT_CStream_t: + * 1. HUF_addBits() takes a HUF_CElt (size_t) which is + * the pair (nbBits, value) in the format: + * format: + * - Bits [0, 4) = nbBits + * - Bits [4, 64 - nbBits) = 0 + * - Bits [64 - nbBits, 64) = value + * 2. The bitContainer is built from the upper bits and + * right shifted. E.g. to add a new value of N bits + * you right shift the bitContainer by N, then or in + * the new value into the N upper bits. + * 3. The bitstream has two bit containers. You can add + * bits to the second container and merge them into + * the first container. + */ + +#define HUF_BITS_IN_CONTAINER (sizeof(size_t) * 8) + +typedef struct { + size_t bitContainer[2]; + size_t bitPos[2]; + + BYTE* startPtr; + BYTE* ptr; + BYTE* endPtr; +} HUF_CStream_t; + +/**! HUF_initCStream(): + * Initializes the bitstream. + * @returns 0 or an error code. + */ +static size_t HUF_initCStream(HUF_CStream_t* bitC, + void* startPtr, size_t dstCapacity) +{ + ZSTD_memset(bitC, 0, sizeof(*bitC)); + bitC->startPtr = (BYTE*)startPtr; + bitC->ptr = bitC->startPtr; + bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer[0]); + if (dstCapacity <= sizeof(bitC->bitContainer[0])) return ERROR(dstSize_tooSmall); + return 0; +} + +/*! HUF_addBits(): + * Adds the symbol stored in HUF_CElt elt to the bitstream. + * + * @param elt The element we're adding. This is a (nbBits, value) pair. + * See the HUF_CStream_t docs for the format. + * @param idx Insert into the bitstream at this idx. + * @param kFast This is a template parameter. If the bitstream is guaranteed + * to have at least 4 unused bits after this call it may be 1, + * otherwise it must be 0. HUF_addBits() is faster when fast is set. + */ +FORCE_INLINE_TEMPLATE void HUF_addBits(HUF_CStream_t* bitC, HUF_CElt elt, int idx, int kFast) +{ + assert(idx <= 1); + assert(HUF_getNbBits(elt) <= HUF_TABLELOG_ABSOLUTEMAX); + /* This is efficient on x86-64 with BMI2 because shrx + * only reads the low 6 bits of the register. The compiler + * knows this and elides the mask. When fast is set, + * every operation can use the same value loaded from elt. + */ + bitC->bitContainer[idx] >>= HUF_getNbBits(elt); + bitC->bitContainer[idx] |= kFast ? HUF_getValueFast(elt) : HUF_getValue(elt); + /* We only read the low 8 bits of bitC->bitPos[idx] so it + * doesn't matter that the high bits have noise from the value. + */ + bitC->bitPos[idx] += HUF_getNbBitsFast(elt); + assert((bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER); + /* The last 4-bits of elt are dirty if fast is set, + * so we must not be overwriting bits that have already been + * inserted into the bit container. + */ +#if DEBUGLEVEL >= 1 + { + size_t const nbBits = HUF_getNbBits(elt); + size_t const dirtyBits = nbBits == 0 ? 0 : ZSTD_highbit32((U32)nbBits) + 1; + (void)dirtyBits; + /* Middle bits are 0. */ + assert(((elt >> dirtyBits) << (dirtyBits + nbBits)) == 0); + /* We didn't overwrite any bits in the bit container. */ + assert(!kFast || (bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER); + (void)dirtyBits; + } +#endif +} + +FORCE_INLINE_TEMPLATE void HUF_zeroIndex1(HUF_CStream_t* bitC) +{ + bitC->bitContainer[1] = 0; + bitC->bitPos[1] = 0; +} + +/*! HUF_mergeIndex1() : + * Merges the bit container @ index 1 into the bit container @ index 0 + * and zeros the bit container @ index 1. + */ +FORCE_INLINE_TEMPLATE void HUF_mergeIndex1(HUF_CStream_t* bitC) +{ + assert((bitC->bitPos[1] & 0xFF) < HUF_BITS_IN_CONTAINER); + bitC->bitContainer[0] >>= (bitC->bitPos[1] & 0xFF); + bitC->bitContainer[0] |= bitC->bitContainer[1]; + bitC->bitPos[0] += bitC->bitPos[1]; + assert((bitC->bitPos[0] & 0xFF) <= HUF_BITS_IN_CONTAINER); +} + +/*! HUF_flushBits() : +* Flushes the bits in the bit container @ index 0. +* +* @post bitPos will be < 8. +* @param kFast If kFast is set then we must know a-priori that +* the bit container will not overflow. +*/ +FORCE_INLINE_TEMPLATE void HUF_flushBits(HUF_CStream_t* bitC, int kFast) +{ + /* The upper bits of bitPos are noisy, so we must mask by 0xFF. */ + size_t const nbBits = bitC->bitPos[0] & 0xFF; + size_t const nbBytes = nbBits >> 3; + /* The top nbBits bits of bitContainer are the ones we need. */ + size_t const bitContainer = bitC->bitContainer[0] >> (HUF_BITS_IN_CONTAINER - nbBits); + /* Mask bitPos to account for the bytes we consumed. */ + bitC->bitPos[0] &= 7; + assert(nbBits > 0); + assert(nbBits <= sizeof(bitC->bitContainer[0]) * 8); + assert(bitC->ptr <= bitC->endPtr); + MEM_writeLEST(bitC->ptr, bitContainer); + bitC->ptr += nbBytes; + assert(!kFast || bitC->ptr <= bitC->endPtr); + if (!kFast && bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr; + /* bitContainer doesn't need to be modified because the leftover + * bits are already the top bitPos bits. And we don't care about + * noise in the lower values. + */ +} + +/*! HUF_endMark() + * @returns The Huffman stream end mark: A 1-bit value = 1. + */ +static HUF_CElt HUF_endMark(void) +{ + HUF_CElt endMark; + HUF_setNbBits(&endMark, 1); + HUF_setValue(&endMark, 1); + return endMark; +} + +/*! HUF_closeCStream() : + * @return Size of CStream, in bytes, + * or 0 if it could not fit into dstBuffer */ +static size_t HUF_closeCStream(HUF_CStream_t* bitC) +{ + HUF_addBits(bitC, HUF_endMark(), /* idx */ 0, /* kFast */ 0); + HUF_flushBits(bitC, /* kFast */ 0); + { + size_t const nbBits = bitC->bitPos[0] & 0xFF; + if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */ + return (size_t)(bitC->ptr - bitC->startPtr) + (nbBits > 0); + } +} + +FORCE_INLINE_TEMPLATE void +HUF_encodeSymbol(HUF_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable, int idx, int fast) +{ + HUF_addBits(bitCPtr, CTable[symbol], idx, fast); +} + +FORCE_INLINE_TEMPLATE void +HUF_compress1X_usingCTable_internal_body_loop(HUF_CStream_t* bitC, + const BYTE* ip, size_t srcSize, + const HUF_CElt* ct, + int kUnroll, int kFastFlush, int kLastFast) +{ + /* Join to kUnroll */ + int n = (int)srcSize; + int rem = n % kUnroll; + if (rem > 0) { + for (; rem > 0; --rem) { + HUF_encodeSymbol(bitC, ip[--n], ct, 0, /* fast */ 0); + } + HUF_flushBits(bitC, kFastFlush); + } + assert(n % kUnroll == 0); + + /* Join to 2 * kUnroll */ + if (n % (2 * kUnroll)) { + int u; + for (u = 1; u < kUnroll; ++u) { + HUF_encodeSymbol(bitC, ip[n - u], ct, 0, 1); + } + HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, 0, kLastFast); + HUF_flushBits(bitC, kFastFlush); + n -= kUnroll; + } + assert(n % (2 * kUnroll) == 0); + + for (; n>0; n-= 2 * kUnroll) { + /* Encode kUnroll symbols into the bitstream @ index 0. */ + int u; + for (u = 1; u < kUnroll; ++u) { + HUF_encodeSymbol(bitC, ip[n - u], ct, /* idx */ 0, /* fast */ 1); + } + HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, /* idx */ 0, /* fast */ kLastFast); + HUF_flushBits(bitC, kFastFlush); + /* Encode kUnroll symbols into the bitstream @ index 1. + * This allows us to start filling the bit container + * without any data dependencies. + */ + HUF_zeroIndex1(bitC); + for (u = 1; u < kUnroll; ++u) { + HUF_encodeSymbol(bitC, ip[n - kUnroll - u], ct, /* idx */ 1, /* fast */ 1); + } + HUF_encodeSymbol(bitC, ip[n - kUnroll - kUnroll], ct, /* idx */ 1, /* fast */ kLastFast); + /* Merge bitstream @ index 1 into the bitstream @ index 0 */ + HUF_mergeIndex1(bitC); + HUF_flushBits(bitC, kFastFlush); + } + assert(n == 0); + +} + +/** + * Returns a tight upper bound on the output space needed by Huffman + * with 8 bytes buffer to handle over-writes. If the output is at least + * this large we don't need to do bounds checks during Huffman encoding. + */ +static size_t HUF_tightCompressBound(size_t srcSize, size_t tableLog) +{ + return ((srcSize * tableLog) >> 3) + 8; +} + + +FORCE_INLINE_TEMPLATE size_t +HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable) +{ + U32 const tableLog = HUF_readCTableHeader(CTable).tableLog; + HUF_CElt const* ct = CTable + 1; + const BYTE* ip = (const BYTE*) src; + BYTE* const ostart = (BYTE*)dst; + BYTE* const oend = ostart + dstSize; + HUF_CStream_t bitC; + + /* init */ + if (dstSize < 8) return 0; /* not enough space to compress */ + { BYTE* op = ostart; + size_t const initErr = HUF_initCStream(&bitC, op, (size_t)(oend-op)); + if (HUF_isError(initErr)) return 0; } + + if (dstSize < HUF_tightCompressBound(srcSize, (size_t)tableLog) || tableLog > 11) + HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ MEM_32bits() ? 2 : 4, /* kFast */ 0, /* kLastFast */ 0); + else { + if (MEM_32bits()) { + switch (tableLog) { + case 11: + HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 0); + break; + case 10: ZSTD_FALLTHROUGH; + case 9: ZSTD_FALLTHROUGH; + case 8: + HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 1); + break; + case 7: ZSTD_FALLTHROUGH; + default: + HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 3, /* kFastFlush */ 1, /* kLastFast */ 1); + break; + } + } else { + switch (tableLog) { + case 11: + HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 0); + break; + case 10: + HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 1); + break; + case 9: + HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 6, /* kFastFlush */ 1, /* kLastFast */ 0); + break; + case 8: + HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 7, /* kFastFlush */ 1, /* kLastFast */ 0); + break; + case 7: + HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 8, /* kFastFlush */ 1, /* kLastFast */ 0); + break; + case 6: ZSTD_FALLTHROUGH; + default: + HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 9, /* kFastFlush */ 1, /* kLastFast */ 1); + break; + } + } + } + assert(bitC.ptr <= bitC.endPtr); + + return HUF_closeCStream(&bitC); +} + +#if DYNAMIC_BMI2 + +static BMI2_TARGET_ATTRIBUTE size_t +HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable) +{ + return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); +} + +static size_t +HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable) +{ + return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); +} + +static size_t +HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable, const int flags) +{ + if (flags & HUF_flags_bmi2) { + return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable); + } + return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable); +} + +#else + +static size_t +HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable, const int flags) +{ + (void)flags; + return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); +} + +#endif + +size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags) +{ + return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, flags); +} + +static size_t +HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable, int flags) +{ + size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */ + const BYTE* ip = (const BYTE*) src; + const BYTE* const iend = ip + srcSize; + BYTE* const ostart = (BYTE*) dst; + BYTE* const oend = ostart + dstSize; + BYTE* op = ostart; + + if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */ + if (srcSize < 12) return 0; /* no saving possible : too small input */ + op += 6; /* jumpTable */ + + assert(op <= oend); + { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, flags) ); + if (cSize == 0 || cSize > 65535) return 0; + MEM_writeLE16(ostart, (U16)cSize); + op += cSize; + } + + ip += segmentSize; + assert(op <= oend); + { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, flags) ); + if (cSize == 0 || cSize > 65535) return 0; + MEM_writeLE16(ostart+2, (U16)cSize); + op += cSize; + } + + ip += segmentSize; + assert(op <= oend); + { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, flags) ); + if (cSize == 0 || cSize > 65535) return 0; + MEM_writeLE16(ostart+4, (U16)cSize); + op += cSize; + } + + ip += segmentSize; + assert(op <= oend); + assert(ip <= iend); + { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, flags) ); + if (cSize == 0 || cSize > 65535) return 0; + op += cSize; + } + + return (size_t)(op-ostart); +} + +size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags) +{ + return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, flags); +} + +typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e; + +static size_t HUF_compressCTable_internal( + BYTE* const ostart, BYTE* op, BYTE* const oend, + const void* src, size_t srcSize, + HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int flags) +{ + size_t const cSize = (nbStreams==HUF_singleStream) ? + HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, flags) : + HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, flags); + if (HUF_isError(cSize)) { return cSize; } + if (cSize==0) { return 0; } /* uncompressible */ + op += cSize; + /* check compressibility */ + assert(op >= ostart); + if ((size_t)(op-ostart) >= srcSize-1) { return 0; } + return (size_t)(op-ostart); +} + +typedef struct { + unsigned count[HUF_SYMBOLVALUE_MAX + 1]; + HUF_CElt CTable[HUF_CTABLE_SIZE_ST(HUF_SYMBOLVALUE_MAX)]; + union { + HUF_buildCTable_wksp_tables buildCTable_wksp; + HUF_WriteCTableWksp writeCTable_wksp; + U32 hist_wksp[HIST_WKSP_SIZE_U32]; + } wksps; +} HUF_compress_tables_t; + +#define SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE 4096 +#define SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO 10 /* Must be >= 2 */ + +unsigned HUF_cardinality(const unsigned* count, unsigned maxSymbolValue) +{ + unsigned cardinality = 0; + unsigned i; + + for (i = 0; i < maxSymbolValue + 1; i++) { + if (count[i] != 0) cardinality += 1; + } + + return cardinality; +} + +unsigned HUF_minTableLog(unsigned symbolCardinality) +{ + U32 minBitsSymbols = ZSTD_highbit32(symbolCardinality) + 1; + return minBitsSymbols; +} + +unsigned HUF_optimalTableLog( + unsigned maxTableLog, + size_t srcSize, + unsigned maxSymbolValue, + void* workSpace, size_t wkspSize, + HUF_CElt* table, + const unsigned* count, + int flags) +{ + assert(srcSize > 1); /* Not supported, RLE should be used instead */ + assert(wkspSize >= sizeof(HUF_buildCTable_wksp_tables)); + + if (!(flags & HUF_flags_optimalDepth)) { + /* cheap evaluation, based on FSE */ + return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1); + } + + { BYTE* dst = (BYTE*)workSpace + sizeof(HUF_WriteCTableWksp); + size_t dstSize = wkspSize - sizeof(HUF_WriteCTableWksp); + size_t hSize, newSize; + const unsigned symbolCardinality = HUF_cardinality(count, maxSymbolValue); + const unsigned minTableLog = HUF_minTableLog(symbolCardinality); + size_t optSize = ((size_t) ~0) - 1; + unsigned optLog = maxTableLog, optLogGuess; + + DEBUGLOG(6, "HUF_optimalTableLog: probing huf depth (srcSize=%zu)", srcSize); + + /* Search until size increases */ + for (optLogGuess = minTableLog; optLogGuess <= maxTableLog; optLogGuess++) { + DEBUGLOG(7, "checking for huffLog=%u", optLogGuess); + + { size_t maxBits = HUF_buildCTable_wksp(table, count, maxSymbolValue, optLogGuess, workSpace, wkspSize); + if (ERR_isError(maxBits)) continue; + + if (maxBits < optLogGuess && optLogGuess > minTableLog) break; + + hSize = HUF_writeCTable_wksp(dst, dstSize, table, maxSymbolValue, (U32)maxBits, workSpace, wkspSize); + } + + if (ERR_isError(hSize)) continue; + + newSize = HUF_estimateCompressedSize(table, count, maxSymbolValue) + hSize; + + if (newSize > optSize + 1) { + break; + } + + if (newSize < optSize) { + optSize = newSize; + optLog = optLogGuess; + } + } + assert(optLog <= HUF_TABLELOG_MAX); + return optLog; + } +} + +/* HUF_compress_internal() : + * `workSpace_align4` must be aligned on 4-bytes boundaries, + * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U64 unsigned */ +static size_t +HUF_compress_internal (void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned huffLog, + HUF_nbStreams_e nbStreams, + void* workSpace, size_t wkspSize, + HUF_CElt* oldHufTable, HUF_repeat* repeat, int flags) +{ + HUF_compress_tables_t* const table = (HUF_compress_tables_t*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(size_t)); + BYTE* const ostart = (BYTE*)dst; + BYTE* const oend = ostart + dstSize; + BYTE* op = ostart; + + DEBUGLOG(5, "HUF_compress_internal (srcSize=%zu)", srcSize); + HUF_STATIC_ASSERT(sizeof(*table) + HUF_WORKSPACE_MAX_ALIGNMENT <= HUF_WORKSPACE_SIZE); + + /* checks & inits */ + if (wkspSize < sizeof(*table)) return ERROR(workSpace_tooSmall); + if (!srcSize) return 0; /* Uncompressed */ + if (!dstSize) return 0; /* cannot fit anything within dst budget */ + if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */ + if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); + if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge); + if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX; + if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT; + + /* Heuristic : If old table is valid, use it for small inputs */ + if ((flags & HUF_flags_preferRepeat) && repeat && *repeat == HUF_repeat_valid) { + return HUF_compressCTable_internal(ostart, op, oend, + src, srcSize, + nbStreams, oldHufTable, flags); + } + + /* If uncompressible data is suspected, do a smaller sampling first */ + DEBUG_STATIC_ASSERT(SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO >= 2); + if ((flags & HUF_flags_suspectUncompressible) && srcSize >= (SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE * SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO)) { + size_t largestTotal = 0; + DEBUGLOG(5, "input suspected incompressible : sampling to check"); + { unsigned maxSymbolValueBegin = maxSymbolValue; + CHECK_V_F(largestBegin, HIST_count_simple (table->count, &maxSymbolValueBegin, (const BYTE*)src, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) ); + largestTotal += largestBegin; + } + { unsigned maxSymbolValueEnd = maxSymbolValue; + CHECK_V_F(largestEnd, HIST_count_simple (table->count, &maxSymbolValueEnd, (const BYTE*)src + srcSize - SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) ); + largestTotal += largestEnd; + } + if (largestTotal <= ((2 * SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) >> 7)+4) return 0; /* heuristic : probably not compressible enough */ + } + + /* Scan input and build symbol stats */ + { CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, table->wksps.hist_wksp, sizeof(table->wksps.hist_wksp)) ); + if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */ + if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */ + } + DEBUGLOG(6, "histogram detail completed (%zu symbols)", showU32(table->count, maxSymbolValue+1)); + + /* Check validity of previous table */ + if ( repeat + && *repeat == HUF_repeat_check + && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) { + *repeat = HUF_repeat_none; + } + /* Heuristic : use existing table for small inputs */ + if ((flags & HUF_flags_preferRepeat) && repeat && *repeat != HUF_repeat_none) { + return HUF_compressCTable_internal(ostart, op, oend, + src, srcSize, + nbStreams, oldHufTable, flags); + } + + /* Build Huffman Tree */ + huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue, &table->wksps, sizeof(table->wksps), table->CTable, table->count, flags); + { size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count, + maxSymbolValue, huffLog, + &table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp)); + CHECK_F(maxBits); + huffLog = (U32)maxBits; + DEBUGLOG(6, "bit distribution completed (%zu symbols)", showCTableBits(table->CTable + 1, maxSymbolValue+1)); + } + + /* Write table description header */ + { CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, table->CTable, maxSymbolValue, huffLog, + &table->wksps.writeCTable_wksp, sizeof(table->wksps.writeCTable_wksp)) ); + /* Check if using previous huffman table is beneficial */ + if (repeat && *repeat != HUF_repeat_none) { + size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue); + size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue); + if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) { + return HUF_compressCTable_internal(ostart, op, oend, + src, srcSize, + nbStreams, oldHufTable, flags); + } } + + /* Use the new huffman table */ + if (hSize + 12ul >= srcSize) { return 0; } + op += hSize; + if (repeat) { *repeat = HUF_repeat_none; } + if (oldHufTable) + ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable)); /* Save new table */ + } + return HUF_compressCTable_internal(ostart, op, oend, + src, srcSize, + nbStreams, table->CTable, flags); +} + +size_t HUF_compress1X_repeat (void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned huffLog, + void* workSpace, size_t wkspSize, + HUF_CElt* hufTable, HUF_repeat* repeat, int flags) +{ + DEBUGLOG(5, "HUF_compress1X_repeat (srcSize = %zu)", srcSize); + return HUF_compress_internal(dst, dstSize, src, srcSize, + maxSymbolValue, huffLog, HUF_singleStream, + workSpace, wkspSize, hufTable, + repeat, flags); +} + +/* HUF_compress4X_repeat(): + * compress input using 4 streams. + * consider skipping quickly + * reuse an existing huffman compression table */ +size_t HUF_compress4X_repeat (void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned huffLog, + void* workSpace, size_t wkspSize, + HUF_CElt* hufTable, HUF_repeat* repeat, int flags) +{ + DEBUGLOG(5, "HUF_compress4X_repeat (srcSize = %zu)", srcSize); + return HUF_compress_internal(dst, dstSize, src, srcSize, + maxSymbolValue, huffLog, HUF_fourStreams, + workSpace, wkspSize, + hufTable, repeat, flags); +} diff --git a/src/third-party/zstd/compress/zstd_compress.c b/src/third-party/zstd/compress/zstd_compress.c new file mode 100644 index 0000000000000..5d5ada0aec1b1 --- /dev/null +++ b/src/third-party/zstd/compress/zstd_compress.c @@ -0,0 +1,7837 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/*-************************************* +* Dependencies +***************************************/ +#include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */ +#include "../common/zstd_deps.h" /* INT_MAX, ZSTD_memset, ZSTD_memcpy */ +#include "../common/mem.h" +#include "../common/error_private.h" +#include "hist.h" /* HIST_countFast_wksp */ +#define FSE_STATIC_LINKING_ONLY /* FSE_encodeSymbol */ +#include "../common/fse.h" +#include "../common/huf.h" +#include "zstd_compress_internal.h" +#include "zstd_compress_sequences.h" +#include "zstd_compress_literals.h" +#include "zstd_fast.h" +#include "zstd_double_fast.h" +#include "zstd_lazy.h" +#include "zstd_opt.h" +#include "zstd_ldm.h" +#include "zstd_compress_superblock.h" +#include "../common/bits.h" /* ZSTD_highbit32, ZSTD_rotateRight_U64 */ + +/* *************************************************************** +* Tuning parameters +*****************************************************************/ +/*! + * COMPRESS_HEAPMODE : + * Select how default decompression function ZSTD_compress() allocates its context, + * on stack (0, default), or into heap (1). + * Note that functions with explicit context such as ZSTD_compressCCtx() are unaffected. + */ +#ifndef ZSTD_COMPRESS_HEAPMODE +# define ZSTD_COMPRESS_HEAPMODE 0 +#endif + +/*! + * ZSTD_HASHLOG3_MAX : + * Maximum size of the hash table dedicated to find 3-bytes matches, + * in log format, aka 17 => 1 << 17 == 128Ki positions. + * This structure is only used in zstd_opt. + * Since allocation is centralized for all strategies, it has to be known here. + * The actual (selected) size of the hash table is then stored in ZSTD_MatchState_t.hashLog3, + * so that zstd_opt.c doesn't need to know about this constant. + */ +#ifndef ZSTD_HASHLOG3_MAX +# define ZSTD_HASHLOG3_MAX 17 +#endif + +/*-************************************* +* Helper functions +***************************************/ +/* ZSTD_compressBound() + * Note that the result from this function is only valid for + * the one-pass compression functions. + * When employing the streaming mode, + * if flushes are frequently altering the size of blocks, + * the overhead from block headers can make the compressed data larger + * than the return value of ZSTD_compressBound(). + */ +size_t ZSTD_compressBound(size_t srcSize) { + size_t const r = ZSTD_COMPRESSBOUND(srcSize); + if (r==0) return ERROR(srcSize_wrong); + return r; +} + + +/*-************************************* +* Context memory management +***************************************/ +struct ZSTD_CDict_s { + const void* dictContent; + size_t dictContentSize; + ZSTD_dictContentType_e dictContentType; /* The dictContentType the CDict was created with */ + U32* entropyWorkspace; /* entropy workspace of HUF_WORKSPACE_SIZE bytes */ + ZSTD_cwksp workspace; + ZSTD_MatchState_t matchState; + ZSTD_compressedBlockState_t cBlockState; + ZSTD_customMem customMem; + U32 dictID; + int compressionLevel; /* 0 indicates that advanced API was used to select CDict params */ + ZSTD_ParamSwitch_e useRowMatchFinder; /* Indicates whether the CDict was created with params that would use + * row-based matchfinder. Unless the cdict is reloaded, we will use + * the same greedy/lazy matchfinder at compression time. + */ +}; /* typedef'd to ZSTD_CDict within "zstd.h" */ + +ZSTD_CCtx* ZSTD_createCCtx(void) +{ + return ZSTD_createCCtx_advanced(ZSTD_defaultCMem); +} + +static void ZSTD_initCCtx(ZSTD_CCtx* cctx, ZSTD_customMem memManager) +{ + assert(cctx != NULL); + ZSTD_memset(cctx, 0, sizeof(*cctx)); + cctx->customMem = memManager; + cctx->bmi2 = ZSTD_cpuSupportsBmi2(); + { size_t const err = ZSTD_CCtx_reset(cctx, ZSTD_reset_parameters); + assert(!ZSTD_isError(err)); + (void)err; + } +} + +ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem) +{ + ZSTD_STATIC_ASSERT(zcss_init==0); + ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN==(0ULL - 1)); + if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL; + { ZSTD_CCtx* const cctx = (ZSTD_CCtx*)ZSTD_customMalloc(sizeof(ZSTD_CCtx), customMem); + if (!cctx) return NULL; + ZSTD_initCCtx(cctx, customMem); + return cctx; + } +} + +ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize) +{ + ZSTD_cwksp ws; + ZSTD_CCtx* cctx; + if (workspaceSize <= sizeof(ZSTD_CCtx)) return NULL; /* minimum size */ + if ((size_t)workspace & 7) return NULL; /* must be 8-aligned */ + ZSTD_cwksp_init(&ws, workspace, workspaceSize, ZSTD_cwksp_static_alloc); + + cctx = (ZSTD_CCtx*)ZSTD_cwksp_reserve_object(&ws, sizeof(ZSTD_CCtx)); + if (cctx == NULL) return NULL; + + ZSTD_memset(cctx, 0, sizeof(ZSTD_CCtx)); + ZSTD_cwksp_move(&cctx->workspace, &ws); + cctx->staticSize = workspaceSize; + + /* statically sized space. tmpWorkspace never moves (but prev/next block swap places) */ + if (!ZSTD_cwksp_check_available(&cctx->workspace, TMP_WORKSPACE_SIZE + 2 * sizeof(ZSTD_compressedBlockState_t))) return NULL; + cctx->blockState.prevCBlock = (ZSTD_compressedBlockState_t*)ZSTD_cwksp_reserve_object(&cctx->workspace, sizeof(ZSTD_compressedBlockState_t)); + cctx->blockState.nextCBlock = (ZSTD_compressedBlockState_t*)ZSTD_cwksp_reserve_object(&cctx->workspace, sizeof(ZSTD_compressedBlockState_t)); + cctx->tmpWorkspace = ZSTD_cwksp_reserve_object(&cctx->workspace, TMP_WORKSPACE_SIZE); + cctx->tmpWkspSize = TMP_WORKSPACE_SIZE; + cctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid()); + return cctx; +} + +/** + * Clears and frees all of the dictionaries in the CCtx. + */ +static void ZSTD_clearAllDicts(ZSTD_CCtx* cctx) +{ + ZSTD_customFree(cctx->localDict.dictBuffer, cctx->customMem); + ZSTD_freeCDict(cctx->localDict.cdict); + ZSTD_memset(&cctx->localDict, 0, sizeof(cctx->localDict)); + ZSTD_memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); + cctx->cdict = NULL; +} + +static size_t ZSTD_sizeof_localDict(ZSTD_localDict dict) +{ + size_t const bufferSize = dict.dictBuffer != NULL ? dict.dictSize : 0; + size_t const cdictSize = ZSTD_sizeof_CDict(dict.cdict); + return bufferSize + cdictSize; +} + +static void ZSTD_freeCCtxContent(ZSTD_CCtx* cctx) +{ + assert(cctx != NULL); + assert(cctx->staticSize == 0); + ZSTD_clearAllDicts(cctx); +#ifdef ZSTD_MULTITHREAD + ZSTDMT_freeCCtx(cctx->mtctx); cctx->mtctx = NULL; +#endif + ZSTD_cwksp_free(&cctx->workspace, cctx->customMem); +} + +size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx) +{ + DEBUGLOG(3, "ZSTD_freeCCtx (address: %p)", (void*)cctx); + if (cctx==NULL) return 0; /* support free on NULL */ + RETURN_ERROR_IF(cctx->staticSize, memory_allocation, + "not compatible with static CCtx"); + { int cctxInWorkspace = ZSTD_cwksp_owns_buffer(&cctx->workspace, cctx); + ZSTD_freeCCtxContent(cctx); + if (!cctxInWorkspace) ZSTD_customFree(cctx, cctx->customMem); + } + return 0; +} + + +static size_t ZSTD_sizeof_mtctx(const ZSTD_CCtx* cctx) +{ +#ifdef ZSTD_MULTITHREAD + return ZSTDMT_sizeof_CCtx(cctx->mtctx); +#else + (void)cctx; + return 0; +#endif +} + + +size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx) +{ + if (cctx==NULL) return 0; /* support sizeof on NULL */ + /* cctx may be in the workspace */ + return (cctx->workspace.workspace == cctx ? 0 : sizeof(*cctx)) + + ZSTD_cwksp_sizeof(&cctx->workspace) + + ZSTD_sizeof_localDict(cctx->localDict) + + ZSTD_sizeof_mtctx(cctx); +} + +size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs) +{ + return ZSTD_sizeof_CCtx(zcs); /* same object */ +} + +/* private API call, for dictBuilder only */ +const SeqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx) { return &(ctx->seqStore); } + +/* Returns true if the strategy supports using a row based matchfinder */ +static int ZSTD_rowMatchFinderSupported(const ZSTD_strategy strategy) { + return (strategy >= ZSTD_greedy && strategy <= ZSTD_lazy2); +} + +/* Returns true if the strategy and useRowMatchFinder mode indicate that we will use the row based matchfinder + * for this compression. + */ +static int ZSTD_rowMatchFinderUsed(const ZSTD_strategy strategy, const ZSTD_ParamSwitch_e mode) { + assert(mode != ZSTD_ps_auto); + return ZSTD_rowMatchFinderSupported(strategy) && (mode == ZSTD_ps_enable); +} + +/* Returns row matchfinder usage given an initial mode and cParams */ +static ZSTD_ParamSwitch_e ZSTD_resolveRowMatchFinderMode(ZSTD_ParamSwitch_e mode, + const ZSTD_compressionParameters* const cParams) { + if (mode != ZSTD_ps_auto) return mode; /* if requested enabled, but no SIMD, we still will use row matchfinder */ + mode = ZSTD_ps_disable; + if (!ZSTD_rowMatchFinderSupported(cParams->strategy)) return mode; + if (cParams->windowLog > 14) mode = ZSTD_ps_enable; + return mode; +} + +/* Returns block splitter usage (generally speaking, when using slower/stronger compression modes) */ +static ZSTD_ParamSwitch_e ZSTD_resolveBlockSplitterMode(ZSTD_ParamSwitch_e mode, + const ZSTD_compressionParameters* const cParams) { + if (mode != ZSTD_ps_auto) return mode; + return (cParams->strategy >= ZSTD_btopt && cParams->windowLog >= 17) ? ZSTD_ps_enable : ZSTD_ps_disable; +} + +/* Returns 1 if the arguments indicate that we should allocate a chainTable, 0 otherwise */ +static int ZSTD_allocateChainTable(const ZSTD_strategy strategy, + const ZSTD_ParamSwitch_e useRowMatchFinder, + const U32 forDDSDict) { + assert(useRowMatchFinder != ZSTD_ps_auto); + /* We always should allocate a chaintable if we are allocating a matchstate for a DDS dictionary matchstate. + * We do not allocate a chaintable if we are using ZSTD_fast, or are using the row-based matchfinder. + */ + return forDDSDict || ((strategy != ZSTD_fast) && !ZSTD_rowMatchFinderUsed(strategy, useRowMatchFinder)); +} + +/* Returns ZSTD_ps_enable if compression parameters are such that we should + * enable long distance matching (wlog >= 27, strategy >= btopt). + * Returns ZSTD_ps_disable otherwise. + */ +static ZSTD_ParamSwitch_e ZSTD_resolveEnableLdm(ZSTD_ParamSwitch_e mode, + const ZSTD_compressionParameters* const cParams) { + if (mode != ZSTD_ps_auto) return mode; + return (cParams->strategy >= ZSTD_btopt && cParams->windowLog >= 27) ? ZSTD_ps_enable : ZSTD_ps_disable; +} + +static int ZSTD_resolveExternalSequenceValidation(int mode) { + return mode; +} + +/* Resolves maxBlockSize to the default if no value is present. */ +static size_t ZSTD_resolveMaxBlockSize(size_t maxBlockSize) { + if (maxBlockSize == 0) { + return ZSTD_BLOCKSIZE_MAX; + } else { + return maxBlockSize; + } +} + +static ZSTD_ParamSwitch_e ZSTD_resolveExternalRepcodeSearch(ZSTD_ParamSwitch_e value, int cLevel) { + if (value != ZSTD_ps_auto) return value; + if (cLevel < 10) { + return ZSTD_ps_disable; + } else { + return ZSTD_ps_enable; + } +} + +/* Returns 1 if compression parameters are such that CDict hashtable and chaintable indices are tagged. + * If so, the tags need to be removed in ZSTD_resetCCtx_byCopyingCDict. */ +static int ZSTD_CDictIndicesAreTagged(const ZSTD_compressionParameters* const cParams) { + return cParams->strategy == ZSTD_fast || cParams->strategy == ZSTD_dfast; +} + +static ZSTD_CCtx_params ZSTD_makeCCtxParamsFromCParams( + ZSTD_compressionParameters cParams) +{ + ZSTD_CCtx_params cctxParams; + /* should not matter, as all cParams are presumed properly defined */ + ZSTD_CCtxParams_init(&cctxParams, ZSTD_CLEVEL_DEFAULT); + cctxParams.cParams = cParams; + + /* Adjust advanced params according to cParams */ + cctxParams.ldmParams.enableLdm = ZSTD_resolveEnableLdm(cctxParams.ldmParams.enableLdm, &cParams); + if (cctxParams.ldmParams.enableLdm == ZSTD_ps_enable) { + ZSTD_ldm_adjustParameters(&cctxParams.ldmParams, &cParams); + assert(cctxParams.ldmParams.hashLog >= cctxParams.ldmParams.bucketSizeLog); + assert(cctxParams.ldmParams.hashRateLog < 32); + } + cctxParams.postBlockSplitter = ZSTD_resolveBlockSplitterMode(cctxParams.postBlockSplitter, &cParams); + cctxParams.useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(cctxParams.useRowMatchFinder, &cParams); + cctxParams.validateSequences = ZSTD_resolveExternalSequenceValidation(cctxParams.validateSequences); + cctxParams.maxBlockSize = ZSTD_resolveMaxBlockSize(cctxParams.maxBlockSize); + cctxParams.searchForExternalRepcodes = ZSTD_resolveExternalRepcodeSearch(cctxParams.searchForExternalRepcodes, + cctxParams.compressionLevel); + assert(!ZSTD_checkCParams(cParams)); + return cctxParams; +} + +static ZSTD_CCtx_params* ZSTD_createCCtxParams_advanced( + ZSTD_customMem customMem) +{ + ZSTD_CCtx_params* params; + if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL; + params = (ZSTD_CCtx_params*)ZSTD_customCalloc( + sizeof(ZSTD_CCtx_params), customMem); + if (!params) { return NULL; } + ZSTD_CCtxParams_init(params, ZSTD_CLEVEL_DEFAULT); + params->customMem = customMem; + return params; +} + +ZSTD_CCtx_params* ZSTD_createCCtxParams(void) +{ + return ZSTD_createCCtxParams_advanced(ZSTD_defaultCMem); +} + +size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params) +{ + if (params == NULL) { return 0; } + ZSTD_customFree(params, params->customMem); + return 0; +} + +size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params) +{ + return ZSTD_CCtxParams_init(params, ZSTD_CLEVEL_DEFAULT); +} + +size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel) { + RETURN_ERROR_IF(!cctxParams, GENERIC, "NULL pointer!"); + ZSTD_memset(cctxParams, 0, sizeof(*cctxParams)); + cctxParams->compressionLevel = compressionLevel; + cctxParams->fParams.contentSizeFlag = 1; + return 0; +} + +#define ZSTD_NO_CLEVEL 0 + +/** + * Initializes `cctxParams` from `params` and `compressionLevel`. + * @param compressionLevel If params are derived from a compression level then that compression level, otherwise ZSTD_NO_CLEVEL. + */ +static void +ZSTD_CCtxParams_init_internal(ZSTD_CCtx_params* cctxParams, + const ZSTD_parameters* params, + int compressionLevel) +{ + assert(!ZSTD_checkCParams(params->cParams)); + ZSTD_memset(cctxParams, 0, sizeof(*cctxParams)); + cctxParams->cParams = params->cParams; + cctxParams->fParams = params->fParams; + /* Should not matter, as all cParams are presumed properly defined. + * But, set it for tracing anyway. + */ + cctxParams->compressionLevel = compressionLevel; + cctxParams->useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(cctxParams->useRowMatchFinder, ¶ms->cParams); + cctxParams->postBlockSplitter = ZSTD_resolveBlockSplitterMode(cctxParams->postBlockSplitter, ¶ms->cParams); + cctxParams->ldmParams.enableLdm = ZSTD_resolveEnableLdm(cctxParams->ldmParams.enableLdm, ¶ms->cParams); + cctxParams->validateSequences = ZSTD_resolveExternalSequenceValidation(cctxParams->validateSequences); + cctxParams->maxBlockSize = ZSTD_resolveMaxBlockSize(cctxParams->maxBlockSize); + cctxParams->searchForExternalRepcodes = ZSTD_resolveExternalRepcodeSearch(cctxParams->searchForExternalRepcodes, compressionLevel); + DEBUGLOG(4, "ZSTD_CCtxParams_init_internal: useRowMatchFinder=%d, useBlockSplitter=%d ldm=%d", + cctxParams->useRowMatchFinder, cctxParams->postBlockSplitter, cctxParams->ldmParams.enableLdm); +} + +size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params) +{ + RETURN_ERROR_IF(!cctxParams, GENERIC, "NULL pointer!"); + FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) , ""); + ZSTD_CCtxParams_init_internal(cctxParams, ¶ms, ZSTD_NO_CLEVEL); + return 0; +} + +/** + * Sets cctxParams' cParams and fParams from params, but otherwise leaves them alone. + * @param params Validated zstd parameters. + */ +static void ZSTD_CCtxParams_setZstdParams( + ZSTD_CCtx_params* cctxParams, const ZSTD_parameters* params) +{ + assert(!ZSTD_checkCParams(params->cParams)); + cctxParams->cParams = params->cParams; + cctxParams->fParams = params->fParams; + /* Should not matter, as all cParams are presumed properly defined. + * But, set it for tracing anyway. + */ + cctxParams->compressionLevel = ZSTD_NO_CLEVEL; +} + +ZSTD_bounds ZSTD_cParam_getBounds(ZSTD_cParameter param) +{ + ZSTD_bounds bounds = { 0, 0, 0 }; + + switch(param) + { + case ZSTD_c_compressionLevel: + bounds.lowerBound = ZSTD_minCLevel(); + bounds.upperBound = ZSTD_maxCLevel(); + return bounds; + + case ZSTD_c_windowLog: + bounds.lowerBound = ZSTD_WINDOWLOG_MIN; + bounds.upperBound = ZSTD_WINDOWLOG_MAX; + return bounds; + + case ZSTD_c_hashLog: + bounds.lowerBound = ZSTD_HASHLOG_MIN; + bounds.upperBound = ZSTD_HASHLOG_MAX; + return bounds; + + case ZSTD_c_chainLog: + bounds.lowerBound = ZSTD_CHAINLOG_MIN; + bounds.upperBound = ZSTD_CHAINLOG_MAX; + return bounds; + + case ZSTD_c_searchLog: + bounds.lowerBound = ZSTD_SEARCHLOG_MIN; + bounds.upperBound = ZSTD_SEARCHLOG_MAX; + return bounds; + + case ZSTD_c_minMatch: + bounds.lowerBound = ZSTD_MINMATCH_MIN; + bounds.upperBound = ZSTD_MINMATCH_MAX; + return bounds; + + case ZSTD_c_targetLength: + bounds.lowerBound = ZSTD_TARGETLENGTH_MIN; + bounds.upperBound = ZSTD_TARGETLENGTH_MAX; + return bounds; + + case ZSTD_c_strategy: + bounds.lowerBound = ZSTD_STRATEGY_MIN; + bounds.upperBound = ZSTD_STRATEGY_MAX; + return bounds; + + case ZSTD_c_contentSizeFlag: + bounds.lowerBound = 0; + bounds.upperBound = 1; + return bounds; + + case ZSTD_c_checksumFlag: + bounds.lowerBound = 0; + bounds.upperBound = 1; + return bounds; + + case ZSTD_c_dictIDFlag: + bounds.lowerBound = 0; + bounds.upperBound = 1; + return bounds; + + case ZSTD_c_nbWorkers: + bounds.lowerBound = 0; +#ifdef ZSTD_MULTITHREAD + bounds.upperBound = ZSTDMT_NBWORKERS_MAX; +#else + bounds.upperBound = 0; +#endif + return bounds; + + case ZSTD_c_jobSize: + bounds.lowerBound = 0; +#ifdef ZSTD_MULTITHREAD + bounds.upperBound = ZSTDMT_JOBSIZE_MAX; +#else + bounds.upperBound = 0; +#endif + return bounds; + + case ZSTD_c_overlapLog: +#ifdef ZSTD_MULTITHREAD + bounds.lowerBound = ZSTD_OVERLAPLOG_MIN; + bounds.upperBound = ZSTD_OVERLAPLOG_MAX; +#else + bounds.lowerBound = 0; + bounds.upperBound = 0; +#endif + return bounds; + + case ZSTD_c_enableDedicatedDictSearch: + bounds.lowerBound = 0; + bounds.upperBound = 1; + return bounds; + + case ZSTD_c_enableLongDistanceMatching: + bounds.lowerBound = (int)ZSTD_ps_auto; + bounds.upperBound = (int)ZSTD_ps_disable; + return bounds; + + case ZSTD_c_ldmHashLog: + bounds.lowerBound = ZSTD_LDM_HASHLOG_MIN; + bounds.upperBound = ZSTD_LDM_HASHLOG_MAX; + return bounds; + + case ZSTD_c_ldmMinMatch: + bounds.lowerBound = ZSTD_LDM_MINMATCH_MIN; + bounds.upperBound = ZSTD_LDM_MINMATCH_MAX; + return bounds; + + case ZSTD_c_ldmBucketSizeLog: + bounds.lowerBound = ZSTD_LDM_BUCKETSIZELOG_MIN; + bounds.upperBound = ZSTD_LDM_BUCKETSIZELOG_MAX; + return bounds; + + case ZSTD_c_ldmHashRateLog: + bounds.lowerBound = ZSTD_LDM_HASHRATELOG_MIN; + bounds.upperBound = ZSTD_LDM_HASHRATELOG_MAX; + return bounds; + + /* experimental parameters */ + case ZSTD_c_rsyncable: + bounds.lowerBound = 0; + bounds.upperBound = 1; + return bounds; + + case ZSTD_c_forceMaxWindow : + bounds.lowerBound = 0; + bounds.upperBound = 1; + return bounds; + + case ZSTD_c_format: + ZSTD_STATIC_ASSERT(ZSTD_f_zstd1 < ZSTD_f_zstd1_magicless); + bounds.lowerBound = ZSTD_f_zstd1; + bounds.upperBound = ZSTD_f_zstd1_magicless; /* note : how to ensure at compile time that this is the highest value enum ? */ + return bounds; + + case ZSTD_c_forceAttachDict: + ZSTD_STATIC_ASSERT(ZSTD_dictDefaultAttach < ZSTD_dictForceLoad); + bounds.lowerBound = ZSTD_dictDefaultAttach; + bounds.upperBound = ZSTD_dictForceLoad; /* note : how to ensure at compile time that this is the highest value enum ? */ + return bounds; + + case ZSTD_c_literalCompressionMode: + ZSTD_STATIC_ASSERT(ZSTD_ps_auto < ZSTD_ps_enable && ZSTD_ps_enable < ZSTD_ps_disable); + bounds.lowerBound = (int)ZSTD_ps_auto; + bounds.upperBound = (int)ZSTD_ps_disable; + return bounds; + + case ZSTD_c_targetCBlockSize: + bounds.lowerBound = ZSTD_TARGETCBLOCKSIZE_MIN; + bounds.upperBound = ZSTD_TARGETCBLOCKSIZE_MAX; + return bounds; + + case ZSTD_c_srcSizeHint: + bounds.lowerBound = ZSTD_SRCSIZEHINT_MIN; + bounds.upperBound = ZSTD_SRCSIZEHINT_MAX; + return bounds; + + case ZSTD_c_stableInBuffer: + case ZSTD_c_stableOutBuffer: + bounds.lowerBound = (int)ZSTD_bm_buffered; + bounds.upperBound = (int)ZSTD_bm_stable; + return bounds; + + case ZSTD_c_blockDelimiters: + bounds.lowerBound = (int)ZSTD_sf_noBlockDelimiters; + bounds.upperBound = (int)ZSTD_sf_explicitBlockDelimiters; + return bounds; + + case ZSTD_c_validateSequences: + bounds.lowerBound = 0; + bounds.upperBound = 1; + return bounds; + + case ZSTD_c_splitAfterSequences: + bounds.lowerBound = (int)ZSTD_ps_auto; + bounds.upperBound = (int)ZSTD_ps_disable; + return bounds; + + case ZSTD_c_blockSplitterLevel: + bounds.lowerBound = 0; + bounds.upperBound = ZSTD_BLOCKSPLITTER_LEVEL_MAX; + return bounds; + + case ZSTD_c_useRowMatchFinder: + bounds.lowerBound = (int)ZSTD_ps_auto; + bounds.upperBound = (int)ZSTD_ps_disable; + return bounds; + + case ZSTD_c_deterministicRefPrefix: + bounds.lowerBound = 0; + bounds.upperBound = 1; + return bounds; + + case ZSTD_c_prefetchCDictTables: + bounds.lowerBound = (int)ZSTD_ps_auto; + bounds.upperBound = (int)ZSTD_ps_disable; + return bounds; + + case ZSTD_c_enableSeqProducerFallback: + bounds.lowerBound = 0; + bounds.upperBound = 1; + return bounds; + + case ZSTD_c_maxBlockSize: + bounds.lowerBound = ZSTD_BLOCKSIZE_MAX_MIN; + bounds.upperBound = ZSTD_BLOCKSIZE_MAX; + return bounds; + + case ZSTD_c_repcodeResolution: + bounds.lowerBound = (int)ZSTD_ps_auto; + bounds.upperBound = (int)ZSTD_ps_disable; + return bounds; + + default: + bounds.error = ERROR(parameter_unsupported); + return bounds; + } +} + +/* ZSTD_cParam_clampBounds: + * Clamps the value into the bounded range. + */ +static size_t ZSTD_cParam_clampBounds(ZSTD_cParameter cParam, int* value) +{ + ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); + if (ZSTD_isError(bounds.error)) return bounds.error; + if (*value < bounds.lowerBound) *value = bounds.lowerBound; + if (*value > bounds.upperBound) *value = bounds.upperBound; + return 0; +} + +#define BOUNDCHECK(cParam, val) \ + do { \ + RETURN_ERROR_IF(!ZSTD_cParam_withinBounds(cParam,val), \ + parameter_outOfBound, "Param out of bounds"); \ + } while (0) + + +static int ZSTD_isUpdateAuthorized(ZSTD_cParameter param) +{ + switch(param) + { + case ZSTD_c_compressionLevel: + case ZSTD_c_hashLog: + case ZSTD_c_chainLog: + case ZSTD_c_searchLog: + case ZSTD_c_minMatch: + case ZSTD_c_targetLength: + case ZSTD_c_strategy: + case ZSTD_c_blockSplitterLevel: + return 1; + + case ZSTD_c_format: + case ZSTD_c_windowLog: + case ZSTD_c_contentSizeFlag: + case ZSTD_c_checksumFlag: + case ZSTD_c_dictIDFlag: + case ZSTD_c_forceMaxWindow : + case ZSTD_c_nbWorkers: + case ZSTD_c_jobSize: + case ZSTD_c_overlapLog: + case ZSTD_c_rsyncable: + case ZSTD_c_enableDedicatedDictSearch: + case ZSTD_c_enableLongDistanceMatching: + case ZSTD_c_ldmHashLog: + case ZSTD_c_ldmMinMatch: + case ZSTD_c_ldmBucketSizeLog: + case ZSTD_c_ldmHashRateLog: + case ZSTD_c_forceAttachDict: + case ZSTD_c_literalCompressionMode: + case ZSTD_c_targetCBlockSize: + case ZSTD_c_srcSizeHint: + case ZSTD_c_stableInBuffer: + case ZSTD_c_stableOutBuffer: + case ZSTD_c_blockDelimiters: + case ZSTD_c_validateSequences: + case ZSTD_c_splitAfterSequences: + case ZSTD_c_useRowMatchFinder: + case ZSTD_c_deterministicRefPrefix: + case ZSTD_c_prefetchCDictTables: + case ZSTD_c_enableSeqProducerFallback: + case ZSTD_c_maxBlockSize: + case ZSTD_c_repcodeResolution: + default: + return 0; + } +} + +size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int value) +{ + DEBUGLOG(4, "ZSTD_CCtx_setParameter (%i, %i)", (int)param, value); + if (cctx->streamStage != zcss_init) { + if (ZSTD_isUpdateAuthorized(param)) { + cctx->cParamsChanged = 1; + } else { + RETURN_ERROR(stage_wrong, "can only set params in cctx init stage"); + } } + + switch(param) + { + case ZSTD_c_nbWorkers: + RETURN_ERROR_IF((value!=0) && cctx->staticSize, parameter_unsupported, + "MT not compatible with static alloc"); + break; + + case ZSTD_c_compressionLevel: + case ZSTD_c_windowLog: + case ZSTD_c_hashLog: + case ZSTD_c_chainLog: + case ZSTD_c_searchLog: + case ZSTD_c_minMatch: + case ZSTD_c_targetLength: + case ZSTD_c_strategy: + case ZSTD_c_ldmHashRateLog: + case ZSTD_c_format: + case ZSTD_c_contentSizeFlag: + case ZSTD_c_checksumFlag: + case ZSTD_c_dictIDFlag: + case ZSTD_c_forceMaxWindow: + case ZSTD_c_forceAttachDict: + case ZSTD_c_literalCompressionMode: + case ZSTD_c_jobSize: + case ZSTD_c_overlapLog: + case ZSTD_c_rsyncable: + case ZSTD_c_enableDedicatedDictSearch: + case ZSTD_c_enableLongDistanceMatching: + case ZSTD_c_ldmHashLog: + case ZSTD_c_ldmMinMatch: + case ZSTD_c_ldmBucketSizeLog: + case ZSTD_c_targetCBlockSize: + case ZSTD_c_srcSizeHint: + case ZSTD_c_stableInBuffer: + case ZSTD_c_stableOutBuffer: + case ZSTD_c_blockDelimiters: + case ZSTD_c_validateSequences: + case ZSTD_c_splitAfterSequences: + case ZSTD_c_blockSplitterLevel: + case ZSTD_c_useRowMatchFinder: + case ZSTD_c_deterministicRefPrefix: + case ZSTD_c_prefetchCDictTables: + case ZSTD_c_enableSeqProducerFallback: + case ZSTD_c_maxBlockSize: + case ZSTD_c_repcodeResolution: + break; + + default: RETURN_ERROR(parameter_unsupported, "unknown parameter"); + } + return ZSTD_CCtxParams_setParameter(&cctx->requestedParams, param, value); +} + +size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* CCtxParams, + ZSTD_cParameter param, int value) +{ + DEBUGLOG(4, "ZSTD_CCtxParams_setParameter (%i, %i)", (int)param, value); + switch(param) + { + case ZSTD_c_format : + BOUNDCHECK(ZSTD_c_format, value); + CCtxParams->format = (ZSTD_format_e)value; + return (size_t)CCtxParams->format; + + case ZSTD_c_compressionLevel : { + FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value), ""); + if (value == 0) + CCtxParams->compressionLevel = ZSTD_CLEVEL_DEFAULT; /* 0 == default */ + else + CCtxParams->compressionLevel = value; + if (CCtxParams->compressionLevel >= 0) return (size_t)CCtxParams->compressionLevel; + return 0; /* return type (size_t) cannot represent negative values */ + } + + case ZSTD_c_windowLog : + if (value!=0) /* 0 => use default */ + BOUNDCHECK(ZSTD_c_windowLog, value); + CCtxParams->cParams.windowLog = (U32)value; + return CCtxParams->cParams.windowLog; + + case ZSTD_c_hashLog : + if (value!=0) /* 0 => use default */ + BOUNDCHECK(ZSTD_c_hashLog, value); + CCtxParams->cParams.hashLog = (U32)value; + return CCtxParams->cParams.hashLog; + + case ZSTD_c_chainLog : + if (value!=0) /* 0 => use default */ + BOUNDCHECK(ZSTD_c_chainLog, value); + CCtxParams->cParams.chainLog = (U32)value; + return CCtxParams->cParams.chainLog; + + case ZSTD_c_searchLog : + if (value!=0) /* 0 => use default */ + BOUNDCHECK(ZSTD_c_searchLog, value); + CCtxParams->cParams.searchLog = (U32)value; + return (size_t)value; + + case ZSTD_c_minMatch : + if (value!=0) /* 0 => use default */ + BOUNDCHECK(ZSTD_c_minMatch, value); + CCtxParams->cParams.minMatch = (U32)value; + return CCtxParams->cParams.minMatch; + + case ZSTD_c_targetLength : + BOUNDCHECK(ZSTD_c_targetLength, value); + CCtxParams->cParams.targetLength = (U32)value; + return CCtxParams->cParams.targetLength; + + case ZSTD_c_strategy : + if (value!=0) /* 0 => use default */ + BOUNDCHECK(ZSTD_c_strategy, value); + CCtxParams->cParams.strategy = (ZSTD_strategy)value; + return (size_t)CCtxParams->cParams.strategy; + + case ZSTD_c_contentSizeFlag : + /* Content size written in frame header _when known_ (default:1) */ + DEBUGLOG(4, "set content size flag = %u", (value!=0)); + CCtxParams->fParams.contentSizeFlag = value != 0; + return (size_t)CCtxParams->fParams.contentSizeFlag; + + case ZSTD_c_checksumFlag : + /* A 32-bits content checksum will be calculated and written at end of frame (default:0) */ + CCtxParams->fParams.checksumFlag = value != 0; + return (size_t)CCtxParams->fParams.checksumFlag; + + case ZSTD_c_dictIDFlag : /* When applicable, dictionary's dictID is provided in frame header (default:1) */ + DEBUGLOG(4, "set dictIDFlag = %u", (value!=0)); + CCtxParams->fParams.noDictIDFlag = !value; + return !CCtxParams->fParams.noDictIDFlag; + + case ZSTD_c_forceMaxWindow : + CCtxParams->forceWindow = (value != 0); + return (size_t)CCtxParams->forceWindow; + + case ZSTD_c_forceAttachDict : { + const ZSTD_dictAttachPref_e pref = (ZSTD_dictAttachPref_e)value; + BOUNDCHECK(ZSTD_c_forceAttachDict, (int)pref); + CCtxParams->attachDictPref = pref; + return CCtxParams->attachDictPref; + } + + case ZSTD_c_literalCompressionMode : { + const ZSTD_ParamSwitch_e lcm = (ZSTD_ParamSwitch_e)value; + BOUNDCHECK(ZSTD_c_literalCompressionMode, (int)lcm); + CCtxParams->literalCompressionMode = lcm; + return CCtxParams->literalCompressionMode; + } + + case ZSTD_c_nbWorkers : +#ifndef ZSTD_MULTITHREAD + RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading"); + return 0; +#else + FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value), ""); + CCtxParams->nbWorkers = value; + return (size_t)(CCtxParams->nbWorkers); +#endif + + case ZSTD_c_jobSize : +#ifndef ZSTD_MULTITHREAD + RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading"); + return 0; +#else + /* Adjust to the minimum non-default value. */ + if (value != 0 && value < ZSTDMT_JOBSIZE_MIN) + value = ZSTDMT_JOBSIZE_MIN; + FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value), ""); + assert(value >= 0); + CCtxParams->jobSize = (size_t)value; + return CCtxParams->jobSize; +#endif + + case ZSTD_c_overlapLog : +#ifndef ZSTD_MULTITHREAD + RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading"); + return 0; +#else + FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(ZSTD_c_overlapLog, &value), ""); + CCtxParams->overlapLog = value; + return (size_t)CCtxParams->overlapLog; +#endif + + case ZSTD_c_rsyncable : +#ifndef ZSTD_MULTITHREAD + RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading"); + return 0; +#else + FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(ZSTD_c_overlapLog, &value), ""); + CCtxParams->rsyncable = value; + return (size_t)CCtxParams->rsyncable; +#endif + + case ZSTD_c_enableDedicatedDictSearch : + CCtxParams->enableDedicatedDictSearch = (value!=0); + return (size_t)CCtxParams->enableDedicatedDictSearch; + + case ZSTD_c_enableLongDistanceMatching : + BOUNDCHECK(ZSTD_c_enableLongDistanceMatching, value); + CCtxParams->ldmParams.enableLdm = (ZSTD_ParamSwitch_e)value; + return CCtxParams->ldmParams.enableLdm; + + case ZSTD_c_ldmHashLog : + if (value!=0) /* 0 ==> auto */ + BOUNDCHECK(ZSTD_c_ldmHashLog, value); + CCtxParams->ldmParams.hashLog = (U32)value; + return CCtxParams->ldmParams.hashLog; + + case ZSTD_c_ldmMinMatch : + if (value!=0) /* 0 ==> default */ + BOUNDCHECK(ZSTD_c_ldmMinMatch, value); + CCtxParams->ldmParams.minMatchLength = (U32)value; + return CCtxParams->ldmParams.minMatchLength; + + case ZSTD_c_ldmBucketSizeLog : + if (value!=0) /* 0 ==> default */ + BOUNDCHECK(ZSTD_c_ldmBucketSizeLog, value); + CCtxParams->ldmParams.bucketSizeLog = (U32)value; + return CCtxParams->ldmParams.bucketSizeLog; + + case ZSTD_c_ldmHashRateLog : + if (value!=0) /* 0 ==> default */ + BOUNDCHECK(ZSTD_c_ldmHashRateLog, value); + CCtxParams->ldmParams.hashRateLog = (U32)value; + return CCtxParams->ldmParams.hashRateLog; + + case ZSTD_c_targetCBlockSize : + if (value!=0) { /* 0 ==> default */ + value = MAX(value, ZSTD_TARGETCBLOCKSIZE_MIN); + BOUNDCHECK(ZSTD_c_targetCBlockSize, value); + } + CCtxParams->targetCBlockSize = (U32)value; + return CCtxParams->targetCBlockSize; + + case ZSTD_c_srcSizeHint : + if (value!=0) /* 0 ==> default */ + BOUNDCHECK(ZSTD_c_srcSizeHint, value); + CCtxParams->srcSizeHint = value; + return (size_t)CCtxParams->srcSizeHint; + + case ZSTD_c_stableInBuffer: + BOUNDCHECK(ZSTD_c_stableInBuffer, value); + CCtxParams->inBufferMode = (ZSTD_bufferMode_e)value; + return CCtxParams->inBufferMode; + + case ZSTD_c_stableOutBuffer: + BOUNDCHECK(ZSTD_c_stableOutBuffer, value); + CCtxParams->outBufferMode = (ZSTD_bufferMode_e)value; + return CCtxParams->outBufferMode; + + case ZSTD_c_blockDelimiters: + BOUNDCHECK(ZSTD_c_blockDelimiters, value); + CCtxParams->blockDelimiters = (ZSTD_SequenceFormat_e)value; + return CCtxParams->blockDelimiters; + + case ZSTD_c_validateSequences: + BOUNDCHECK(ZSTD_c_validateSequences, value); + CCtxParams->validateSequences = value; + return (size_t)CCtxParams->validateSequences; + + case ZSTD_c_splitAfterSequences: + BOUNDCHECK(ZSTD_c_splitAfterSequences, value); + CCtxParams->postBlockSplitter = (ZSTD_ParamSwitch_e)value; + return CCtxParams->postBlockSplitter; + + case ZSTD_c_blockSplitterLevel: + BOUNDCHECK(ZSTD_c_blockSplitterLevel, value); + CCtxParams->preBlockSplitter_level = value; + return (size_t)CCtxParams->preBlockSplitter_level; + + case ZSTD_c_useRowMatchFinder: + BOUNDCHECK(ZSTD_c_useRowMatchFinder, value); + CCtxParams->useRowMatchFinder = (ZSTD_ParamSwitch_e)value; + return CCtxParams->useRowMatchFinder; + + case ZSTD_c_deterministicRefPrefix: + BOUNDCHECK(ZSTD_c_deterministicRefPrefix, value); + CCtxParams->deterministicRefPrefix = !!value; + return (size_t)CCtxParams->deterministicRefPrefix; + + case ZSTD_c_prefetchCDictTables: + BOUNDCHECK(ZSTD_c_prefetchCDictTables, value); + CCtxParams->prefetchCDictTables = (ZSTD_ParamSwitch_e)value; + return CCtxParams->prefetchCDictTables; + + case ZSTD_c_enableSeqProducerFallback: + BOUNDCHECK(ZSTD_c_enableSeqProducerFallback, value); + CCtxParams->enableMatchFinderFallback = value; + return (size_t)CCtxParams->enableMatchFinderFallback; + + case ZSTD_c_maxBlockSize: + if (value!=0) /* 0 ==> default */ + BOUNDCHECK(ZSTD_c_maxBlockSize, value); + assert(value>=0); + CCtxParams->maxBlockSize = (size_t)value; + return CCtxParams->maxBlockSize; + + case ZSTD_c_repcodeResolution: + BOUNDCHECK(ZSTD_c_repcodeResolution, value); + CCtxParams->searchForExternalRepcodes = (ZSTD_ParamSwitch_e)value; + return CCtxParams->searchForExternalRepcodes; + + default: RETURN_ERROR(parameter_unsupported, "unknown parameter"); + } +} + +size_t ZSTD_CCtx_getParameter(ZSTD_CCtx const* cctx, ZSTD_cParameter param, int* value) +{ + return ZSTD_CCtxParams_getParameter(&cctx->requestedParams, param, value); +} + +size_t ZSTD_CCtxParams_getParameter( + ZSTD_CCtx_params const* CCtxParams, ZSTD_cParameter param, int* value) +{ + switch(param) + { + case ZSTD_c_format : + *value = (int)CCtxParams->format; + break; + case ZSTD_c_compressionLevel : + *value = CCtxParams->compressionLevel; + break; + case ZSTD_c_windowLog : + *value = (int)CCtxParams->cParams.windowLog; + break; + case ZSTD_c_hashLog : + *value = (int)CCtxParams->cParams.hashLog; + break; + case ZSTD_c_chainLog : + *value = (int)CCtxParams->cParams.chainLog; + break; + case ZSTD_c_searchLog : + *value = (int)CCtxParams->cParams.searchLog; + break; + case ZSTD_c_minMatch : + *value = (int)CCtxParams->cParams.minMatch; + break; + case ZSTD_c_targetLength : + *value = (int)CCtxParams->cParams.targetLength; + break; + case ZSTD_c_strategy : + *value = (int)CCtxParams->cParams.strategy; + break; + case ZSTD_c_contentSizeFlag : + *value = CCtxParams->fParams.contentSizeFlag; + break; + case ZSTD_c_checksumFlag : + *value = CCtxParams->fParams.checksumFlag; + break; + case ZSTD_c_dictIDFlag : + *value = !CCtxParams->fParams.noDictIDFlag; + break; + case ZSTD_c_forceMaxWindow : + *value = CCtxParams->forceWindow; + break; + case ZSTD_c_forceAttachDict : + *value = (int)CCtxParams->attachDictPref; + break; + case ZSTD_c_literalCompressionMode : + *value = (int)CCtxParams->literalCompressionMode; + break; + case ZSTD_c_nbWorkers : +#ifndef ZSTD_MULTITHREAD + assert(CCtxParams->nbWorkers == 0); +#endif + *value = CCtxParams->nbWorkers; + break; + case ZSTD_c_jobSize : +#ifndef ZSTD_MULTITHREAD + RETURN_ERROR(parameter_unsupported, "not compiled with multithreading"); +#else + assert(CCtxParams->jobSize <= INT_MAX); + *value = (int)CCtxParams->jobSize; + break; +#endif + case ZSTD_c_overlapLog : +#ifndef ZSTD_MULTITHREAD + RETURN_ERROR(parameter_unsupported, "not compiled with multithreading"); +#else + *value = CCtxParams->overlapLog; + break; +#endif + case ZSTD_c_rsyncable : +#ifndef ZSTD_MULTITHREAD + RETURN_ERROR(parameter_unsupported, "not compiled with multithreading"); +#else + *value = CCtxParams->rsyncable; + break; +#endif + case ZSTD_c_enableDedicatedDictSearch : + *value = CCtxParams->enableDedicatedDictSearch; + break; + case ZSTD_c_enableLongDistanceMatching : + *value = (int)CCtxParams->ldmParams.enableLdm; + break; + case ZSTD_c_ldmHashLog : + *value = (int)CCtxParams->ldmParams.hashLog; + break; + case ZSTD_c_ldmMinMatch : + *value = (int)CCtxParams->ldmParams.minMatchLength; + break; + case ZSTD_c_ldmBucketSizeLog : + *value = (int)CCtxParams->ldmParams.bucketSizeLog; + break; + case ZSTD_c_ldmHashRateLog : + *value = (int)CCtxParams->ldmParams.hashRateLog; + break; + case ZSTD_c_targetCBlockSize : + *value = (int)CCtxParams->targetCBlockSize; + break; + case ZSTD_c_srcSizeHint : + *value = (int)CCtxParams->srcSizeHint; + break; + case ZSTD_c_stableInBuffer : + *value = (int)CCtxParams->inBufferMode; + break; + case ZSTD_c_stableOutBuffer : + *value = (int)CCtxParams->outBufferMode; + break; + case ZSTD_c_blockDelimiters : + *value = (int)CCtxParams->blockDelimiters; + break; + case ZSTD_c_validateSequences : + *value = (int)CCtxParams->validateSequences; + break; + case ZSTD_c_splitAfterSequences : + *value = (int)CCtxParams->postBlockSplitter; + break; + case ZSTD_c_blockSplitterLevel : + *value = CCtxParams->preBlockSplitter_level; + break; + case ZSTD_c_useRowMatchFinder : + *value = (int)CCtxParams->useRowMatchFinder; + break; + case ZSTD_c_deterministicRefPrefix: + *value = (int)CCtxParams->deterministicRefPrefix; + break; + case ZSTD_c_prefetchCDictTables: + *value = (int)CCtxParams->prefetchCDictTables; + break; + case ZSTD_c_enableSeqProducerFallback: + *value = CCtxParams->enableMatchFinderFallback; + break; + case ZSTD_c_maxBlockSize: + *value = (int)CCtxParams->maxBlockSize; + break; + case ZSTD_c_repcodeResolution: + *value = (int)CCtxParams->searchForExternalRepcodes; + break; + default: RETURN_ERROR(parameter_unsupported, "unknown parameter"); + } + return 0; +} + +/** ZSTD_CCtx_setParametersUsingCCtxParams() : + * just applies `params` into `cctx` + * no action is performed, parameters are merely stored. + * If ZSTDMT is enabled, parameters are pushed to cctx->mtctx. + * This is possible even if a compression is ongoing. + * In which case, new parameters will be applied on the fly, starting with next compression job. + */ +size_t ZSTD_CCtx_setParametersUsingCCtxParams( + ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params) +{ + DEBUGLOG(4, "ZSTD_CCtx_setParametersUsingCCtxParams"); + RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong, + "The context is in the wrong stage!"); + RETURN_ERROR_IF(cctx->cdict, stage_wrong, + "Can't override parameters with cdict attached (some must " + "be inherited from the cdict)."); + + cctx->requestedParams = *params; + return 0; +} + +size_t ZSTD_CCtx_setCParams(ZSTD_CCtx* cctx, ZSTD_compressionParameters cparams) +{ + ZSTD_STATIC_ASSERT(sizeof(cparams) == 7 * 4 /* all params are listed below */); + DEBUGLOG(4, "ZSTD_CCtx_setCParams"); + /* only update if all parameters are valid */ + FORWARD_IF_ERROR(ZSTD_checkCParams(cparams), ""); + FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(cctx, ZSTD_c_windowLog, (int)cparams.windowLog), ""); + FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(cctx, ZSTD_c_chainLog, (int)cparams.chainLog), ""); + FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(cctx, ZSTD_c_hashLog, (int)cparams.hashLog), ""); + FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(cctx, ZSTD_c_searchLog, (int)cparams.searchLog), ""); + FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(cctx, ZSTD_c_minMatch, (int)cparams.minMatch), ""); + FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(cctx, ZSTD_c_targetLength, (int)cparams.targetLength), ""); + FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(cctx, ZSTD_c_strategy, (int)cparams.strategy), ""); + return 0; +} + +size_t ZSTD_CCtx_setFParams(ZSTD_CCtx* cctx, ZSTD_frameParameters fparams) +{ + ZSTD_STATIC_ASSERT(sizeof(fparams) == 3 * 4 /* all params are listed below */); + DEBUGLOG(4, "ZSTD_CCtx_setFParams"); + FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(cctx, ZSTD_c_contentSizeFlag, fparams.contentSizeFlag != 0), ""); + FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(cctx, ZSTD_c_checksumFlag, fparams.checksumFlag != 0), ""); + FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(cctx, ZSTD_c_dictIDFlag, fparams.noDictIDFlag == 0), ""); + return 0; +} + +size_t ZSTD_CCtx_setParams(ZSTD_CCtx* cctx, ZSTD_parameters params) +{ + DEBUGLOG(4, "ZSTD_CCtx_setParams"); + /* First check cParams, because we want to update all or none. */ + FORWARD_IF_ERROR(ZSTD_checkCParams(params.cParams), ""); + /* Next set fParams, because this could fail if the cctx isn't in init stage. */ + FORWARD_IF_ERROR(ZSTD_CCtx_setFParams(cctx, params.fParams), ""); + /* Finally set cParams, which should succeed. */ + FORWARD_IF_ERROR(ZSTD_CCtx_setCParams(cctx, params.cParams), ""); + return 0; +} + +size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize) +{ + DEBUGLOG(4, "ZSTD_CCtx_setPledgedSrcSize to %llu bytes", pledgedSrcSize); + RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong, + "Can't set pledgedSrcSize when not in init stage."); + cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1; + return 0; +} + +static ZSTD_compressionParameters ZSTD_dedicatedDictSearch_getCParams( + int const compressionLevel, + size_t const dictSize); +static int ZSTD_dedicatedDictSearch_isSupported( + const ZSTD_compressionParameters* cParams); +static void ZSTD_dedicatedDictSearch_revertCParams( + ZSTD_compressionParameters* cParams); + +/** + * Initializes the local dictionary using requested parameters. + * NOTE: Initialization does not employ the pledged src size, + * because the dictionary may be used for multiple compressions. + */ +static size_t ZSTD_initLocalDict(ZSTD_CCtx* cctx) +{ + ZSTD_localDict* const dl = &cctx->localDict; + if (dl->dict == NULL) { + /* No local dictionary. */ + assert(dl->dictBuffer == NULL); + assert(dl->cdict == NULL); + assert(dl->dictSize == 0); + return 0; + } + if (dl->cdict != NULL) { + /* Local dictionary already initialized. */ + assert(cctx->cdict == dl->cdict); + return 0; + } + assert(dl->dictSize > 0); + assert(cctx->cdict == NULL); + assert(cctx->prefixDict.dict == NULL); + + dl->cdict = ZSTD_createCDict_advanced2( + dl->dict, + dl->dictSize, + ZSTD_dlm_byRef, + dl->dictContentType, + &cctx->requestedParams, + cctx->customMem); + RETURN_ERROR_IF(!dl->cdict, memory_allocation, "ZSTD_createCDict_advanced failed"); + cctx->cdict = dl->cdict; + return 0; +} + +size_t ZSTD_CCtx_loadDictionary_advanced( + ZSTD_CCtx* cctx, + const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType) +{ + DEBUGLOG(4, "ZSTD_CCtx_loadDictionary_advanced (size: %u)", (U32)dictSize); + RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong, + "Can't load a dictionary when cctx is not in init stage."); + ZSTD_clearAllDicts(cctx); /* erase any previously set dictionary */ + if (dict == NULL || dictSize == 0) /* no dictionary */ + return 0; + if (dictLoadMethod == ZSTD_dlm_byRef) { + cctx->localDict.dict = dict; + } else { + /* copy dictionary content inside CCtx to own its lifetime */ + void* dictBuffer; + RETURN_ERROR_IF(cctx->staticSize, memory_allocation, + "static CCtx can't allocate for an internal copy of dictionary"); + dictBuffer = ZSTD_customMalloc(dictSize, cctx->customMem); + RETURN_ERROR_IF(dictBuffer==NULL, memory_allocation, + "allocation failed for dictionary content"); + ZSTD_memcpy(dictBuffer, dict, dictSize); + cctx->localDict.dictBuffer = dictBuffer; /* owned ptr to free */ + cctx->localDict.dict = dictBuffer; /* read-only reference */ + } + cctx->localDict.dictSize = dictSize; + cctx->localDict.dictContentType = dictContentType; + return 0; +} + +size_t ZSTD_CCtx_loadDictionary_byReference( + ZSTD_CCtx* cctx, const void* dict, size_t dictSize) +{ + return ZSTD_CCtx_loadDictionary_advanced( + cctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto); +} + +size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize) +{ + return ZSTD_CCtx_loadDictionary_advanced( + cctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto); +} + + +size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict) +{ + RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong, + "Can't ref a dict when ctx not in init stage."); + /* Free the existing local cdict (if any) to save memory. */ + ZSTD_clearAllDicts(cctx); + cctx->cdict = cdict; + return 0; +} + +size_t ZSTD_CCtx_refThreadPool(ZSTD_CCtx* cctx, ZSTD_threadPool* pool) +{ + RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong, + "Can't ref a pool when ctx not in init stage."); + cctx->pool = pool; + return 0; +} + +size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize) +{ + return ZSTD_CCtx_refPrefix_advanced(cctx, prefix, prefixSize, ZSTD_dct_rawContent); +} + +size_t ZSTD_CCtx_refPrefix_advanced( + ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType) +{ + RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong, + "Can't ref a prefix when ctx not in init stage."); + ZSTD_clearAllDicts(cctx); + if (prefix != NULL && prefixSize > 0) { + cctx->prefixDict.dict = prefix; + cctx->prefixDict.dictSize = prefixSize; + cctx->prefixDict.dictContentType = dictContentType; + } + return 0; +} + +/*! ZSTD_CCtx_reset() : + * Also dumps dictionary */ +size_t ZSTD_CCtx_reset(ZSTD_CCtx* cctx, ZSTD_ResetDirective reset) +{ + if ( (reset == ZSTD_reset_session_only) + || (reset == ZSTD_reset_session_and_parameters) ) { + cctx->streamStage = zcss_init; + cctx->pledgedSrcSizePlusOne = 0; + } + if ( (reset == ZSTD_reset_parameters) + || (reset == ZSTD_reset_session_and_parameters) ) { + RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong, + "Reset parameters is only possible during init stage."); + ZSTD_clearAllDicts(cctx); + return ZSTD_CCtxParams_reset(&cctx->requestedParams); + } + return 0; +} + + +/** ZSTD_checkCParams() : + control CParam values remain within authorized range. + @return : 0, or an error code if one value is beyond authorized range */ +size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams) +{ + BOUNDCHECK(ZSTD_c_windowLog, (int)cParams.windowLog); + BOUNDCHECK(ZSTD_c_chainLog, (int)cParams.chainLog); + BOUNDCHECK(ZSTD_c_hashLog, (int)cParams.hashLog); + BOUNDCHECK(ZSTD_c_searchLog, (int)cParams.searchLog); + BOUNDCHECK(ZSTD_c_minMatch, (int)cParams.minMatch); + BOUNDCHECK(ZSTD_c_targetLength,(int)cParams.targetLength); + BOUNDCHECK(ZSTD_c_strategy, (int)cParams.strategy); + return 0; +} + +/** ZSTD_clampCParams() : + * make CParam values within valid range. + * @return : valid CParams */ +static ZSTD_compressionParameters +ZSTD_clampCParams(ZSTD_compressionParameters cParams) +{ +# define CLAMP_TYPE(cParam, val, type) \ + do { \ + ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); \ + if ((int)valbounds.upperBound) val=(type)bounds.upperBound; \ + } while (0) +# define CLAMP(cParam, val) CLAMP_TYPE(cParam, val, unsigned) + CLAMP(ZSTD_c_windowLog, cParams.windowLog); + CLAMP(ZSTD_c_chainLog, cParams.chainLog); + CLAMP(ZSTD_c_hashLog, cParams.hashLog); + CLAMP(ZSTD_c_searchLog, cParams.searchLog); + CLAMP(ZSTD_c_minMatch, cParams.minMatch); + CLAMP(ZSTD_c_targetLength,cParams.targetLength); + CLAMP_TYPE(ZSTD_c_strategy,cParams.strategy, ZSTD_strategy); + return cParams; +} + +/** ZSTD_cycleLog() : + * condition for correct operation : hashLog > 1 */ +U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat) +{ + U32 const btScale = ((U32)strat >= (U32)ZSTD_btlazy2); + return hashLog - btScale; +} + +/** ZSTD_dictAndWindowLog() : + * Returns an adjusted window log that is large enough to fit the source and the dictionary. + * The zstd format says that the entire dictionary is valid if one byte of the dictionary + * is within the window. So the hashLog and chainLog should be large enough to reference both + * the dictionary and the window. So we must use this adjusted dictAndWindowLog when downsizing + * the hashLog and windowLog. + * NOTE: srcSize must not be ZSTD_CONTENTSIZE_UNKNOWN. + */ +static U32 ZSTD_dictAndWindowLog(U32 windowLog, U64 srcSize, U64 dictSize) +{ + const U64 maxWindowSize = 1ULL << ZSTD_WINDOWLOG_MAX; + /* No dictionary ==> No change */ + if (dictSize == 0) { + return windowLog; + } + assert(windowLog <= ZSTD_WINDOWLOG_MAX); + assert(srcSize != ZSTD_CONTENTSIZE_UNKNOWN); /* Handled in ZSTD_adjustCParams_internal() */ + { + U64 const windowSize = 1ULL << windowLog; + U64 const dictAndWindowSize = dictSize + windowSize; + /* If the window size is already large enough to fit both the source and the dictionary + * then just use the window size. Otherwise adjust so that it fits the dictionary and + * the window. + */ + if (windowSize >= dictSize + srcSize) { + return windowLog; /* Window size large enough already */ + } else if (dictAndWindowSize >= maxWindowSize) { + return ZSTD_WINDOWLOG_MAX; /* Larger than max window log */ + } else { + return ZSTD_highbit32((U32)dictAndWindowSize - 1) + 1; + } + } +} + +/** ZSTD_adjustCParams_internal() : + * optimize `cPar` for a specified input (`srcSize` and `dictSize`). + * mostly downsize to reduce memory consumption and initialization latency. + * `srcSize` can be ZSTD_CONTENTSIZE_UNKNOWN when not known. + * `mode` is the mode for parameter adjustment. See docs for `ZSTD_CParamMode_e`. + * note : `srcSize==0` means 0! + * condition : cPar is presumed validated (can be checked using ZSTD_checkCParams()). */ +static ZSTD_compressionParameters +ZSTD_adjustCParams_internal(ZSTD_compressionParameters cPar, + unsigned long long srcSize, + size_t dictSize, + ZSTD_CParamMode_e mode, + ZSTD_ParamSwitch_e useRowMatchFinder) +{ + const U64 minSrcSize = 513; /* (1<<9) + 1 */ + const U64 maxWindowResize = 1ULL << (ZSTD_WINDOWLOG_MAX-1); + assert(ZSTD_checkCParams(cPar)==0); + + /* Cascade the selected strategy down to the next-highest one built into + * this binary. */ +#ifdef ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR + if (cPar.strategy == ZSTD_btultra2) { + cPar.strategy = ZSTD_btultra; + } + if (cPar.strategy == ZSTD_btultra) { + cPar.strategy = ZSTD_btopt; + } +#endif +#ifdef ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR + if (cPar.strategy == ZSTD_btopt) { + cPar.strategy = ZSTD_btlazy2; + } +#endif +#ifdef ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR + if (cPar.strategy == ZSTD_btlazy2) { + cPar.strategy = ZSTD_lazy2; + } +#endif +#ifdef ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR + if (cPar.strategy == ZSTD_lazy2) { + cPar.strategy = ZSTD_lazy; + } +#endif +#ifdef ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR + if (cPar.strategy == ZSTD_lazy) { + cPar.strategy = ZSTD_greedy; + } +#endif +#ifdef ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR + if (cPar.strategy == ZSTD_greedy) { + cPar.strategy = ZSTD_dfast; + } +#endif +#ifdef ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR + if (cPar.strategy == ZSTD_dfast) { + cPar.strategy = ZSTD_fast; + cPar.targetLength = 0; + } +#endif + + switch (mode) { + case ZSTD_cpm_unknown: + case ZSTD_cpm_noAttachDict: + /* If we don't know the source size, don't make any + * assumptions about it. We will already have selected + * smaller parameters if a dictionary is in use. + */ + break; + case ZSTD_cpm_createCDict: + /* Assume a small source size when creating a dictionary + * with an unknown source size. + */ + if (dictSize && srcSize == ZSTD_CONTENTSIZE_UNKNOWN) + srcSize = minSrcSize; + break; + case ZSTD_cpm_attachDict: + /* Dictionary has its own dedicated parameters which have + * already been selected. We are selecting parameters + * for only the source. + */ + dictSize = 0; + break; + default: + assert(0); + break; + } + + /* resize windowLog if input is small enough, to use less memory */ + if ( (srcSize <= maxWindowResize) + && (dictSize <= maxWindowResize) ) { + U32 const tSize = (U32)(srcSize + dictSize); + static U32 const hashSizeMin = 1 << ZSTD_HASHLOG_MIN; + U32 const srcLog = (tSize < hashSizeMin) ? ZSTD_HASHLOG_MIN : + ZSTD_highbit32(tSize-1) + 1; + if (cPar.windowLog > srcLog) cPar.windowLog = srcLog; + } + if (srcSize != ZSTD_CONTENTSIZE_UNKNOWN) { + U32 const dictAndWindowLog = ZSTD_dictAndWindowLog(cPar.windowLog, (U64)srcSize, (U64)dictSize); + U32 const cycleLog = ZSTD_cycleLog(cPar.chainLog, cPar.strategy); + if (cPar.hashLog > dictAndWindowLog+1) cPar.hashLog = dictAndWindowLog+1; + if (cycleLog > dictAndWindowLog) + cPar.chainLog -= (cycleLog - dictAndWindowLog); + } + + if (cPar.windowLog < ZSTD_WINDOWLOG_ABSOLUTEMIN) + cPar.windowLog = ZSTD_WINDOWLOG_ABSOLUTEMIN; /* minimum wlog required for valid frame header */ + + /* We can't use more than 32 bits of hash in total, so that means that we require: + * (hashLog + 8) <= 32 && (chainLog + 8) <= 32 + */ + if (mode == ZSTD_cpm_createCDict && ZSTD_CDictIndicesAreTagged(&cPar)) { + U32 const maxShortCacheHashLog = 32 - ZSTD_SHORT_CACHE_TAG_BITS; + if (cPar.hashLog > maxShortCacheHashLog) { + cPar.hashLog = maxShortCacheHashLog; + } + if (cPar.chainLog > maxShortCacheHashLog) { + cPar.chainLog = maxShortCacheHashLog; + } + } + + + /* At this point, we aren't 100% sure if we are using the row match finder. + * Unless it is explicitly disabled, conservatively assume that it is enabled. + * In this case it will only be disabled for small sources, so shrinking the + * hash log a little bit shouldn't result in any ratio loss. + */ + if (useRowMatchFinder == ZSTD_ps_auto) + useRowMatchFinder = ZSTD_ps_enable; + + /* We can't hash more than 32-bits in total. So that means that we require: + * (hashLog - rowLog + 8) <= 32 + */ + if (ZSTD_rowMatchFinderUsed(cPar.strategy, useRowMatchFinder)) { + /* Switch to 32-entry rows if searchLog is 5 (or more) */ + U32 const rowLog = BOUNDED(4, cPar.searchLog, 6); + U32 const maxRowHashLog = 32 - ZSTD_ROW_HASH_TAG_BITS; + U32 const maxHashLog = maxRowHashLog + rowLog; + assert(cPar.hashLog >= rowLog); + if (cPar.hashLog > maxHashLog) { + cPar.hashLog = maxHashLog; + } + } + + return cPar; +} + +ZSTD_compressionParameters +ZSTD_adjustCParams(ZSTD_compressionParameters cPar, + unsigned long long srcSize, + size_t dictSize) +{ + cPar = ZSTD_clampCParams(cPar); /* resulting cPar is necessarily valid (all parameters within range) */ + if (srcSize == 0) srcSize = ZSTD_CONTENTSIZE_UNKNOWN; + return ZSTD_adjustCParams_internal(cPar, srcSize, dictSize, ZSTD_cpm_unknown, ZSTD_ps_auto); +} + +static ZSTD_compressionParameters ZSTD_getCParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_CParamMode_e mode); +static ZSTD_parameters ZSTD_getParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_CParamMode_e mode); + +static void ZSTD_overrideCParams( + ZSTD_compressionParameters* cParams, + const ZSTD_compressionParameters* overrides) +{ + if (overrides->windowLog) cParams->windowLog = overrides->windowLog; + if (overrides->hashLog) cParams->hashLog = overrides->hashLog; + if (overrides->chainLog) cParams->chainLog = overrides->chainLog; + if (overrides->searchLog) cParams->searchLog = overrides->searchLog; + if (overrides->minMatch) cParams->minMatch = overrides->minMatch; + if (overrides->targetLength) cParams->targetLength = overrides->targetLength; + if (overrides->strategy) cParams->strategy = overrides->strategy; +} + +ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams( + const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize, ZSTD_CParamMode_e mode) +{ + ZSTD_compressionParameters cParams; + if (srcSizeHint == ZSTD_CONTENTSIZE_UNKNOWN && CCtxParams->srcSizeHint > 0) { + assert(CCtxParams->srcSizeHint>=0); + srcSizeHint = (U64)CCtxParams->srcSizeHint; + } + cParams = ZSTD_getCParams_internal(CCtxParams->compressionLevel, srcSizeHint, dictSize, mode); + if (CCtxParams->ldmParams.enableLdm == ZSTD_ps_enable) cParams.windowLog = ZSTD_LDM_DEFAULT_WINDOW_LOG; + ZSTD_overrideCParams(&cParams, &CCtxParams->cParams); + assert(!ZSTD_checkCParams(cParams)); + /* srcSizeHint == 0 means 0 */ + return ZSTD_adjustCParams_internal(cParams, srcSizeHint, dictSize, mode, CCtxParams->useRowMatchFinder); +} + +static size_t +ZSTD_sizeof_matchState(const ZSTD_compressionParameters* const cParams, + const ZSTD_ParamSwitch_e useRowMatchFinder, + const int enableDedicatedDictSearch, + const U32 forCCtx) +{ + /* chain table size should be 0 for fast or row-hash strategies */ + size_t const chainSize = ZSTD_allocateChainTable(cParams->strategy, useRowMatchFinder, enableDedicatedDictSearch && !forCCtx) + ? ((size_t)1 << cParams->chainLog) + : 0; + size_t const hSize = ((size_t)1) << cParams->hashLog; + U32 const hashLog3 = (forCCtx && cParams->minMatch==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0; + size_t const h3Size = hashLog3 ? ((size_t)1) << hashLog3 : 0; + /* We don't use ZSTD_cwksp_alloc_size() here because the tables aren't + * surrounded by redzones in ASAN. */ + size_t const tableSpace = chainSize * sizeof(U32) + + hSize * sizeof(U32) + + h3Size * sizeof(U32); + size_t const optPotentialSpace = + ZSTD_cwksp_aligned64_alloc_size((MaxML+1) * sizeof(U32)) + + ZSTD_cwksp_aligned64_alloc_size((MaxLL+1) * sizeof(U32)) + + ZSTD_cwksp_aligned64_alloc_size((MaxOff+1) * sizeof(U32)) + + ZSTD_cwksp_aligned64_alloc_size((1<strategy, useRowMatchFinder) + ? ZSTD_cwksp_aligned64_alloc_size(hSize) + : 0; + size_t const optSpace = (forCCtx && (cParams->strategy >= ZSTD_btopt)) + ? optPotentialSpace + : 0; + size_t const slackSpace = ZSTD_cwksp_slack_space_required(); + + /* tables are guaranteed to be sized in multiples of 64 bytes (or 16 uint32_t) */ + ZSTD_STATIC_ASSERT(ZSTD_HASHLOG_MIN >= 4 && ZSTD_WINDOWLOG_MIN >= 4 && ZSTD_CHAINLOG_MIN >= 4); + assert(useRowMatchFinder != ZSTD_ps_auto); + + DEBUGLOG(4, "chainSize: %u - hSize: %u - h3Size: %u", + (U32)chainSize, (U32)hSize, (U32)h3Size); + return tableSpace + optSpace + slackSpace + lazyAdditionalSpace; +} + +/* Helper function for calculating memory requirements. + * Gives a tighter bound than ZSTD_sequenceBound() by taking minMatch into account. */ +static size_t ZSTD_maxNbSeq(size_t blockSize, unsigned minMatch, int useSequenceProducer) { + U32 const divider = (minMatch==3 || useSequenceProducer) ? 3 : 4; + return blockSize / divider; +} + +static size_t ZSTD_estimateCCtxSize_usingCCtxParams_internal( + const ZSTD_compressionParameters* cParams, + const ldmParams_t* ldmParams, + const int isStatic, + const ZSTD_ParamSwitch_e useRowMatchFinder, + const size_t buffInSize, + const size_t buffOutSize, + const U64 pledgedSrcSize, + int useSequenceProducer, + size_t maxBlockSize) +{ + size_t const windowSize = (size_t) BOUNDED(1ULL, 1ULL << cParams->windowLog, pledgedSrcSize); + size_t const blockSize = MIN(ZSTD_resolveMaxBlockSize(maxBlockSize), windowSize); + size_t const maxNbSeq = ZSTD_maxNbSeq(blockSize, cParams->minMatch, useSequenceProducer); + size_t const tokenSpace = ZSTD_cwksp_alloc_size(WILDCOPY_OVERLENGTH + blockSize) + + ZSTD_cwksp_aligned64_alloc_size(maxNbSeq * sizeof(SeqDef)) + + 3 * ZSTD_cwksp_alloc_size(maxNbSeq * sizeof(BYTE)); + size_t const tmpWorkSpace = ZSTD_cwksp_alloc_size(TMP_WORKSPACE_SIZE); + size_t const blockStateSpace = 2 * ZSTD_cwksp_alloc_size(sizeof(ZSTD_compressedBlockState_t)); + size_t const matchStateSize = ZSTD_sizeof_matchState(cParams, useRowMatchFinder, /* enableDedicatedDictSearch */ 0, /* forCCtx */ 1); + + size_t const ldmSpace = ZSTD_ldm_getTableSize(*ldmParams); + size_t const maxNbLdmSeq = ZSTD_ldm_getMaxNbSeq(*ldmParams, blockSize); + size_t const ldmSeqSpace = ldmParams->enableLdm == ZSTD_ps_enable ? + ZSTD_cwksp_aligned64_alloc_size(maxNbLdmSeq * sizeof(rawSeq)) : 0; + + + size_t const bufferSpace = ZSTD_cwksp_alloc_size(buffInSize) + + ZSTD_cwksp_alloc_size(buffOutSize); + + size_t const cctxSpace = isStatic ? ZSTD_cwksp_alloc_size(sizeof(ZSTD_CCtx)) : 0; + + size_t const maxNbExternalSeq = ZSTD_sequenceBound(blockSize); + size_t const externalSeqSpace = useSequenceProducer + ? ZSTD_cwksp_aligned64_alloc_size(maxNbExternalSeq * sizeof(ZSTD_Sequence)) + : 0; + + size_t const neededSpace = + cctxSpace + + tmpWorkSpace + + blockStateSpace + + ldmSpace + + ldmSeqSpace + + matchStateSize + + tokenSpace + + bufferSpace + + externalSeqSpace; + + DEBUGLOG(5, "estimate workspace : %u", (U32)neededSpace); + return neededSpace; +} + +size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params) +{ + ZSTD_compressionParameters const cParams = + ZSTD_getCParamsFromCCtxParams(params, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict); + ZSTD_ParamSwitch_e const useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(params->useRowMatchFinder, + &cParams); + + RETURN_ERROR_IF(params->nbWorkers > 0, GENERIC, "Estimate CCtx size is supported for single-threaded compression only."); + /* estimateCCtxSize is for one-shot compression. So no buffers should + * be needed. However, we still allocate two 0-sized buffers, which can + * take space under ASAN. */ + return ZSTD_estimateCCtxSize_usingCCtxParams_internal( + &cParams, ¶ms->ldmParams, 1, useRowMatchFinder, 0, 0, ZSTD_CONTENTSIZE_UNKNOWN, ZSTD_hasExtSeqProd(params), params->maxBlockSize); +} + +size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams) +{ + ZSTD_CCtx_params initialParams = ZSTD_makeCCtxParamsFromCParams(cParams); + if (ZSTD_rowMatchFinderSupported(cParams.strategy)) { + /* Pick bigger of not using and using row-based matchfinder for greedy and lazy strategies */ + size_t noRowCCtxSize; + size_t rowCCtxSize; + initialParams.useRowMatchFinder = ZSTD_ps_disable; + noRowCCtxSize = ZSTD_estimateCCtxSize_usingCCtxParams(&initialParams); + initialParams.useRowMatchFinder = ZSTD_ps_enable; + rowCCtxSize = ZSTD_estimateCCtxSize_usingCCtxParams(&initialParams); + return MAX(noRowCCtxSize, rowCCtxSize); + } else { + return ZSTD_estimateCCtxSize_usingCCtxParams(&initialParams); + } +} + +static size_t ZSTD_estimateCCtxSize_internal(int compressionLevel) +{ + int tier = 0; + size_t largestSize = 0; + static const unsigned long long srcSizeTiers[4] = {16 KB, 128 KB, 256 KB, ZSTD_CONTENTSIZE_UNKNOWN}; + for (; tier < 4; ++tier) { + /* Choose the set of cParams for a given level across all srcSizes that give the largest cctxSize */ + ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, srcSizeTiers[tier], 0, ZSTD_cpm_noAttachDict); + largestSize = MAX(ZSTD_estimateCCtxSize_usingCParams(cParams), largestSize); + } + return largestSize; +} + +size_t ZSTD_estimateCCtxSize(int compressionLevel) +{ + int level; + size_t memBudget = 0; + for (level=MIN(compressionLevel, 1); level<=compressionLevel; level++) { + /* Ensure monotonically increasing memory usage as compression level increases */ + size_t const newMB = ZSTD_estimateCCtxSize_internal(level); + if (newMB > memBudget) memBudget = newMB; + } + return memBudget; +} + +size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params) +{ + RETURN_ERROR_IF(params->nbWorkers > 0, GENERIC, "Estimate CCtx size is supported for single-threaded compression only."); + { ZSTD_compressionParameters const cParams = + ZSTD_getCParamsFromCCtxParams(params, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict); + size_t const blockSize = MIN(ZSTD_resolveMaxBlockSize(params->maxBlockSize), (size_t)1 << cParams.windowLog); + size_t const inBuffSize = (params->inBufferMode == ZSTD_bm_buffered) + ? ((size_t)1 << cParams.windowLog) + blockSize + : 0; + size_t const outBuffSize = (params->outBufferMode == ZSTD_bm_buffered) + ? ZSTD_compressBound(blockSize) + 1 + : 0; + ZSTD_ParamSwitch_e const useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(params->useRowMatchFinder, ¶ms->cParams); + + return ZSTD_estimateCCtxSize_usingCCtxParams_internal( + &cParams, ¶ms->ldmParams, 1, useRowMatchFinder, inBuffSize, outBuffSize, + ZSTD_CONTENTSIZE_UNKNOWN, ZSTD_hasExtSeqProd(params), params->maxBlockSize); + } +} + +size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams) +{ + ZSTD_CCtx_params initialParams = ZSTD_makeCCtxParamsFromCParams(cParams); + if (ZSTD_rowMatchFinderSupported(cParams.strategy)) { + /* Pick bigger of not using and using row-based matchfinder for greedy and lazy strategies */ + size_t noRowCCtxSize; + size_t rowCCtxSize; + initialParams.useRowMatchFinder = ZSTD_ps_disable; + noRowCCtxSize = ZSTD_estimateCStreamSize_usingCCtxParams(&initialParams); + initialParams.useRowMatchFinder = ZSTD_ps_enable; + rowCCtxSize = ZSTD_estimateCStreamSize_usingCCtxParams(&initialParams); + return MAX(noRowCCtxSize, rowCCtxSize); + } else { + return ZSTD_estimateCStreamSize_usingCCtxParams(&initialParams); + } +} + +static size_t ZSTD_estimateCStreamSize_internal(int compressionLevel) +{ + ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict); + return ZSTD_estimateCStreamSize_usingCParams(cParams); +} + +size_t ZSTD_estimateCStreamSize(int compressionLevel) +{ + int level; + size_t memBudget = 0; + for (level=MIN(compressionLevel, 1); level<=compressionLevel; level++) { + size_t const newMB = ZSTD_estimateCStreamSize_internal(level); + if (newMB > memBudget) memBudget = newMB; + } + return memBudget; +} + +/* ZSTD_getFrameProgression(): + * tells how much data has been consumed (input) and produced (output) for current frame. + * able to count progression inside worker threads (non-blocking mode). + */ +ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx) +{ +#ifdef ZSTD_MULTITHREAD + if (cctx->appliedParams.nbWorkers > 0) { + return ZSTDMT_getFrameProgression(cctx->mtctx); + } +#endif + { ZSTD_frameProgression fp; + size_t const buffered = (cctx->inBuff == NULL) ? 0 : + cctx->inBuffPos - cctx->inToCompress; + if (buffered) assert(cctx->inBuffPos >= cctx->inToCompress); + assert(buffered <= ZSTD_BLOCKSIZE_MAX); + fp.ingested = cctx->consumedSrcSize + buffered; + fp.consumed = cctx->consumedSrcSize; + fp.produced = cctx->producedCSize; + fp.flushed = cctx->producedCSize; /* simplified; some data might still be left within streaming output buffer */ + fp.currentJobID = 0; + fp.nbActiveWorkers = 0; + return fp; +} } + +/*! ZSTD_toFlushNow() + * Only useful for multithreading scenarios currently (nbWorkers >= 1). + */ +size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx) +{ +#ifdef ZSTD_MULTITHREAD + if (cctx->appliedParams.nbWorkers > 0) { + return ZSTDMT_toFlushNow(cctx->mtctx); + } +#endif + (void)cctx; + return 0; /* over-simplification; could also check if context is currently running in streaming mode, and in which case, report how many bytes are left to be flushed within output buffer */ +} + +static void ZSTD_assertEqualCParams(ZSTD_compressionParameters cParams1, + ZSTD_compressionParameters cParams2) +{ + (void)cParams1; + (void)cParams2; + assert(cParams1.windowLog == cParams2.windowLog); + assert(cParams1.chainLog == cParams2.chainLog); + assert(cParams1.hashLog == cParams2.hashLog); + assert(cParams1.searchLog == cParams2.searchLog); + assert(cParams1.minMatch == cParams2.minMatch); + assert(cParams1.targetLength == cParams2.targetLength); + assert(cParams1.strategy == cParams2.strategy); +} + +void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs) +{ + int i; + for (i = 0; i < ZSTD_REP_NUM; ++i) + bs->rep[i] = repStartValue[i]; + bs->entropy.huf.repeatMode = HUF_repeat_none; + bs->entropy.fse.offcode_repeatMode = FSE_repeat_none; + bs->entropy.fse.matchlength_repeatMode = FSE_repeat_none; + bs->entropy.fse.litlength_repeatMode = FSE_repeat_none; +} + +/*! ZSTD_invalidateMatchState() + * Invalidate all the matches in the match finder tables. + * Requires nextSrc and base to be set (can be NULL). + */ +static void ZSTD_invalidateMatchState(ZSTD_MatchState_t* ms) +{ + ZSTD_window_clear(&ms->window); + + ms->nextToUpdate = ms->window.dictLimit; + ms->loadedDictEnd = 0; + ms->opt.litLengthSum = 0; /* force reset of btopt stats */ + ms->dictMatchState = NULL; +} + +/** + * Controls, for this matchState reset, whether the tables need to be cleared / + * prepared for the coming compression (ZSTDcrp_makeClean), or whether the + * tables can be left unclean (ZSTDcrp_leaveDirty), because we know that a + * subsequent operation will overwrite the table space anyways (e.g., copying + * the matchState contents in from a CDict). + */ +typedef enum { + ZSTDcrp_makeClean, + ZSTDcrp_leaveDirty +} ZSTD_compResetPolicy_e; + +/** + * Controls, for this matchState reset, whether indexing can continue where it + * left off (ZSTDirp_continue), or whether it needs to be restarted from zero + * (ZSTDirp_reset). + */ +typedef enum { + ZSTDirp_continue, + ZSTDirp_reset +} ZSTD_indexResetPolicy_e; + +typedef enum { + ZSTD_resetTarget_CDict, + ZSTD_resetTarget_CCtx +} ZSTD_resetTarget_e; + +/* Mixes bits in a 64 bits in a value, based on XXH3_rrmxmx */ +static U64 ZSTD_bitmix(U64 val, U64 len) { + val ^= ZSTD_rotateRight_U64(val, 49) ^ ZSTD_rotateRight_U64(val, 24); + val *= 0x9FB21C651E98DF25ULL; + val ^= (val >> 35) + len ; + val *= 0x9FB21C651E98DF25ULL; + return val ^ (val >> 28); +} + +/* Mixes in the hashSalt and hashSaltEntropy to create a new hashSalt */ +static void ZSTD_advanceHashSalt(ZSTD_MatchState_t* ms) { + ms->hashSalt = ZSTD_bitmix(ms->hashSalt, 8) ^ ZSTD_bitmix((U64) ms->hashSaltEntropy, 4); +} + +static size_t +ZSTD_reset_matchState(ZSTD_MatchState_t* ms, + ZSTD_cwksp* ws, + const ZSTD_compressionParameters* cParams, + const ZSTD_ParamSwitch_e useRowMatchFinder, + const ZSTD_compResetPolicy_e crp, + const ZSTD_indexResetPolicy_e forceResetIndex, + const ZSTD_resetTarget_e forWho) +{ + /* disable chain table allocation for fast or row-based strategies */ + size_t const chainSize = ZSTD_allocateChainTable(cParams->strategy, useRowMatchFinder, + ms->dedicatedDictSearch && (forWho == ZSTD_resetTarget_CDict)) + ? ((size_t)1 << cParams->chainLog) + : 0; + size_t const hSize = ((size_t)1) << cParams->hashLog; + U32 const hashLog3 = ((forWho == ZSTD_resetTarget_CCtx) && cParams->minMatch==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0; + size_t const h3Size = hashLog3 ? ((size_t)1) << hashLog3 : 0; + + DEBUGLOG(4, "reset indices : %u", forceResetIndex == ZSTDirp_reset); + assert(useRowMatchFinder != ZSTD_ps_auto); + if (forceResetIndex == ZSTDirp_reset) { + ZSTD_window_init(&ms->window); + ZSTD_cwksp_mark_tables_dirty(ws); + } + + ms->hashLog3 = hashLog3; + ms->lazySkipping = 0; + + ZSTD_invalidateMatchState(ms); + + assert(!ZSTD_cwksp_reserve_failed(ws)); /* check that allocation hasn't already failed */ + + ZSTD_cwksp_clear_tables(ws); + + DEBUGLOG(5, "reserving table space"); + /* table Space */ + ms->hashTable = (U32*)ZSTD_cwksp_reserve_table(ws, hSize * sizeof(U32)); + ms->chainTable = (U32*)ZSTD_cwksp_reserve_table(ws, chainSize * sizeof(U32)); + ms->hashTable3 = (U32*)ZSTD_cwksp_reserve_table(ws, h3Size * sizeof(U32)); + RETURN_ERROR_IF(ZSTD_cwksp_reserve_failed(ws), memory_allocation, + "failed a workspace allocation in ZSTD_reset_matchState"); + + DEBUGLOG(4, "reset table : %u", crp!=ZSTDcrp_leaveDirty); + if (crp!=ZSTDcrp_leaveDirty) { + /* reset tables only */ + ZSTD_cwksp_clean_tables(ws); + } + + if (ZSTD_rowMatchFinderUsed(cParams->strategy, useRowMatchFinder)) { + /* Row match finder needs an additional table of hashes ("tags") */ + size_t const tagTableSize = hSize; + /* We want to generate a new salt in case we reset a Cctx, but we always want to use + * 0 when we reset a Cdict */ + if(forWho == ZSTD_resetTarget_CCtx) { + ms->tagTable = (BYTE*) ZSTD_cwksp_reserve_aligned_init_once(ws, tagTableSize); + ZSTD_advanceHashSalt(ms); + } else { + /* When we are not salting we want to always memset the memory */ + ms->tagTable = (BYTE*) ZSTD_cwksp_reserve_aligned64(ws, tagTableSize); + ZSTD_memset(ms->tagTable, 0, tagTableSize); + ms->hashSalt = 0; + } + { /* Switch to 32-entry rows if searchLog is 5 (or more) */ + U32 const rowLog = BOUNDED(4, cParams->searchLog, 6); + assert(cParams->hashLog >= rowLog); + ms->rowHashLog = cParams->hashLog - rowLog; + } + } + + /* opt parser space */ + if ((forWho == ZSTD_resetTarget_CCtx) && (cParams->strategy >= ZSTD_btopt)) { + DEBUGLOG(4, "reserving optimal parser space"); + ms->opt.litFreq = (unsigned*)ZSTD_cwksp_reserve_aligned64(ws, (1<opt.litLengthFreq = (unsigned*)ZSTD_cwksp_reserve_aligned64(ws, (MaxLL+1) * sizeof(unsigned)); + ms->opt.matchLengthFreq = (unsigned*)ZSTD_cwksp_reserve_aligned64(ws, (MaxML+1) * sizeof(unsigned)); + ms->opt.offCodeFreq = (unsigned*)ZSTD_cwksp_reserve_aligned64(ws, (MaxOff+1) * sizeof(unsigned)); + ms->opt.matchTable = (ZSTD_match_t*)ZSTD_cwksp_reserve_aligned64(ws, ZSTD_OPT_SIZE * sizeof(ZSTD_match_t)); + ms->opt.priceTable = (ZSTD_optimal_t*)ZSTD_cwksp_reserve_aligned64(ws, ZSTD_OPT_SIZE * sizeof(ZSTD_optimal_t)); + } + + ms->cParams = *cParams; + + RETURN_ERROR_IF(ZSTD_cwksp_reserve_failed(ws), memory_allocation, + "failed a workspace allocation in ZSTD_reset_matchState"); + return 0; +} + +/* ZSTD_indexTooCloseToMax() : + * minor optimization : prefer memset() rather than reduceIndex() + * which is measurably slow in some circumstances (reported for Visual Studio). + * Works when re-using a context for a lot of smallish inputs : + * if all inputs are smaller than ZSTD_INDEXOVERFLOW_MARGIN, + * memset() will be triggered before reduceIndex(). + */ +#define ZSTD_INDEXOVERFLOW_MARGIN (16 MB) +static int ZSTD_indexTooCloseToMax(ZSTD_window_t w) +{ + return (size_t)(w.nextSrc - w.base) > (ZSTD_CURRENT_MAX - ZSTD_INDEXOVERFLOW_MARGIN); +} + +/** ZSTD_dictTooBig(): + * When dictionaries are larger than ZSTD_CHUNKSIZE_MAX they can't be loaded in + * one go generically. So we ensure that in that case we reset the tables to zero, + * so that we can load as much of the dictionary as possible. + */ +static int ZSTD_dictTooBig(size_t const loadedDictSize) +{ + return loadedDictSize > ZSTD_CHUNKSIZE_MAX; +} + +/*! ZSTD_resetCCtx_internal() : + * @param loadedDictSize The size of the dictionary to be loaded + * into the context, if any. If no dictionary is used, or the + * dictionary is being attached / copied, then pass 0. + * note : `params` are assumed fully validated at this stage. + */ +static size_t ZSTD_resetCCtx_internal(ZSTD_CCtx* zc, + ZSTD_CCtx_params const* params, + U64 const pledgedSrcSize, + size_t const loadedDictSize, + ZSTD_compResetPolicy_e const crp, + ZSTD_buffered_policy_e const zbuff) +{ + ZSTD_cwksp* const ws = &zc->workspace; + DEBUGLOG(4, "ZSTD_resetCCtx_internal: pledgedSrcSize=%u, wlog=%u, useRowMatchFinder=%d useBlockSplitter=%d", + (U32)pledgedSrcSize, params->cParams.windowLog, (int)params->useRowMatchFinder, (int)params->postBlockSplitter); + assert(!ZSTD_isError(ZSTD_checkCParams(params->cParams))); + + zc->isFirstBlock = 1; + + /* Set applied params early so we can modify them for LDM, + * and point params at the applied params. + */ + zc->appliedParams = *params; + params = &zc->appliedParams; + + assert(params->useRowMatchFinder != ZSTD_ps_auto); + assert(params->postBlockSplitter != ZSTD_ps_auto); + assert(params->ldmParams.enableLdm != ZSTD_ps_auto); + assert(params->maxBlockSize != 0); + if (params->ldmParams.enableLdm == ZSTD_ps_enable) { + /* Adjust long distance matching parameters */ + ZSTD_ldm_adjustParameters(&zc->appliedParams.ldmParams, ¶ms->cParams); + assert(params->ldmParams.hashLog >= params->ldmParams.bucketSizeLog); + assert(params->ldmParams.hashRateLog < 32); + } + + { size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params->cParams.windowLog), pledgedSrcSize)); + size_t const blockSize = MIN(params->maxBlockSize, windowSize); + size_t const maxNbSeq = ZSTD_maxNbSeq(blockSize, params->cParams.minMatch, ZSTD_hasExtSeqProd(params)); + size_t const buffOutSize = (zbuff == ZSTDb_buffered && params->outBufferMode == ZSTD_bm_buffered) + ? ZSTD_compressBound(blockSize) + 1 + : 0; + size_t const buffInSize = (zbuff == ZSTDb_buffered && params->inBufferMode == ZSTD_bm_buffered) + ? windowSize + blockSize + : 0; + size_t const maxNbLdmSeq = ZSTD_ldm_getMaxNbSeq(params->ldmParams, blockSize); + + int const indexTooClose = ZSTD_indexTooCloseToMax(zc->blockState.matchState.window); + int const dictTooBig = ZSTD_dictTooBig(loadedDictSize); + ZSTD_indexResetPolicy_e needsIndexReset = + (indexTooClose || dictTooBig || !zc->initialized) ? ZSTDirp_reset : ZSTDirp_continue; + + size_t const neededSpace = + ZSTD_estimateCCtxSize_usingCCtxParams_internal( + ¶ms->cParams, ¶ms->ldmParams, zc->staticSize != 0, params->useRowMatchFinder, + buffInSize, buffOutSize, pledgedSrcSize, ZSTD_hasExtSeqProd(params), params->maxBlockSize); + + FORWARD_IF_ERROR(neededSpace, "cctx size estimate failed!"); + + if (!zc->staticSize) ZSTD_cwksp_bump_oversized_duration(ws, 0); + + { /* Check if workspace is large enough, alloc a new one if needed */ + int const workspaceTooSmall = ZSTD_cwksp_sizeof(ws) < neededSpace; + int const workspaceWasteful = ZSTD_cwksp_check_wasteful(ws, neededSpace); + int resizeWorkspace = workspaceTooSmall || workspaceWasteful; + DEBUGLOG(4, "Need %zu B workspace", neededSpace); + DEBUGLOG(4, "windowSize: %zu - blockSize: %zu", windowSize, blockSize); + + if (resizeWorkspace) { + DEBUGLOG(4, "Resize workspaceSize from %zuKB to %zuKB", + ZSTD_cwksp_sizeof(ws) >> 10, + neededSpace >> 10); + + RETURN_ERROR_IF(zc->staticSize, memory_allocation, "static cctx : no resize"); + + needsIndexReset = ZSTDirp_reset; + + ZSTD_cwksp_free(ws, zc->customMem); + FORWARD_IF_ERROR(ZSTD_cwksp_create(ws, neededSpace, zc->customMem), ""); + + DEBUGLOG(5, "reserving object space"); + /* Statically sized space. + * tmpWorkspace never moves, + * though prev/next block swap places */ + assert(ZSTD_cwksp_check_available(ws, 2 * sizeof(ZSTD_compressedBlockState_t))); + zc->blockState.prevCBlock = (ZSTD_compressedBlockState_t*) ZSTD_cwksp_reserve_object(ws, sizeof(ZSTD_compressedBlockState_t)); + RETURN_ERROR_IF(zc->blockState.prevCBlock == NULL, memory_allocation, "couldn't allocate prevCBlock"); + zc->blockState.nextCBlock = (ZSTD_compressedBlockState_t*) ZSTD_cwksp_reserve_object(ws, sizeof(ZSTD_compressedBlockState_t)); + RETURN_ERROR_IF(zc->blockState.nextCBlock == NULL, memory_allocation, "couldn't allocate nextCBlock"); + zc->tmpWorkspace = ZSTD_cwksp_reserve_object(ws, TMP_WORKSPACE_SIZE); + RETURN_ERROR_IF(zc->tmpWorkspace == NULL, memory_allocation, "couldn't allocate tmpWorkspace"); + zc->tmpWkspSize = TMP_WORKSPACE_SIZE; + } } + + ZSTD_cwksp_clear(ws); + + /* init params */ + zc->blockState.matchState.cParams = params->cParams; + zc->blockState.matchState.prefetchCDictTables = params->prefetchCDictTables == ZSTD_ps_enable; + zc->pledgedSrcSizePlusOne = pledgedSrcSize+1; + zc->consumedSrcSize = 0; + zc->producedCSize = 0; + if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN) + zc->appliedParams.fParams.contentSizeFlag = 0; + DEBUGLOG(4, "pledged content size : %u ; flag : %u", + (unsigned)pledgedSrcSize, zc->appliedParams.fParams.contentSizeFlag); + zc->blockSizeMax = blockSize; + + XXH64_reset(&zc->xxhState, 0); + zc->stage = ZSTDcs_init; + zc->dictID = 0; + zc->dictContentSize = 0; + + ZSTD_reset_compressedBlockState(zc->blockState.prevCBlock); + + FORWARD_IF_ERROR(ZSTD_reset_matchState( + &zc->blockState.matchState, + ws, + ¶ms->cParams, + params->useRowMatchFinder, + crp, + needsIndexReset, + ZSTD_resetTarget_CCtx), ""); + + zc->seqStore.sequencesStart = (SeqDef*)ZSTD_cwksp_reserve_aligned64(ws, maxNbSeq * sizeof(SeqDef)); + + /* ldm hash table */ + if (params->ldmParams.enableLdm == ZSTD_ps_enable) { + /* TODO: avoid memset? */ + size_t const ldmHSize = ((size_t)1) << params->ldmParams.hashLog; + zc->ldmState.hashTable = (ldmEntry_t*)ZSTD_cwksp_reserve_aligned64(ws, ldmHSize * sizeof(ldmEntry_t)); + ZSTD_memset(zc->ldmState.hashTable, 0, ldmHSize * sizeof(ldmEntry_t)); + zc->ldmSequences = (rawSeq*)ZSTD_cwksp_reserve_aligned64(ws, maxNbLdmSeq * sizeof(rawSeq)); + zc->maxNbLdmSequences = maxNbLdmSeq; + + ZSTD_window_init(&zc->ldmState.window); + zc->ldmState.loadedDictEnd = 0; + } + + /* reserve space for block-level external sequences */ + if (ZSTD_hasExtSeqProd(params)) { + size_t const maxNbExternalSeq = ZSTD_sequenceBound(blockSize); + zc->extSeqBufCapacity = maxNbExternalSeq; + zc->extSeqBuf = + (ZSTD_Sequence*)ZSTD_cwksp_reserve_aligned64(ws, maxNbExternalSeq * sizeof(ZSTD_Sequence)); + } + + /* buffers */ + + /* ZSTD_wildcopy() is used to copy into the literals buffer, + * so we have to oversize the buffer by WILDCOPY_OVERLENGTH bytes. + */ + zc->seqStore.litStart = ZSTD_cwksp_reserve_buffer(ws, blockSize + WILDCOPY_OVERLENGTH); + zc->seqStore.maxNbLit = blockSize; + + zc->bufferedPolicy = zbuff; + zc->inBuffSize = buffInSize; + zc->inBuff = (char*)ZSTD_cwksp_reserve_buffer(ws, buffInSize); + zc->outBuffSize = buffOutSize; + zc->outBuff = (char*)ZSTD_cwksp_reserve_buffer(ws, buffOutSize); + + /* ldm bucketOffsets table */ + if (params->ldmParams.enableLdm == ZSTD_ps_enable) { + /* TODO: avoid memset? */ + size_t const numBuckets = + ((size_t)1) << (params->ldmParams.hashLog - + params->ldmParams.bucketSizeLog); + zc->ldmState.bucketOffsets = ZSTD_cwksp_reserve_buffer(ws, numBuckets); + ZSTD_memset(zc->ldmState.bucketOffsets, 0, numBuckets); + } + + /* sequences storage */ + ZSTD_referenceExternalSequences(zc, NULL, 0); + zc->seqStore.maxNbSeq = maxNbSeq; + zc->seqStore.llCode = ZSTD_cwksp_reserve_buffer(ws, maxNbSeq * sizeof(BYTE)); + zc->seqStore.mlCode = ZSTD_cwksp_reserve_buffer(ws, maxNbSeq * sizeof(BYTE)); + zc->seqStore.ofCode = ZSTD_cwksp_reserve_buffer(ws, maxNbSeq * sizeof(BYTE)); + + DEBUGLOG(3, "wksp: finished allocating, %zd bytes remain available", ZSTD_cwksp_available_space(ws)); + assert(ZSTD_cwksp_estimated_space_within_bounds(ws, neededSpace)); + + zc->initialized = 1; + + return 0; + } +} + +/* ZSTD_invalidateRepCodes() : + * ensures next compression will not use repcodes from previous block. + * Note : only works with regular variant; + * do not use with extDict variant ! */ +void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx) { + int i; + for (i=0; iblockState.prevCBlock->rep[i] = 0; + assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window)); +} + +/* These are the approximate sizes for each strategy past which copying the + * dictionary tables into the working context is faster than using them + * in-place. + */ +static const size_t attachDictSizeCutoffs[ZSTD_STRATEGY_MAX+1] = { + 8 KB, /* unused */ + 8 KB, /* ZSTD_fast */ + 16 KB, /* ZSTD_dfast */ + 32 KB, /* ZSTD_greedy */ + 32 KB, /* ZSTD_lazy */ + 32 KB, /* ZSTD_lazy2 */ + 32 KB, /* ZSTD_btlazy2 */ + 32 KB, /* ZSTD_btopt */ + 8 KB, /* ZSTD_btultra */ + 8 KB /* ZSTD_btultra2 */ +}; + +static int ZSTD_shouldAttachDict(const ZSTD_CDict* cdict, + const ZSTD_CCtx_params* params, + U64 pledgedSrcSize) +{ + size_t cutoff = attachDictSizeCutoffs[cdict->matchState.cParams.strategy]; + int const dedicatedDictSearch = cdict->matchState.dedicatedDictSearch; + return dedicatedDictSearch + || ( ( pledgedSrcSize <= cutoff + || pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN + || params->attachDictPref == ZSTD_dictForceAttach ) + && params->attachDictPref != ZSTD_dictForceCopy + && !params->forceWindow ); /* dictMatchState isn't correctly + * handled in _enforceMaxDist */ +} + +static size_t +ZSTD_resetCCtx_byAttachingCDict(ZSTD_CCtx* cctx, + const ZSTD_CDict* cdict, + ZSTD_CCtx_params params, + U64 pledgedSrcSize, + ZSTD_buffered_policy_e zbuff) +{ + DEBUGLOG(4, "ZSTD_resetCCtx_byAttachingCDict() pledgedSrcSize=%llu", + (unsigned long long)pledgedSrcSize); + { + ZSTD_compressionParameters adjusted_cdict_cParams = cdict->matchState.cParams; + unsigned const windowLog = params.cParams.windowLog; + assert(windowLog != 0); + /* Resize working context table params for input only, since the dict + * has its own tables. */ + /* pledgedSrcSize == 0 means 0! */ + + if (cdict->matchState.dedicatedDictSearch) { + ZSTD_dedicatedDictSearch_revertCParams(&adjusted_cdict_cParams); + } + + params.cParams = ZSTD_adjustCParams_internal(adjusted_cdict_cParams, pledgedSrcSize, + cdict->dictContentSize, ZSTD_cpm_attachDict, + params.useRowMatchFinder); + params.cParams.windowLog = windowLog; + params.useRowMatchFinder = cdict->useRowMatchFinder; /* cdict overrides */ + FORWARD_IF_ERROR(ZSTD_resetCCtx_internal(cctx, ¶ms, pledgedSrcSize, + /* loadedDictSize */ 0, + ZSTDcrp_makeClean, zbuff), ""); + assert(cctx->appliedParams.cParams.strategy == adjusted_cdict_cParams.strategy); + } + + { const U32 cdictEnd = (U32)( cdict->matchState.window.nextSrc + - cdict->matchState.window.base); + const U32 cdictLen = cdictEnd - cdict->matchState.window.dictLimit; + if (cdictLen == 0) { + /* don't even attach dictionaries with no contents */ + DEBUGLOG(4, "skipping attaching empty dictionary"); + } else { + DEBUGLOG(4, "attaching dictionary into context"); + cctx->blockState.matchState.dictMatchState = &cdict->matchState; + + /* prep working match state so dict matches never have negative indices + * when they are translated to the working context's index space. */ + if (cctx->blockState.matchState.window.dictLimit < cdictEnd) { + cctx->blockState.matchState.window.nextSrc = + cctx->blockState.matchState.window.base + cdictEnd; + ZSTD_window_clear(&cctx->blockState.matchState.window); + } + /* loadedDictEnd is expressed within the referential of the active context */ + cctx->blockState.matchState.loadedDictEnd = cctx->blockState.matchState.window.dictLimit; + } } + + cctx->dictID = cdict->dictID; + cctx->dictContentSize = cdict->dictContentSize; + + /* copy block state */ + ZSTD_memcpy(cctx->blockState.prevCBlock, &cdict->cBlockState, sizeof(cdict->cBlockState)); + + return 0; +} + +static void ZSTD_copyCDictTableIntoCCtx(U32* dst, U32 const* src, size_t tableSize, + ZSTD_compressionParameters const* cParams) { + if (ZSTD_CDictIndicesAreTagged(cParams)){ + /* Remove tags from the CDict table if they are present. + * See docs on "short cache" in zstd_compress_internal.h for context. */ + size_t i; + for (i = 0; i < tableSize; i++) { + U32 const taggedIndex = src[i]; + U32 const index = taggedIndex >> ZSTD_SHORT_CACHE_TAG_BITS; + dst[i] = index; + } + } else { + ZSTD_memcpy(dst, src, tableSize * sizeof(U32)); + } +} + +static size_t ZSTD_resetCCtx_byCopyingCDict(ZSTD_CCtx* cctx, + const ZSTD_CDict* cdict, + ZSTD_CCtx_params params, + U64 pledgedSrcSize, + ZSTD_buffered_policy_e zbuff) +{ + const ZSTD_compressionParameters *cdict_cParams = &cdict->matchState.cParams; + + assert(!cdict->matchState.dedicatedDictSearch); + DEBUGLOG(4, "ZSTD_resetCCtx_byCopyingCDict() pledgedSrcSize=%llu", + (unsigned long long)pledgedSrcSize); + + { unsigned const windowLog = params.cParams.windowLog; + assert(windowLog != 0); + /* Copy only compression parameters related to tables. */ + params.cParams = *cdict_cParams; + params.cParams.windowLog = windowLog; + params.useRowMatchFinder = cdict->useRowMatchFinder; + FORWARD_IF_ERROR(ZSTD_resetCCtx_internal(cctx, ¶ms, pledgedSrcSize, + /* loadedDictSize */ 0, + ZSTDcrp_leaveDirty, zbuff), ""); + assert(cctx->appliedParams.cParams.strategy == cdict_cParams->strategy); + assert(cctx->appliedParams.cParams.hashLog == cdict_cParams->hashLog); + assert(cctx->appliedParams.cParams.chainLog == cdict_cParams->chainLog); + } + + ZSTD_cwksp_mark_tables_dirty(&cctx->workspace); + assert(params.useRowMatchFinder != ZSTD_ps_auto); + + /* copy tables */ + { size_t const chainSize = ZSTD_allocateChainTable(cdict_cParams->strategy, cdict->useRowMatchFinder, 0 /* DDS guaranteed disabled */) + ? ((size_t)1 << cdict_cParams->chainLog) + : 0; + size_t const hSize = (size_t)1 << cdict_cParams->hashLog; + + ZSTD_copyCDictTableIntoCCtx(cctx->blockState.matchState.hashTable, + cdict->matchState.hashTable, + hSize, cdict_cParams); + + /* Do not copy cdict's chainTable if cctx has parameters such that it would not use chainTable */ + if (ZSTD_allocateChainTable(cctx->appliedParams.cParams.strategy, cctx->appliedParams.useRowMatchFinder, 0 /* forDDSDict */)) { + ZSTD_copyCDictTableIntoCCtx(cctx->blockState.matchState.chainTable, + cdict->matchState.chainTable, + chainSize, cdict_cParams); + } + /* copy tag table */ + if (ZSTD_rowMatchFinderUsed(cdict_cParams->strategy, cdict->useRowMatchFinder)) { + size_t const tagTableSize = hSize; + ZSTD_memcpy(cctx->blockState.matchState.tagTable, + cdict->matchState.tagTable, + tagTableSize); + cctx->blockState.matchState.hashSalt = cdict->matchState.hashSalt; + } + } + + /* Zero the hashTable3, since the cdict never fills it */ + assert(cctx->blockState.matchState.hashLog3 <= 31); + { U32 const h3log = cctx->blockState.matchState.hashLog3; + size_t const h3Size = h3log ? ((size_t)1 << h3log) : 0; + assert(cdict->matchState.hashLog3 == 0); + ZSTD_memset(cctx->blockState.matchState.hashTable3, 0, h3Size * sizeof(U32)); + } + + ZSTD_cwksp_mark_tables_clean(&cctx->workspace); + + /* copy dictionary offsets */ + { ZSTD_MatchState_t const* srcMatchState = &cdict->matchState; + ZSTD_MatchState_t* dstMatchState = &cctx->blockState.matchState; + dstMatchState->window = srcMatchState->window; + dstMatchState->nextToUpdate = srcMatchState->nextToUpdate; + dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd; + } + + cctx->dictID = cdict->dictID; + cctx->dictContentSize = cdict->dictContentSize; + + /* copy block state */ + ZSTD_memcpy(cctx->blockState.prevCBlock, &cdict->cBlockState, sizeof(cdict->cBlockState)); + + return 0; +} + +/* We have a choice between copying the dictionary context into the working + * context, or referencing the dictionary context from the working context + * in-place. We decide here which strategy to use. */ +static size_t ZSTD_resetCCtx_usingCDict(ZSTD_CCtx* cctx, + const ZSTD_CDict* cdict, + const ZSTD_CCtx_params* params, + U64 pledgedSrcSize, + ZSTD_buffered_policy_e zbuff) +{ + + DEBUGLOG(4, "ZSTD_resetCCtx_usingCDict (pledgedSrcSize=%u)", + (unsigned)pledgedSrcSize); + + if (ZSTD_shouldAttachDict(cdict, params, pledgedSrcSize)) { + return ZSTD_resetCCtx_byAttachingCDict( + cctx, cdict, *params, pledgedSrcSize, zbuff); + } else { + return ZSTD_resetCCtx_byCopyingCDict( + cctx, cdict, *params, pledgedSrcSize, zbuff); + } +} + +/*! ZSTD_copyCCtx_internal() : + * Duplicate an existing context `srcCCtx` into another one `dstCCtx`. + * Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()). + * The "context", in this case, refers to the hash and chain tables, + * entropy tables, and dictionary references. + * `windowLog` value is enforced if != 0, otherwise value is copied from srcCCtx. + * @return : 0, or an error code */ +static size_t ZSTD_copyCCtx_internal(ZSTD_CCtx* dstCCtx, + const ZSTD_CCtx* srcCCtx, + ZSTD_frameParameters fParams, + U64 pledgedSrcSize, + ZSTD_buffered_policy_e zbuff) +{ + RETURN_ERROR_IF(srcCCtx->stage!=ZSTDcs_init, stage_wrong, + "Can't copy a ctx that's not in init stage."); + DEBUGLOG(5, "ZSTD_copyCCtx_internal"); + ZSTD_memcpy(&dstCCtx->customMem, &srcCCtx->customMem, sizeof(ZSTD_customMem)); + { ZSTD_CCtx_params params = dstCCtx->requestedParams; + /* Copy only compression parameters related to tables. */ + params.cParams = srcCCtx->appliedParams.cParams; + assert(srcCCtx->appliedParams.useRowMatchFinder != ZSTD_ps_auto); + assert(srcCCtx->appliedParams.postBlockSplitter != ZSTD_ps_auto); + assert(srcCCtx->appliedParams.ldmParams.enableLdm != ZSTD_ps_auto); + params.useRowMatchFinder = srcCCtx->appliedParams.useRowMatchFinder; + params.postBlockSplitter = srcCCtx->appliedParams.postBlockSplitter; + params.ldmParams = srcCCtx->appliedParams.ldmParams; + params.fParams = fParams; + params.maxBlockSize = srcCCtx->appliedParams.maxBlockSize; + ZSTD_resetCCtx_internal(dstCCtx, ¶ms, pledgedSrcSize, + /* loadedDictSize */ 0, + ZSTDcrp_leaveDirty, zbuff); + assert(dstCCtx->appliedParams.cParams.windowLog == srcCCtx->appliedParams.cParams.windowLog); + assert(dstCCtx->appliedParams.cParams.strategy == srcCCtx->appliedParams.cParams.strategy); + assert(dstCCtx->appliedParams.cParams.hashLog == srcCCtx->appliedParams.cParams.hashLog); + assert(dstCCtx->appliedParams.cParams.chainLog == srcCCtx->appliedParams.cParams.chainLog); + assert(dstCCtx->blockState.matchState.hashLog3 == srcCCtx->blockState.matchState.hashLog3); + } + + ZSTD_cwksp_mark_tables_dirty(&dstCCtx->workspace); + + /* copy tables */ + { size_t const chainSize = ZSTD_allocateChainTable(srcCCtx->appliedParams.cParams.strategy, + srcCCtx->appliedParams.useRowMatchFinder, + 0 /* forDDSDict */) + ? ((size_t)1 << srcCCtx->appliedParams.cParams.chainLog) + : 0; + size_t const hSize = (size_t)1 << srcCCtx->appliedParams.cParams.hashLog; + U32 const h3log = srcCCtx->blockState.matchState.hashLog3; + size_t const h3Size = h3log ? ((size_t)1 << h3log) : 0; + + ZSTD_memcpy(dstCCtx->blockState.matchState.hashTable, + srcCCtx->blockState.matchState.hashTable, + hSize * sizeof(U32)); + ZSTD_memcpy(dstCCtx->blockState.matchState.chainTable, + srcCCtx->blockState.matchState.chainTable, + chainSize * sizeof(U32)); + ZSTD_memcpy(dstCCtx->blockState.matchState.hashTable3, + srcCCtx->blockState.matchState.hashTable3, + h3Size * sizeof(U32)); + } + + ZSTD_cwksp_mark_tables_clean(&dstCCtx->workspace); + + /* copy dictionary offsets */ + { + const ZSTD_MatchState_t* srcMatchState = &srcCCtx->blockState.matchState; + ZSTD_MatchState_t* dstMatchState = &dstCCtx->blockState.matchState; + dstMatchState->window = srcMatchState->window; + dstMatchState->nextToUpdate = srcMatchState->nextToUpdate; + dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd; + } + dstCCtx->dictID = srcCCtx->dictID; + dstCCtx->dictContentSize = srcCCtx->dictContentSize; + + /* copy block state */ + ZSTD_memcpy(dstCCtx->blockState.prevCBlock, srcCCtx->blockState.prevCBlock, sizeof(*srcCCtx->blockState.prevCBlock)); + + return 0; +} + +/*! ZSTD_copyCCtx() : + * Duplicate an existing context `srcCCtx` into another one `dstCCtx`. + * Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()). + * pledgedSrcSize==0 means "unknown". +* @return : 0, or an error code */ +size_t ZSTD_copyCCtx(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, unsigned long long pledgedSrcSize) +{ + ZSTD_frameParameters fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; + ZSTD_buffered_policy_e const zbuff = srcCCtx->bufferedPolicy; + ZSTD_STATIC_ASSERT((U32)ZSTDb_buffered==1); + if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; + fParams.contentSizeFlag = (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN); + + return ZSTD_copyCCtx_internal(dstCCtx, srcCCtx, + fParams, pledgedSrcSize, + zbuff); +} + + +#define ZSTD_ROWSIZE 16 +/*! ZSTD_reduceTable() : + * reduce table indexes by `reducerValue`, or squash to zero. + * PreserveMark preserves "unsorted mark" for btlazy2 strategy. + * It must be set to a clear 0/1 value, to remove branch during inlining. + * Presume table size is a multiple of ZSTD_ROWSIZE + * to help auto-vectorization */ +FORCE_INLINE_TEMPLATE void +ZSTD_reduceTable_internal (U32* const table, U32 const size, U32 const reducerValue, int const preserveMark) +{ + int const nbRows = (int)size / ZSTD_ROWSIZE; + int cellNb = 0; + int rowNb; + /* Protect special index values < ZSTD_WINDOW_START_INDEX. */ + U32 const reducerThreshold = reducerValue + ZSTD_WINDOW_START_INDEX; + assert((size & (ZSTD_ROWSIZE-1)) == 0); /* multiple of ZSTD_ROWSIZE */ + assert(size < (1U<<31)); /* can be cast to int */ + +#if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE) + /* To validate that the table reuse logic is sound, and that we don't + * access table space that we haven't cleaned, we re-"poison" the table + * space every time we mark it dirty. + * + * This function however is intended to operate on those dirty tables and + * re-clean them. So when this function is used correctly, we can unpoison + * the memory it operated on. This introduces a blind spot though, since + * if we now try to operate on __actually__ poisoned memory, we will not + * detect that. */ + __msan_unpoison(table, size * sizeof(U32)); +#endif + + for (rowNb=0 ; rowNb < nbRows ; rowNb++) { + int column; + for (column=0; columncParams.hashLog; + ZSTD_reduceTable(ms->hashTable, hSize, reducerValue); + } + + if (ZSTD_allocateChainTable(params->cParams.strategy, params->useRowMatchFinder, (U32)ms->dedicatedDictSearch)) { + U32 const chainSize = (U32)1 << params->cParams.chainLog; + if (params->cParams.strategy == ZSTD_btlazy2) + ZSTD_reduceTable_btlazy2(ms->chainTable, chainSize, reducerValue); + else + ZSTD_reduceTable(ms->chainTable, chainSize, reducerValue); + } + + if (ms->hashLog3) { + U32 const h3Size = (U32)1 << ms->hashLog3; + ZSTD_reduceTable(ms->hashTable3, h3Size, reducerValue); + } +} + + +/*-******************************************************* +* Block entropic compression +*********************************************************/ + +/* See doc/zstd_compression_format.md for detailed format description */ + +int ZSTD_seqToCodes(const SeqStore_t* seqStorePtr) +{ + const SeqDef* const sequences = seqStorePtr->sequencesStart; + BYTE* const llCodeTable = seqStorePtr->llCode; + BYTE* const ofCodeTable = seqStorePtr->ofCode; + BYTE* const mlCodeTable = seqStorePtr->mlCode; + U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); + U32 u; + int longOffsets = 0; + assert(nbSeq <= seqStorePtr->maxNbSeq); + for (u=0; u= STREAM_ACCUMULATOR_MIN)); + if (MEM_32bits() && ofCode >= STREAM_ACCUMULATOR_MIN) + longOffsets = 1; + } + if (seqStorePtr->longLengthType==ZSTD_llt_literalLength) + llCodeTable[seqStorePtr->longLengthPos] = MaxLL; + if (seqStorePtr->longLengthType==ZSTD_llt_matchLength) + mlCodeTable[seqStorePtr->longLengthPos] = MaxML; + return longOffsets; +} + +/* ZSTD_useTargetCBlockSize(): + * Returns if target compressed block size param is being used. + * If used, compression will do best effort to make a compressed block size to be around targetCBlockSize. + * Returns 1 if true, 0 otherwise. */ +static int ZSTD_useTargetCBlockSize(const ZSTD_CCtx_params* cctxParams) +{ + DEBUGLOG(5, "ZSTD_useTargetCBlockSize (targetCBlockSize=%zu)", cctxParams->targetCBlockSize); + return (cctxParams->targetCBlockSize != 0); +} + +/* ZSTD_blockSplitterEnabled(): + * Returns if block splitting param is being used + * If used, compression will do best effort to split a block in order to improve compression ratio. + * At the time this function is called, the parameter must be finalized. + * Returns 1 if true, 0 otherwise. */ +static int ZSTD_blockSplitterEnabled(ZSTD_CCtx_params* cctxParams) +{ + DEBUGLOG(5, "ZSTD_blockSplitterEnabled (postBlockSplitter=%d)", cctxParams->postBlockSplitter); + assert(cctxParams->postBlockSplitter != ZSTD_ps_auto); + return (cctxParams->postBlockSplitter == ZSTD_ps_enable); +} + +/* Type returned by ZSTD_buildSequencesStatistics containing finalized symbol encoding types + * and size of the sequences statistics + */ +typedef struct { + U32 LLtype; + U32 Offtype; + U32 MLtype; + size_t size; + size_t lastCountSize; /* Accounts for bug in 1.3.4. More detail in ZSTD_entropyCompressSeqStore_internal() */ + int longOffsets; +} ZSTD_symbolEncodingTypeStats_t; + +/* ZSTD_buildSequencesStatistics(): + * Returns a ZSTD_symbolEncodingTypeStats_t, or a zstd error code in the `size` field. + * Modifies `nextEntropy` to have the appropriate values as a side effect. + * nbSeq must be greater than 0. + * + * entropyWkspSize must be of size at least ENTROPY_WORKSPACE_SIZE - (MaxSeq + 1)*sizeof(U32) + */ +static ZSTD_symbolEncodingTypeStats_t +ZSTD_buildSequencesStatistics( + const SeqStore_t* seqStorePtr, size_t nbSeq, + const ZSTD_fseCTables_t* prevEntropy, ZSTD_fseCTables_t* nextEntropy, + BYTE* dst, const BYTE* const dstEnd, + ZSTD_strategy strategy, unsigned* countWorkspace, + void* entropyWorkspace, size_t entropyWkspSize) +{ + BYTE* const ostart = dst; + const BYTE* const oend = dstEnd; + BYTE* op = ostart; + FSE_CTable* CTable_LitLength = nextEntropy->litlengthCTable; + FSE_CTable* CTable_OffsetBits = nextEntropy->offcodeCTable; + FSE_CTable* CTable_MatchLength = nextEntropy->matchlengthCTable; + const BYTE* const ofCodeTable = seqStorePtr->ofCode; + const BYTE* const llCodeTable = seqStorePtr->llCode; + const BYTE* const mlCodeTable = seqStorePtr->mlCode; + ZSTD_symbolEncodingTypeStats_t stats; + + stats.lastCountSize = 0; + /* convert length/distances into codes */ + stats.longOffsets = ZSTD_seqToCodes(seqStorePtr); + assert(op <= oend); + assert(nbSeq != 0); /* ZSTD_selectEncodingType() divides by nbSeq */ + /* build CTable for Literal Lengths */ + { unsigned max = MaxLL; + size_t const mostFrequent = HIST_countFast_wksp(countWorkspace, &max, llCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */ + DEBUGLOG(5, "Building LL table"); + nextEntropy->litlength_repeatMode = prevEntropy->litlength_repeatMode; + stats.LLtype = ZSTD_selectEncodingType(&nextEntropy->litlength_repeatMode, + countWorkspace, max, mostFrequent, nbSeq, + LLFSELog, prevEntropy->litlengthCTable, + LL_defaultNorm, LL_defaultNormLog, + ZSTD_defaultAllowed, strategy); + assert(set_basic < set_compressed && set_rle < set_compressed); + assert(!(stats.LLtype < set_compressed && nextEntropy->litlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */ + { size_t const countSize = ZSTD_buildCTable( + op, (size_t)(oend - op), + CTable_LitLength, LLFSELog, (SymbolEncodingType_e)stats.LLtype, + countWorkspace, max, llCodeTable, nbSeq, + LL_defaultNorm, LL_defaultNormLog, MaxLL, + prevEntropy->litlengthCTable, + sizeof(prevEntropy->litlengthCTable), + entropyWorkspace, entropyWkspSize); + if (ZSTD_isError(countSize)) { + DEBUGLOG(3, "ZSTD_buildCTable for LitLens failed"); + stats.size = countSize; + return stats; + } + if (stats.LLtype == set_compressed) + stats.lastCountSize = countSize; + op += countSize; + assert(op <= oend); + } } + /* build CTable for Offsets */ + { unsigned max = MaxOff; + size_t const mostFrequent = HIST_countFast_wksp( + countWorkspace, &max, ofCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */ + /* We can only use the basic table if max <= DefaultMaxOff, otherwise the offsets are too large */ + ZSTD_DefaultPolicy_e const defaultPolicy = (max <= DefaultMaxOff) ? ZSTD_defaultAllowed : ZSTD_defaultDisallowed; + DEBUGLOG(5, "Building OF table"); + nextEntropy->offcode_repeatMode = prevEntropy->offcode_repeatMode; + stats.Offtype = ZSTD_selectEncodingType(&nextEntropy->offcode_repeatMode, + countWorkspace, max, mostFrequent, nbSeq, + OffFSELog, prevEntropy->offcodeCTable, + OF_defaultNorm, OF_defaultNormLog, + defaultPolicy, strategy); + assert(!(stats.Offtype < set_compressed && nextEntropy->offcode_repeatMode != FSE_repeat_none)); /* We don't copy tables */ + { size_t const countSize = ZSTD_buildCTable( + op, (size_t)(oend - op), + CTable_OffsetBits, OffFSELog, (SymbolEncodingType_e)stats.Offtype, + countWorkspace, max, ofCodeTable, nbSeq, + OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff, + prevEntropy->offcodeCTable, + sizeof(prevEntropy->offcodeCTable), + entropyWorkspace, entropyWkspSize); + if (ZSTD_isError(countSize)) { + DEBUGLOG(3, "ZSTD_buildCTable for Offsets failed"); + stats.size = countSize; + return stats; + } + if (stats.Offtype == set_compressed) + stats.lastCountSize = countSize; + op += countSize; + assert(op <= oend); + } } + /* build CTable for MatchLengths */ + { unsigned max = MaxML; + size_t const mostFrequent = HIST_countFast_wksp( + countWorkspace, &max, mlCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */ + DEBUGLOG(5, "Building ML table (remaining space : %i)", (int)(oend-op)); + nextEntropy->matchlength_repeatMode = prevEntropy->matchlength_repeatMode; + stats.MLtype = ZSTD_selectEncodingType(&nextEntropy->matchlength_repeatMode, + countWorkspace, max, mostFrequent, nbSeq, + MLFSELog, prevEntropy->matchlengthCTable, + ML_defaultNorm, ML_defaultNormLog, + ZSTD_defaultAllowed, strategy); + assert(!(stats.MLtype < set_compressed && nextEntropy->matchlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */ + { size_t const countSize = ZSTD_buildCTable( + op, (size_t)(oend - op), + CTable_MatchLength, MLFSELog, (SymbolEncodingType_e)stats.MLtype, + countWorkspace, max, mlCodeTable, nbSeq, + ML_defaultNorm, ML_defaultNormLog, MaxML, + prevEntropy->matchlengthCTable, + sizeof(prevEntropy->matchlengthCTable), + entropyWorkspace, entropyWkspSize); + if (ZSTD_isError(countSize)) { + DEBUGLOG(3, "ZSTD_buildCTable for MatchLengths failed"); + stats.size = countSize; + return stats; + } + if (stats.MLtype == set_compressed) + stats.lastCountSize = countSize; + op += countSize; + assert(op <= oend); + } } + stats.size = (size_t)(op-ostart); + return stats; +} + +/* ZSTD_entropyCompressSeqStore_internal(): + * compresses both literals and sequences + * Returns compressed size of block, or a zstd error. + */ +#define SUSPECT_UNCOMPRESSIBLE_LITERAL_RATIO 20 +MEM_STATIC size_t +ZSTD_entropyCompressSeqStore_internal( + void* dst, size_t dstCapacity, + const void* literals, size_t litSize, + const SeqStore_t* seqStorePtr, + const ZSTD_entropyCTables_t* prevEntropy, + ZSTD_entropyCTables_t* nextEntropy, + const ZSTD_CCtx_params* cctxParams, + void* entropyWorkspace, size_t entropyWkspSize, + const int bmi2) +{ + ZSTD_strategy const strategy = cctxParams->cParams.strategy; + unsigned* count = (unsigned*)entropyWorkspace; + FSE_CTable* CTable_LitLength = nextEntropy->fse.litlengthCTable; + FSE_CTable* CTable_OffsetBits = nextEntropy->fse.offcodeCTable; + FSE_CTable* CTable_MatchLength = nextEntropy->fse.matchlengthCTable; + const SeqDef* const sequences = seqStorePtr->sequencesStart; + const size_t nbSeq = (size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart); + const BYTE* const ofCodeTable = seqStorePtr->ofCode; + const BYTE* const llCodeTable = seqStorePtr->llCode; + const BYTE* const mlCodeTable = seqStorePtr->mlCode; + BYTE* const ostart = (BYTE*)dst; + BYTE* const oend = ostart + dstCapacity; + BYTE* op = ostart; + size_t lastCountSize; + int longOffsets = 0; + + entropyWorkspace = count + (MaxSeq + 1); + entropyWkspSize -= (MaxSeq + 1) * sizeof(*count); + + DEBUGLOG(5, "ZSTD_entropyCompressSeqStore_internal (nbSeq=%zu, dstCapacity=%zu)", nbSeq, dstCapacity); + ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1<= HUF_WORKSPACE_SIZE); + + /* Compress literals */ + { size_t const numSequences = (size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart); + /* Base suspicion of uncompressibility on ratio of literals to sequences */ + int const suspectUncompressible = (numSequences == 0) || (litSize / numSequences >= SUSPECT_UNCOMPRESSIBLE_LITERAL_RATIO); + + size_t const cSize = ZSTD_compressLiterals( + op, dstCapacity, + literals, litSize, + entropyWorkspace, entropyWkspSize, + &prevEntropy->huf, &nextEntropy->huf, + cctxParams->cParams.strategy, + ZSTD_literalsCompressionIsDisabled(cctxParams), + suspectUncompressible, bmi2); + FORWARD_IF_ERROR(cSize, "ZSTD_compressLiterals failed"); + assert(cSize <= dstCapacity); + op += cSize; + } + + /* Sequences Header */ + RETURN_ERROR_IF((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead*/, + dstSize_tooSmall, "Can't fit seq hdr in output buf!"); + if (nbSeq < 128) { + *op++ = (BYTE)nbSeq; + } else if (nbSeq < LONGNBSEQ) { + op[0] = (BYTE)((nbSeq>>8) + 0x80); + op[1] = (BYTE)nbSeq; + op+=2; + } else { + op[0]=0xFF; + MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)); + op+=3; + } + assert(op <= oend); + if (nbSeq==0) { + /* Copy the old tables over as if we repeated them */ + ZSTD_memcpy(&nextEntropy->fse, &prevEntropy->fse, sizeof(prevEntropy->fse)); + return (size_t)(op - ostart); + } + { BYTE* const seqHead = op++; + /* build stats for sequences */ + const ZSTD_symbolEncodingTypeStats_t stats = + ZSTD_buildSequencesStatistics(seqStorePtr, nbSeq, + &prevEntropy->fse, &nextEntropy->fse, + op, oend, + strategy, count, + entropyWorkspace, entropyWkspSize); + FORWARD_IF_ERROR(stats.size, "ZSTD_buildSequencesStatistics failed!"); + *seqHead = (BYTE)((stats.LLtype<<6) + (stats.Offtype<<4) + (stats.MLtype<<2)); + lastCountSize = stats.lastCountSize; + op += stats.size; + longOffsets = stats.longOffsets; + } + + { size_t const bitstreamSize = ZSTD_encodeSequences( + op, (size_t)(oend - op), + CTable_MatchLength, mlCodeTable, + CTable_OffsetBits, ofCodeTable, + CTable_LitLength, llCodeTable, + sequences, nbSeq, + longOffsets, bmi2); + FORWARD_IF_ERROR(bitstreamSize, "ZSTD_encodeSequences failed"); + op += bitstreamSize; + assert(op <= oend); + /* zstd versions <= 1.3.4 mistakenly report corruption when + * FSE_readNCount() receives a buffer < 4 bytes. + * Fixed by https://github.com/facebook/zstd/pull/1146. + * This can happen when the last set_compressed table present is 2 + * bytes and the bitstream is only one byte. + * In this exceedingly rare case, we will simply emit an uncompressed + * block, since it isn't worth optimizing. + */ + if (lastCountSize && (lastCountSize + bitstreamSize) < 4) { + /* lastCountSize >= 2 && bitstreamSize > 0 ==> lastCountSize == 3 */ + assert(lastCountSize + bitstreamSize == 3); + DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.3.4 by " + "emitting an uncompressed block."); + return 0; + } + } + + DEBUGLOG(5, "compressed block size : %u", (unsigned)(op - ostart)); + return (size_t)(op - ostart); +} + +static size_t +ZSTD_entropyCompressSeqStore_wExtLitBuffer( + void* dst, size_t dstCapacity, + const void* literals, size_t litSize, + size_t blockSize, + const SeqStore_t* seqStorePtr, + const ZSTD_entropyCTables_t* prevEntropy, + ZSTD_entropyCTables_t* nextEntropy, + const ZSTD_CCtx_params* cctxParams, + void* entropyWorkspace, size_t entropyWkspSize, + int bmi2) +{ + size_t const cSize = ZSTD_entropyCompressSeqStore_internal( + dst, dstCapacity, + literals, litSize, + seqStorePtr, prevEntropy, nextEntropy, cctxParams, + entropyWorkspace, entropyWkspSize, bmi2); + if (cSize == 0) return 0; + /* When srcSize <= dstCapacity, there is enough space to write a raw uncompressed block. + * Since we ran out of space, block must be not compressible, so fall back to raw uncompressed block. + */ + if ((cSize == ERROR(dstSize_tooSmall)) & (blockSize <= dstCapacity)) { + DEBUGLOG(4, "not enough dstCapacity (%zu) for ZSTD_entropyCompressSeqStore_internal()=> do not compress block", dstCapacity); + return 0; /* block not compressed */ + } + FORWARD_IF_ERROR(cSize, "ZSTD_entropyCompressSeqStore_internal failed"); + + /* Check compressibility */ + { size_t const maxCSize = blockSize - ZSTD_minGain(blockSize, cctxParams->cParams.strategy); + if (cSize >= maxCSize) return 0; /* block not compressed */ + } + DEBUGLOG(5, "ZSTD_entropyCompressSeqStore() cSize: %zu", cSize); + /* libzstd decoder before > v1.5.4 is not compatible with compressed blocks of size ZSTD_BLOCKSIZE_MAX exactly. + * This restriction is indirectly already fulfilled by respecting ZSTD_minGain() condition above. + */ + assert(cSize < ZSTD_BLOCKSIZE_MAX); + return cSize; +} + +static size_t +ZSTD_entropyCompressSeqStore( + const SeqStore_t* seqStorePtr, + const ZSTD_entropyCTables_t* prevEntropy, + ZSTD_entropyCTables_t* nextEntropy, + const ZSTD_CCtx_params* cctxParams, + void* dst, size_t dstCapacity, + size_t srcSize, + void* entropyWorkspace, size_t entropyWkspSize, + int bmi2) +{ + return ZSTD_entropyCompressSeqStore_wExtLitBuffer( + dst, dstCapacity, + seqStorePtr->litStart, (size_t)(seqStorePtr->lit - seqStorePtr->litStart), + srcSize, + seqStorePtr, + prevEntropy, nextEntropy, + cctxParams, + entropyWorkspace, entropyWkspSize, + bmi2); +} + +/* ZSTD_selectBlockCompressor() : + * Not static, but internal use only (used by long distance matcher) + * assumption : strat is a valid strategy */ +ZSTD_BlockCompressor_f ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_ParamSwitch_e useRowMatchFinder, ZSTD_dictMode_e dictMode) +{ + static const ZSTD_BlockCompressor_f blockCompressor[4][ZSTD_STRATEGY_MAX+1] = { + { ZSTD_compressBlock_fast /* default for 0 */, + ZSTD_compressBlock_fast, + ZSTD_COMPRESSBLOCK_DOUBLEFAST, + ZSTD_COMPRESSBLOCK_GREEDY, + ZSTD_COMPRESSBLOCK_LAZY, + ZSTD_COMPRESSBLOCK_LAZY2, + ZSTD_COMPRESSBLOCK_BTLAZY2, + ZSTD_COMPRESSBLOCK_BTOPT, + ZSTD_COMPRESSBLOCK_BTULTRA, + ZSTD_COMPRESSBLOCK_BTULTRA2 + }, + { ZSTD_compressBlock_fast_extDict /* default for 0 */, + ZSTD_compressBlock_fast_extDict, + ZSTD_COMPRESSBLOCK_DOUBLEFAST_EXTDICT, + ZSTD_COMPRESSBLOCK_GREEDY_EXTDICT, + ZSTD_COMPRESSBLOCK_LAZY_EXTDICT, + ZSTD_COMPRESSBLOCK_LAZY2_EXTDICT, + ZSTD_COMPRESSBLOCK_BTLAZY2_EXTDICT, + ZSTD_COMPRESSBLOCK_BTOPT_EXTDICT, + ZSTD_COMPRESSBLOCK_BTULTRA_EXTDICT, + ZSTD_COMPRESSBLOCK_BTULTRA_EXTDICT + }, + { ZSTD_compressBlock_fast_dictMatchState /* default for 0 */, + ZSTD_compressBlock_fast_dictMatchState, + ZSTD_COMPRESSBLOCK_DOUBLEFAST_DICTMATCHSTATE, + ZSTD_COMPRESSBLOCK_GREEDY_DICTMATCHSTATE, + ZSTD_COMPRESSBLOCK_LAZY_DICTMATCHSTATE, + ZSTD_COMPRESSBLOCK_LAZY2_DICTMATCHSTATE, + ZSTD_COMPRESSBLOCK_BTLAZY2_DICTMATCHSTATE, + ZSTD_COMPRESSBLOCK_BTOPT_DICTMATCHSTATE, + ZSTD_COMPRESSBLOCK_BTULTRA_DICTMATCHSTATE, + ZSTD_COMPRESSBLOCK_BTULTRA_DICTMATCHSTATE + }, + { NULL /* default for 0 */, + NULL, + NULL, + ZSTD_COMPRESSBLOCK_GREEDY_DEDICATEDDICTSEARCH, + ZSTD_COMPRESSBLOCK_LAZY_DEDICATEDDICTSEARCH, + ZSTD_COMPRESSBLOCK_LAZY2_DEDICATEDDICTSEARCH, + NULL, + NULL, + NULL, + NULL } + }; + ZSTD_BlockCompressor_f selectedCompressor; + ZSTD_STATIC_ASSERT((unsigned)ZSTD_fast == 1); + + assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, (int)strat)); + DEBUGLOG(4, "Selected block compressor: dictMode=%d strat=%d rowMatchfinder=%d", (int)dictMode, (int)strat, (int)useRowMatchFinder); + if (ZSTD_rowMatchFinderUsed(strat, useRowMatchFinder)) { + static const ZSTD_BlockCompressor_f rowBasedBlockCompressors[4][3] = { + { + ZSTD_COMPRESSBLOCK_GREEDY_ROW, + ZSTD_COMPRESSBLOCK_LAZY_ROW, + ZSTD_COMPRESSBLOCK_LAZY2_ROW + }, + { + ZSTD_COMPRESSBLOCK_GREEDY_EXTDICT_ROW, + ZSTD_COMPRESSBLOCK_LAZY_EXTDICT_ROW, + ZSTD_COMPRESSBLOCK_LAZY2_EXTDICT_ROW + }, + { + ZSTD_COMPRESSBLOCK_GREEDY_DICTMATCHSTATE_ROW, + ZSTD_COMPRESSBLOCK_LAZY_DICTMATCHSTATE_ROW, + ZSTD_COMPRESSBLOCK_LAZY2_DICTMATCHSTATE_ROW + }, + { + ZSTD_COMPRESSBLOCK_GREEDY_DEDICATEDDICTSEARCH_ROW, + ZSTD_COMPRESSBLOCK_LAZY_DEDICATEDDICTSEARCH_ROW, + ZSTD_COMPRESSBLOCK_LAZY2_DEDICATEDDICTSEARCH_ROW + } + }; + DEBUGLOG(4, "Selecting a row-based matchfinder"); + assert(useRowMatchFinder != ZSTD_ps_auto); + selectedCompressor = rowBasedBlockCompressors[(int)dictMode][(int)strat - (int)ZSTD_greedy]; + } else { + selectedCompressor = blockCompressor[(int)dictMode][(int)strat]; + } + assert(selectedCompressor != NULL); + return selectedCompressor; +} + +static void ZSTD_storeLastLiterals(SeqStore_t* seqStorePtr, + const BYTE* anchor, size_t lastLLSize) +{ + ZSTD_memcpy(seqStorePtr->lit, anchor, lastLLSize); + seqStorePtr->lit += lastLLSize; +} + +void ZSTD_resetSeqStore(SeqStore_t* ssPtr) +{ + ssPtr->lit = ssPtr->litStart; + ssPtr->sequences = ssPtr->sequencesStart; + ssPtr->longLengthType = ZSTD_llt_none; +} + +/* ZSTD_postProcessSequenceProducerResult() : + * Validates and post-processes sequences obtained through the external matchfinder API: + * - Checks whether nbExternalSeqs represents an error condition. + * - Appends a block delimiter to outSeqs if one is not already present. + * See zstd.h for context regarding block delimiters. + * Returns the number of sequences after post-processing, or an error code. */ +static size_t ZSTD_postProcessSequenceProducerResult( + ZSTD_Sequence* outSeqs, size_t nbExternalSeqs, size_t outSeqsCapacity, size_t srcSize +) { + RETURN_ERROR_IF( + nbExternalSeqs > outSeqsCapacity, + sequenceProducer_failed, + "External sequence producer returned error code %lu", + (unsigned long)nbExternalSeqs + ); + + RETURN_ERROR_IF( + nbExternalSeqs == 0 && srcSize > 0, + sequenceProducer_failed, + "Got zero sequences from external sequence producer for a non-empty src buffer!" + ); + + if (srcSize == 0) { + ZSTD_memset(&outSeqs[0], 0, sizeof(ZSTD_Sequence)); + return 1; + } + + { + ZSTD_Sequence const lastSeq = outSeqs[nbExternalSeqs - 1]; + + /* We can return early if lastSeq is already a block delimiter. */ + if (lastSeq.offset == 0 && lastSeq.matchLength == 0) { + return nbExternalSeqs; + } + + /* This error condition is only possible if the external matchfinder + * produced an invalid parse, by definition of ZSTD_sequenceBound(). */ + RETURN_ERROR_IF( + nbExternalSeqs == outSeqsCapacity, + sequenceProducer_failed, + "nbExternalSeqs == outSeqsCapacity but lastSeq is not a block delimiter!" + ); + + /* lastSeq is not a block delimiter, so we need to append one. */ + ZSTD_memset(&outSeqs[nbExternalSeqs], 0, sizeof(ZSTD_Sequence)); + return nbExternalSeqs + 1; + } +} + +/* ZSTD_fastSequenceLengthSum() : + * Returns sum(litLen) + sum(matchLen) + lastLits for *seqBuf*. + * Similar to another function in zstd_compress.c (determine_blockSize), + * except it doesn't check for a block delimiter to end summation. + * Removing the early exit allows the compiler to auto-vectorize (https://godbolt.org/z/cY1cajz9P). + * This function can be deleted and replaced by determine_blockSize after we resolve issue #3456. */ +static size_t ZSTD_fastSequenceLengthSum(ZSTD_Sequence const* seqBuf, size_t seqBufSize) { + size_t matchLenSum, litLenSum, i; + matchLenSum = 0; + litLenSum = 0; + for (i = 0; i < seqBufSize; i++) { + litLenSum += seqBuf[i].litLength; + matchLenSum += seqBuf[i].matchLength; + } + return litLenSum + matchLenSum; +} + +/** + * Function to validate sequences produced by a block compressor. + */ +static void ZSTD_validateSeqStore(const SeqStore_t* seqStore, const ZSTD_compressionParameters* cParams) +{ +#if DEBUGLEVEL >= 1 + const SeqDef* seq = seqStore->sequencesStart; + const SeqDef* const seqEnd = seqStore->sequences; + size_t const matchLenLowerBound = cParams->minMatch == 3 ? 3 : 4; + for (; seq < seqEnd; ++seq) { + const ZSTD_SequenceLength seqLength = ZSTD_getSequenceLength(seqStore, seq); + assert(seqLength.matchLength >= matchLenLowerBound); + (void)seqLength; + (void)matchLenLowerBound; + } +#else + (void)seqStore; + (void)cParams; +#endif +} + +static size_t +ZSTD_transferSequences_wBlockDelim(ZSTD_CCtx* cctx, + ZSTD_SequencePosition* seqPos, + const ZSTD_Sequence* const inSeqs, size_t inSeqsSize, + const void* src, size_t blockSize, + ZSTD_ParamSwitch_e externalRepSearch); + +typedef enum { ZSTDbss_compress, ZSTDbss_noCompress } ZSTD_BuildSeqStore_e; + +static size_t ZSTD_buildSeqStore(ZSTD_CCtx* zc, const void* src, size_t srcSize) +{ + ZSTD_MatchState_t* const ms = &zc->blockState.matchState; + DEBUGLOG(5, "ZSTD_buildSeqStore (srcSize=%zu)", srcSize); + assert(srcSize <= ZSTD_BLOCKSIZE_MAX); + /* Assert that we have correctly flushed the ctx params into the ms's copy */ + ZSTD_assertEqualCParams(zc->appliedParams.cParams, ms->cParams); + /* TODO: See 3090. We reduced MIN_CBLOCK_SIZE from 3 to 2 so to compensate we are adding + * additional 1. We need to revisit and change this logic to be more consistent */ + if (srcSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1+1) { + if (zc->appliedParams.cParams.strategy >= ZSTD_btopt) { + ZSTD_ldm_skipRawSeqStoreBytes(&zc->externSeqStore, srcSize); + } else { + ZSTD_ldm_skipSequences(&zc->externSeqStore, srcSize, zc->appliedParams.cParams.minMatch); + } + return ZSTDbss_noCompress; /* don't even attempt compression below a certain srcSize */ + } + ZSTD_resetSeqStore(&(zc->seqStore)); + /* required for optimal parser to read stats from dictionary */ + ms->opt.symbolCosts = &zc->blockState.prevCBlock->entropy; + /* tell the optimal parser how we expect to compress literals */ + ms->opt.literalCompressionMode = zc->appliedParams.literalCompressionMode; + /* a gap between an attached dict and the current window is not safe, + * they must remain adjacent, + * and when that stops being the case, the dict must be unset */ + assert(ms->dictMatchState == NULL || ms->loadedDictEnd == ms->window.dictLimit); + + /* limited update after a very long match */ + { const BYTE* const base = ms->window.base; + const BYTE* const istart = (const BYTE*)src; + const U32 curr = (U32)(istart-base); + if (sizeof(ptrdiff_t)==8) assert(istart - base < (ptrdiff_t)(U32)(-1)); /* ensure no overflow */ + if (curr > ms->nextToUpdate + 384) + ms->nextToUpdate = curr - MIN(192, (U32)(curr - ms->nextToUpdate - 384)); + } + + /* select and store sequences */ + { ZSTD_dictMode_e const dictMode = ZSTD_matchState_dictMode(ms); + size_t lastLLSize; + { int i; + for (i = 0; i < ZSTD_REP_NUM; ++i) + zc->blockState.nextCBlock->rep[i] = zc->blockState.prevCBlock->rep[i]; + } + if (zc->externSeqStore.pos < zc->externSeqStore.size) { + assert(zc->appliedParams.ldmParams.enableLdm == ZSTD_ps_disable); + + /* External matchfinder + LDM is technically possible, just not implemented yet. + * We need to revisit soon and implement it. */ + RETURN_ERROR_IF( + ZSTD_hasExtSeqProd(&zc->appliedParams), + parameter_combination_unsupported, + "Long-distance matching with external sequence producer enabled is not currently supported." + ); + + /* Updates ldmSeqStore.pos */ + lastLLSize = + ZSTD_ldm_blockCompress(&zc->externSeqStore, + ms, &zc->seqStore, + zc->blockState.nextCBlock->rep, + zc->appliedParams.useRowMatchFinder, + src, srcSize); + assert(zc->externSeqStore.pos <= zc->externSeqStore.size); + } else if (zc->appliedParams.ldmParams.enableLdm == ZSTD_ps_enable) { + RawSeqStore_t ldmSeqStore = kNullRawSeqStore; + + /* External matchfinder + LDM is technically possible, just not implemented yet. + * We need to revisit soon and implement it. */ + RETURN_ERROR_IF( + ZSTD_hasExtSeqProd(&zc->appliedParams), + parameter_combination_unsupported, + "Long-distance matching with external sequence producer enabled is not currently supported." + ); + + ldmSeqStore.seq = zc->ldmSequences; + ldmSeqStore.capacity = zc->maxNbLdmSequences; + /* Updates ldmSeqStore.size */ + FORWARD_IF_ERROR(ZSTD_ldm_generateSequences(&zc->ldmState, &ldmSeqStore, + &zc->appliedParams.ldmParams, + src, srcSize), ""); + /* Updates ldmSeqStore.pos */ + lastLLSize = + ZSTD_ldm_blockCompress(&ldmSeqStore, + ms, &zc->seqStore, + zc->blockState.nextCBlock->rep, + zc->appliedParams.useRowMatchFinder, + src, srcSize); + assert(ldmSeqStore.pos == ldmSeqStore.size); + } else if (ZSTD_hasExtSeqProd(&zc->appliedParams)) { + assert( + zc->extSeqBufCapacity >= ZSTD_sequenceBound(srcSize) + ); + assert(zc->appliedParams.extSeqProdFunc != NULL); + + { U32 const windowSize = (U32)1 << zc->appliedParams.cParams.windowLog; + + size_t const nbExternalSeqs = (zc->appliedParams.extSeqProdFunc)( + zc->appliedParams.extSeqProdState, + zc->extSeqBuf, + zc->extSeqBufCapacity, + src, srcSize, + NULL, 0, /* dict and dictSize, currently not supported */ + zc->appliedParams.compressionLevel, + windowSize + ); + + size_t const nbPostProcessedSeqs = ZSTD_postProcessSequenceProducerResult( + zc->extSeqBuf, + nbExternalSeqs, + zc->extSeqBufCapacity, + srcSize + ); + + /* Return early if there is no error, since we don't need to worry about last literals */ + if (!ZSTD_isError(nbPostProcessedSeqs)) { + ZSTD_SequencePosition seqPos = {0,0,0}; + size_t const seqLenSum = ZSTD_fastSequenceLengthSum(zc->extSeqBuf, nbPostProcessedSeqs); + RETURN_ERROR_IF(seqLenSum > srcSize, externalSequences_invalid, "External sequences imply too large a block!"); + FORWARD_IF_ERROR( + ZSTD_transferSequences_wBlockDelim( + zc, &seqPos, + zc->extSeqBuf, nbPostProcessedSeqs, + src, srcSize, + zc->appliedParams.searchForExternalRepcodes + ), + "Failed to copy external sequences to seqStore!" + ); + ms->ldmSeqStore = NULL; + DEBUGLOG(5, "Copied %lu sequences from external sequence producer to internal seqStore.", (unsigned long)nbExternalSeqs); + return ZSTDbss_compress; + } + + /* Propagate the error if fallback is disabled */ + if (!zc->appliedParams.enableMatchFinderFallback) { + return nbPostProcessedSeqs; + } + + /* Fallback to software matchfinder */ + { ZSTD_BlockCompressor_f const blockCompressor = + ZSTD_selectBlockCompressor( + zc->appliedParams.cParams.strategy, + zc->appliedParams.useRowMatchFinder, + dictMode); + ms->ldmSeqStore = NULL; + DEBUGLOG( + 5, + "External sequence producer returned error code %lu. Falling back to internal parser.", + (unsigned long)nbExternalSeqs + ); + lastLLSize = blockCompressor(ms, &zc->seqStore, zc->blockState.nextCBlock->rep, src, srcSize); + } } + } else { /* not long range mode and no external matchfinder */ + ZSTD_BlockCompressor_f const blockCompressor = ZSTD_selectBlockCompressor( + zc->appliedParams.cParams.strategy, + zc->appliedParams.useRowMatchFinder, + dictMode); + ms->ldmSeqStore = NULL; + lastLLSize = blockCompressor(ms, &zc->seqStore, zc->blockState.nextCBlock->rep, src, srcSize); + } + { const BYTE* const lastLiterals = (const BYTE*)src + srcSize - lastLLSize; + ZSTD_storeLastLiterals(&zc->seqStore, lastLiterals, lastLLSize); + } } + ZSTD_validateSeqStore(&zc->seqStore, &zc->appliedParams.cParams); + return ZSTDbss_compress; +} + +static size_t ZSTD_copyBlockSequences(SeqCollector* seqCollector, const SeqStore_t* seqStore, const U32 prevRepcodes[ZSTD_REP_NUM]) +{ + const SeqDef* inSeqs = seqStore->sequencesStart; + const size_t nbInSequences = (size_t)(seqStore->sequences - inSeqs); + const size_t nbInLiterals = (size_t)(seqStore->lit - seqStore->litStart); + + ZSTD_Sequence* outSeqs = seqCollector->seqIndex == 0 ? seqCollector->seqStart : seqCollector->seqStart + seqCollector->seqIndex; + const size_t nbOutSequences = nbInSequences + 1; + size_t nbOutLiterals = 0; + Repcodes_t repcodes; + size_t i; + + /* Bounds check that we have enough space for every input sequence + * and the block delimiter + */ + assert(seqCollector->seqIndex <= seqCollector->maxSequences); + RETURN_ERROR_IF( + nbOutSequences > (size_t)(seqCollector->maxSequences - seqCollector->seqIndex), + dstSize_tooSmall, + "Not enough space to copy sequences"); + + ZSTD_memcpy(&repcodes, prevRepcodes, sizeof(repcodes)); + for (i = 0; i < nbInSequences; ++i) { + U32 rawOffset; + outSeqs[i].litLength = inSeqs[i].litLength; + outSeqs[i].matchLength = inSeqs[i].mlBase + MINMATCH; + outSeqs[i].rep = 0; + + /* Handle the possible single length >= 64K + * There can only be one because we add MINMATCH to every match length, + * and blocks are at most 128K. + */ + if (i == seqStore->longLengthPos) { + if (seqStore->longLengthType == ZSTD_llt_literalLength) { + outSeqs[i].litLength += 0x10000; + } else if (seqStore->longLengthType == ZSTD_llt_matchLength) { + outSeqs[i].matchLength += 0x10000; + } + } + + /* Determine the raw offset given the offBase, which may be a repcode. */ + if (OFFBASE_IS_REPCODE(inSeqs[i].offBase)) { + const U32 repcode = OFFBASE_TO_REPCODE(inSeqs[i].offBase); + assert(repcode > 0); + outSeqs[i].rep = repcode; + if (outSeqs[i].litLength != 0) { + rawOffset = repcodes.rep[repcode - 1]; + } else { + if (repcode == 3) { + assert(repcodes.rep[0] > 1); + rawOffset = repcodes.rep[0] - 1; + } else { + rawOffset = repcodes.rep[repcode]; + } + } + } else { + rawOffset = OFFBASE_TO_OFFSET(inSeqs[i].offBase); + } + outSeqs[i].offset = rawOffset; + + /* Update repcode history for the sequence */ + ZSTD_updateRep(repcodes.rep, + inSeqs[i].offBase, + inSeqs[i].litLength == 0); + + nbOutLiterals += outSeqs[i].litLength; + } + /* Insert last literals (if any exist) in the block as a sequence with ml == off == 0. + * If there are no last literals, then we'll emit (of: 0, ml: 0, ll: 0), which is a marker + * for the block boundary, according to the API. + */ + assert(nbInLiterals >= nbOutLiterals); + { + const size_t lastLLSize = nbInLiterals - nbOutLiterals; + outSeqs[nbInSequences].litLength = (U32)lastLLSize; + outSeqs[nbInSequences].matchLength = 0; + outSeqs[nbInSequences].offset = 0; + assert(nbOutSequences == nbInSequences + 1); + } + seqCollector->seqIndex += nbOutSequences; + assert(seqCollector->seqIndex <= seqCollector->maxSequences); + + return 0; +} + +size_t ZSTD_sequenceBound(size_t srcSize) { + const size_t maxNbSeq = (srcSize / ZSTD_MINMATCH_MIN) + 1; + const size_t maxNbDelims = (srcSize / ZSTD_BLOCKSIZE_MAX_MIN) + 1; + return maxNbSeq + maxNbDelims; +} + +size_t ZSTD_generateSequences(ZSTD_CCtx* zc, ZSTD_Sequence* outSeqs, + size_t outSeqsSize, const void* src, size_t srcSize) +{ + const size_t dstCapacity = ZSTD_compressBound(srcSize); + void* dst; /* Make C90 happy. */ + SeqCollector seqCollector; + { + int targetCBlockSize; + FORWARD_IF_ERROR(ZSTD_CCtx_getParameter(zc, ZSTD_c_targetCBlockSize, &targetCBlockSize), ""); + RETURN_ERROR_IF(targetCBlockSize != 0, parameter_unsupported, "targetCBlockSize != 0"); + } + { + int nbWorkers; + FORWARD_IF_ERROR(ZSTD_CCtx_getParameter(zc, ZSTD_c_nbWorkers, &nbWorkers), ""); + RETURN_ERROR_IF(nbWorkers != 0, parameter_unsupported, "nbWorkers != 0"); + } + + dst = ZSTD_customMalloc(dstCapacity, ZSTD_defaultCMem); + RETURN_ERROR_IF(dst == NULL, memory_allocation, "NULL pointer!"); + + seqCollector.collectSequences = 1; + seqCollector.seqStart = outSeqs; + seqCollector.seqIndex = 0; + seqCollector.maxSequences = outSeqsSize; + zc->seqCollector = seqCollector; + + { + const size_t ret = ZSTD_compress2(zc, dst, dstCapacity, src, srcSize); + ZSTD_customFree(dst, ZSTD_defaultCMem); + FORWARD_IF_ERROR(ret, "ZSTD_compress2 failed"); + } + assert(zc->seqCollector.seqIndex <= ZSTD_sequenceBound(srcSize)); + return zc->seqCollector.seqIndex; +} + +size_t ZSTD_mergeBlockDelimiters(ZSTD_Sequence* sequences, size_t seqsSize) { + size_t in = 0; + size_t out = 0; + for (; in < seqsSize; ++in) { + if (sequences[in].offset == 0 && sequences[in].matchLength == 0) { + if (in != seqsSize - 1) { + sequences[in+1].litLength += sequences[in].litLength; + } + } else { + sequences[out] = sequences[in]; + ++out; + } + } + return out; +} + +/* Unrolled loop to read four size_ts of input at a time. Returns 1 if is RLE, 0 if not. */ +static int ZSTD_isRLE(const BYTE* src, size_t length) { + const BYTE* ip = src; + const BYTE value = ip[0]; + const size_t valueST = (size_t)((U64)value * 0x0101010101010101ULL); + const size_t unrollSize = sizeof(size_t) * 4; + const size_t unrollMask = unrollSize - 1; + const size_t prefixLength = length & unrollMask; + size_t i; + if (length == 1) return 1; + /* Check if prefix is RLE first before using unrolled loop */ + if (prefixLength && ZSTD_count(ip+1, ip, ip+prefixLength) != prefixLength-1) { + return 0; + } + for (i = prefixLength; i != length; i += unrollSize) { + size_t u; + for (u = 0; u < unrollSize; u += sizeof(size_t)) { + if (MEM_readST(ip + i + u) != valueST) { + return 0; + } } } + return 1; +} + +/* Returns true if the given block may be RLE. + * This is just a heuristic based on the compressibility. + * It may return both false positives and false negatives. + */ +static int ZSTD_maybeRLE(SeqStore_t const* seqStore) +{ + size_t const nbSeqs = (size_t)(seqStore->sequences - seqStore->sequencesStart); + size_t const nbLits = (size_t)(seqStore->lit - seqStore->litStart); + + return nbSeqs < 4 && nbLits < 10; +} + +static void +ZSTD_blockState_confirmRepcodesAndEntropyTables(ZSTD_blockState_t* const bs) +{ + ZSTD_compressedBlockState_t* const tmp = bs->prevCBlock; + bs->prevCBlock = bs->nextCBlock; + bs->nextCBlock = tmp; +} + +/* Writes the block header */ +static void +writeBlockHeader(void* op, size_t cSize, size_t blockSize, U32 lastBlock) +{ + U32 const cBlockHeader = cSize == 1 ? + lastBlock + (((U32)bt_rle)<<1) + (U32)(blockSize << 3) : + lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3); + MEM_writeLE24(op, cBlockHeader); + DEBUGLOG(3, "writeBlockHeader: cSize: %zu blockSize: %zu lastBlock: %u", cSize, blockSize, lastBlock); +} + +/** ZSTD_buildBlockEntropyStats_literals() : + * Builds entropy for the literals. + * Stores literals block type (raw, rle, compressed, repeat) and + * huffman description table to hufMetadata. + * Requires ENTROPY_WORKSPACE_SIZE workspace + * @return : size of huffman description table, or an error code + */ +static size_t +ZSTD_buildBlockEntropyStats_literals(void* const src, size_t srcSize, + const ZSTD_hufCTables_t* prevHuf, + ZSTD_hufCTables_t* nextHuf, + ZSTD_hufCTablesMetadata_t* hufMetadata, + const int literalsCompressionIsDisabled, + void* workspace, size_t wkspSize, + int hufFlags) +{ + BYTE* const wkspStart = (BYTE*)workspace; + BYTE* const wkspEnd = wkspStart + wkspSize; + BYTE* const countWkspStart = wkspStart; + unsigned* const countWksp = (unsigned*)workspace; + const size_t countWkspSize = (HUF_SYMBOLVALUE_MAX + 1) * sizeof(unsigned); + BYTE* const nodeWksp = countWkspStart + countWkspSize; + const size_t nodeWkspSize = (size_t)(wkspEnd - nodeWksp); + unsigned maxSymbolValue = HUF_SYMBOLVALUE_MAX; + unsigned huffLog = LitHufLog; + HUF_repeat repeat = prevHuf->repeatMode; + DEBUGLOG(5, "ZSTD_buildBlockEntropyStats_literals (srcSize=%zu)", srcSize); + + /* Prepare nextEntropy assuming reusing the existing table */ + ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf)); + + if (literalsCompressionIsDisabled) { + DEBUGLOG(5, "set_basic - disabled"); + hufMetadata->hType = set_basic; + return 0; + } + + /* small ? don't even attempt compression (speed opt) */ +#ifndef COMPRESS_LITERALS_SIZE_MIN +# define COMPRESS_LITERALS_SIZE_MIN 63 /* heuristic */ +#endif + { size_t const minLitSize = (prevHuf->repeatMode == HUF_repeat_valid) ? 6 : COMPRESS_LITERALS_SIZE_MIN; + if (srcSize <= minLitSize) { + DEBUGLOG(5, "set_basic - too small"); + hufMetadata->hType = set_basic; + return 0; + } } + + /* Scan input and build symbol stats */ + { size_t const largest = + HIST_count_wksp (countWksp, &maxSymbolValue, + (const BYTE*)src, srcSize, + workspace, wkspSize); + FORWARD_IF_ERROR(largest, "HIST_count_wksp failed"); + if (largest == srcSize) { + /* only one literal symbol */ + DEBUGLOG(5, "set_rle"); + hufMetadata->hType = set_rle; + return 0; + } + if (largest <= (srcSize >> 7)+4) { + /* heuristic: likely not compressible */ + DEBUGLOG(5, "set_basic - no gain"); + hufMetadata->hType = set_basic; + return 0; + } } + + /* Validate the previous Huffman table */ + if (repeat == HUF_repeat_check + && !HUF_validateCTable((HUF_CElt const*)prevHuf->CTable, countWksp, maxSymbolValue)) { + repeat = HUF_repeat_none; + } + + /* Build Huffman Tree */ + ZSTD_memset(nextHuf->CTable, 0, sizeof(nextHuf->CTable)); + huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue, nodeWksp, nodeWkspSize, nextHuf->CTable, countWksp, hufFlags); + assert(huffLog <= LitHufLog); + { size_t const maxBits = HUF_buildCTable_wksp((HUF_CElt*)nextHuf->CTable, countWksp, + maxSymbolValue, huffLog, + nodeWksp, nodeWkspSize); + FORWARD_IF_ERROR(maxBits, "HUF_buildCTable_wksp"); + huffLog = (U32)maxBits; + } + { /* Build and write the CTable */ + size_t const newCSize = HUF_estimateCompressedSize( + (HUF_CElt*)nextHuf->CTable, countWksp, maxSymbolValue); + size_t const hSize = HUF_writeCTable_wksp( + hufMetadata->hufDesBuffer, sizeof(hufMetadata->hufDesBuffer), + (HUF_CElt*)nextHuf->CTable, maxSymbolValue, huffLog, + nodeWksp, nodeWkspSize); + /* Check against repeating the previous CTable */ + if (repeat != HUF_repeat_none) { + size_t const oldCSize = HUF_estimateCompressedSize( + (HUF_CElt const*)prevHuf->CTable, countWksp, maxSymbolValue); + if (oldCSize < srcSize && (oldCSize <= hSize + newCSize || hSize + 12 >= srcSize)) { + DEBUGLOG(5, "set_repeat - smaller"); + ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf)); + hufMetadata->hType = set_repeat; + return 0; + } } + if (newCSize + hSize >= srcSize) { + DEBUGLOG(5, "set_basic - no gains"); + ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf)); + hufMetadata->hType = set_basic; + return 0; + } + DEBUGLOG(5, "set_compressed (hSize=%u)", (U32)hSize); + hufMetadata->hType = set_compressed; + nextHuf->repeatMode = HUF_repeat_check; + return hSize; + } +} + + +/* ZSTD_buildDummySequencesStatistics(): + * Returns a ZSTD_symbolEncodingTypeStats_t with all encoding types as set_basic, + * and updates nextEntropy to the appropriate repeatMode. + */ +static ZSTD_symbolEncodingTypeStats_t +ZSTD_buildDummySequencesStatistics(ZSTD_fseCTables_t* nextEntropy) +{ + ZSTD_symbolEncodingTypeStats_t stats = {set_basic, set_basic, set_basic, 0, 0, 0}; + nextEntropy->litlength_repeatMode = FSE_repeat_none; + nextEntropy->offcode_repeatMode = FSE_repeat_none; + nextEntropy->matchlength_repeatMode = FSE_repeat_none; + return stats; +} + +/** ZSTD_buildBlockEntropyStats_sequences() : + * Builds entropy for the sequences. + * Stores symbol compression modes and fse table to fseMetadata. + * Requires ENTROPY_WORKSPACE_SIZE wksp. + * @return : size of fse tables or error code */ +static size_t +ZSTD_buildBlockEntropyStats_sequences( + const SeqStore_t* seqStorePtr, + const ZSTD_fseCTables_t* prevEntropy, + ZSTD_fseCTables_t* nextEntropy, + const ZSTD_CCtx_params* cctxParams, + ZSTD_fseCTablesMetadata_t* fseMetadata, + void* workspace, size_t wkspSize) +{ + ZSTD_strategy const strategy = cctxParams->cParams.strategy; + size_t const nbSeq = (size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart); + BYTE* const ostart = fseMetadata->fseTablesBuffer; + BYTE* const oend = ostart + sizeof(fseMetadata->fseTablesBuffer); + BYTE* op = ostart; + unsigned* countWorkspace = (unsigned*)workspace; + unsigned* entropyWorkspace = countWorkspace + (MaxSeq + 1); + size_t entropyWorkspaceSize = wkspSize - (MaxSeq + 1) * sizeof(*countWorkspace); + ZSTD_symbolEncodingTypeStats_t stats; + + DEBUGLOG(5, "ZSTD_buildBlockEntropyStats_sequences (nbSeq=%zu)", nbSeq); + stats = nbSeq != 0 ? ZSTD_buildSequencesStatistics(seqStorePtr, nbSeq, + prevEntropy, nextEntropy, op, oend, + strategy, countWorkspace, + entropyWorkspace, entropyWorkspaceSize) + : ZSTD_buildDummySequencesStatistics(nextEntropy); + FORWARD_IF_ERROR(stats.size, "ZSTD_buildSequencesStatistics failed!"); + fseMetadata->llType = (SymbolEncodingType_e) stats.LLtype; + fseMetadata->ofType = (SymbolEncodingType_e) stats.Offtype; + fseMetadata->mlType = (SymbolEncodingType_e) stats.MLtype; + fseMetadata->lastCountSize = stats.lastCountSize; + return stats.size; +} + + +/** ZSTD_buildBlockEntropyStats() : + * Builds entropy for the block. + * Requires workspace size ENTROPY_WORKSPACE_SIZE + * @return : 0 on success, or an error code + * Note : also employed in superblock + */ +size_t ZSTD_buildBlockEntropyStats( + const SeqStore_t* seqStorePtr, + const ZSTD_entropyCTables_t* prevEntropy, + ZSTD_entropyCTables_t* nextEntropy, + const ZSTD_CCtx_params* cctxParams, + ZSTD_entropyCTablesMetadata_t* entropyMetadata, + void* workspace, size_t wkspSize) +{ + size_t const litSize = (size_t)(seqStorePtr->lit - seqStorePtr->litStart); + int const huf_useOptDepth = (cctxParams->cParams.strategy >= HUF_OPTIMAL_DEPTH_THRESHOLD); + int const hufFlags = huf_useOptDepth ? HUF_flags_optimalDepth : 0; + + entropyMetadata->hufMetadata.hufDesSize = + ZSTD_buildBlockEntropyStats_literals(seqStorePtr->litStart, litSize, + &prevEntropy->huf, &nextEntropy->huf, + &entropyMetadata->hufMetadata, + ZSTD_literalsCompressionIsDisabled(cctxParams), + workspace, wkspSize, hufFlags); + + FORWARD_IF_ERROR(entropyMetadata->hufMetadata.hufDesSize, "ZSTD_buildBlockEntropyStats_literals failed"); + entropyMetadata->fseMetadata.fseTablesSize = + ZSTD_buildBlockEntropyStats_sequences(seqStorePtr, + &prevEntropy->fse, &nextEntropy->fse, + cctxParams, + &entropyMetadata->fseMetadata, + workspace, wkspSize); + FORWARD_IF_ERROR(entropyMetadata->fseMetadata.fseTablesSize, "ZSTD_buildBlockEntropyStats_sequences failed"); + return 0; +} + +/* Returns the size estimate for the literals section (header + content) of a block */ +static size_t +ZSTD_estimateBlockSize_literal(const BYTE* literals, size_t litSize, + const ZSTD_hufCTables_t* huf, + const ZSTD_hufCTablesMetadata_t* hufMetadata, + void* workspace, size_t wkspSize, + int writeEntropy) +{ + unsigned* const countWksp = (unsigned*)workspace; + unsigned maxSymbolValue = HUF_SYMBOLVALUE_MAX; + size_t literalSectionHeaderSize = 3 + (litSize >= 1 KB) + (litSize >= 16 KB); + U32 singleStream = litSize < 256; + + if (hufMetadata->hType == set_basic) return litSize; + else if (hufMetadata->hType == set_rle) return 1; + else if (hufMetadata->hType == set_compressed || hufMetadata->hType == set_repeat) { + size_t const largest = HIST_count_wksp (countWksp, &maxSymbolValue, (const BYTE*)literals, litSize, workspace, wkspSize); + if (ZSTD_isError(largest)) return litSize; + { size_t cLitSizeEstimate = HUF_estimateCompressedSize((const HUF_CElt*)huf->CTable, countWksp, maxSymbolValue); + if (writeEntropy) cLitSizeEstimate += hufMetadata->hufDesSize; + if (!singleStream) cLitSizeEstimate += 6; /* multi-stream huffman uses 6-byte jump table */ + return cLitSizeEstimate + literalSectionHeaderSize; + } } + assert(0); /* impossible */ + return 0; +} + +/* Returns the size estimate for the FSE-compressed symbols (of, ml, ll) of a block */ +static size_t +ZSTD_estimateBlockSize_symbolType(SymbolEncodingType_e type, + const BYTE* codeTable, size_t nbSeq, unsigned maxCode, + const FSE_CTable* fseCTable, + const U8* additionalBits, + short const* defaultNorm, U32 defaultNormLog, U32 defaultMax, + void* workspace, size_t wkspSize) +{ + unsigned* const countWksp = (unsigned*)workspace; + const BYTE* ctp = codeTable; + const BYTE* const ctStart = ctp; + const BYTE* const ctEnd = ctStart + nbSeq; + size_t cSymbolTypeSizeEstimateInBits = 0; + unsigned max = maxCode; + + HIST_countFast_wksp(countWksp, &max, codeTable, nbSeq, workspace, wkspSize); /* can't fail */ + if (type == set_basic) { + /* We selected this encoding type, so it must be valid. */ + assert(max <= defaultMax); + (void)defaultMax; + cSymbolTypeSizeEstimateInBits = ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, countWksp, max); + } else if (type == set_rle) { + cSymbolTypeSizeEstimateInBits = 0; + } else if (type == set_compressed || type == set_repeat) { + cSymbolTypeSizeEstimateInBits = ZSTD_fseBitCost(fseCTable, countWksp, max); + } + if (ZSTD_isError(cSymbolTypeSizeEstimateInBits)) { + return nbSeq * 10; + } + while (ctp < ctEnd) { + if (additionalBits) cSymbolTypeSizeEstimateInBits += additionalBits[*ctp]; + else cSymbolTypeSizeEstimateInBits += *ctp; /* for offset, offset code is also the number of additional bits */ + ctp++; + } + return cSymbolTypeSizeEstimateInBits >> 3; +} + +/* Returns the size estimate for the sequences section (header + content) of a block */ +static size_t +ZSTD_estimateBlockSize_sequences(const BYTE* ofCodeTable, + const BYTE* llCodeTable, + const BYTE* mlCodeTable, + size_t nbSeq, + const ZSTD_fseCTables_t* fseTables, + const ZSTD_fseCTablesMetadata_t* fseMetadata, + void* workspace, size_t wkspSize, + int writeEntropy) +{ + size_t sequencesSectionHeaderSize = 1 /* seqHead */ + 1 /* min seqSize size */ + (nbSeq >= 128) + (nbSeq >= LONGNBSEQ); + size_t cSeqSizeEstimate = 0; + cSeqSizeEstimate += ZSTD_estimateBlockSize_symbolType(fseMetadata->ofType, ofCodeTable, nbSeq, MaxOff, + fseTables->offcodeCTable, NULL, + OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff, + workspace, wkspSize); + cSeqSizeEstimate += ZSTD_estimateBlockSize_symbolType(fseMetadata->llType, llCodeTable, nbSeq, MaxLL, + fseTables->litlengthCTable, LL_bits, + LL_defaultNorm, LL_defaultNormLog, MaxLL, + workspace, wkspSize); + cSeqSizeEstimate += ZSTD_estimateBlockSize_symbolType(fseMetadata->mlType, mlCodeTable, nbSeq, MaxML, + fseTables->matchlengthCTable, ML_bits, + ML_defaultNorm, ML_defaultNormLog, MaxML, + workspace, wkspSize); + if (writeEntropy) cSeqSizeEstimate += fseMetadata->fseTablesSize; + return cSeqSizeEstimate + sequencesSectionHeaderSize; +} + +/* Returns the size estimate for a given stream of literals, of, ll, ml */ +static size_t +ZSTD_estimateBlockSize(const BYTE* literals, size_t litSize, + const BYTE* ofCodeTable, + const BYTE* llCodeTable, + const BYTE* mlCodeTable, + size_t nbSeq, + const ZSTD_entropyCTables_t* entropy, + const ZSTD_entropyCTablesMetadata_t* entropyMetadata, + void* workspace, size_t wkspSize, + int writeLitEntropy, int writeSeqEntropy) +{ + size_t const literalsSize = ZSTD_estimateBlockSize_literal(literals, litSize, + &entropy->huf, &entropyMetadata->hufMetadata, + workspace, wkspSize, writeLitEntropy); + size_t const seqSize = ZSTD_estimateBlockSize_sequences(ofCodeTable, llCodeTable, mlCodeTable, + nbSeq, &entropy->fse, &entropyMetadata->fseMetadata, + workspace, wkspSize, writeSeqEntropy); + return seqSize + literalsSize + ZSTD_blockHeaderSize; +} + +/* Builds entropy statistics and uses them for blocksize estimation. + * + * @return: estimated compressed size of the seqStore, or a zstd error. + */ +static size_t +ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize(SeqStore_t* seqStore, ZSTD_CCtx* zc) +{ + ZSTD_entropyCTablesMetadata_t* const entropyMetadata = &zc->blockSplitCtx.entropyMetadata; + DEBUGLOG(6, "ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize()"); + FORWARD_IF_ERROR(ZSTD_buildBlockEntropyStats(seqStore, + &zc->blockState.prevCBlock->entropy, + &zc->blockState.nextCBlock->entropy, + &zc->appliedParams, + entropyMetadata, + zc->tmpWorkspace, zc->tmpWkspSize), ""); + return ZSTD_estimateBlockSize( + seqStore->litStart, (size_t)(seqStore->lit - seqStore->litStart), + seqStore->ofCode, seqStore->llCode, seqStore->mlCode, + (size_t)(seqStore->sequences - seqStore->sequencesStart), + &zc->blockState.nextCBlock->entropy, + entropyMetadata, + zc->tmpWorkspace, zc->tmpWkspSize, + (int)(entropyMetadata->hufMetadata.hType == set_compressed), 1); +} + +/* Returns literals bytes represented in a seqStore */ +static size_t ZSTD_countSeqStoreLiteralsBytes(const SeqStore_t* const seqStore) +{ + size_t literalsBytes = 0; + size_t const nbSeqs = (size_t)(seqStore->sequences - seqStore->sequencesStart); + size_t i; + for (i = 0; i < nbSeqs; ++i) { + SeqDef const seq = seqStore->sequencesStart[i]; + literalsBytes += seq.litLength; + if (i == seqStore->longLengthPos && seqStore->longLengthType == ZSTD_llt_literalLength) { + literalsBytes += 0x10000; + } } + return literalsBytes; +} + +/* Returns match bytes represented in a seqStore */ +static size_t ZSTD_countSeqStoreMatchBytes(const SeqStore_t* const seqStore) +{ + size_t matchBytes = 0; + size_t const nbSeqs = (size_t)(seqStore->sequences - seqStore->sequencesStart); + size_t i; + for (i = 0; i < nbSeqs; ++i) { + SeqDef seq = seqStore->sequencesStart[i]; + matchBytes += seq.mlBase + MINMATCH; + if (i == seqStore->longLengthPos && seqStore->longLengthType == ZSTD_llt_matchLength) { + matchBytes += 0x10000; + } } + return matchBytes; +} + +/* Derives the seqStore that is a chunk of the originalSeqStore from [startIdx, endIdx). + * Stores the result in resultSeqStore. + */ +static void ZSTD_deriveSeqStoreChunk(SeqStore_t* resultSeqStore, + const SeqStore_t* originalSeqStore, + size_t startIdx, size_t endIdx) +{ + *resultSeqStore = *originalSeqStore; + if (startIdx > 0) { + resultSeqStore->sequences = originalSeqStore->sequencesStart + startIdx; + resultSeqStore->litStart += ZSTD_countSeqStoreLiteralsBytes(resultSeqStore); + } + + /* Move longLengthPos into the correct position if necessary */ + if (originalSeqStore->longLengthType != ZSTD_llt_none) { + if (originalSeqStore->longLengthPos < startIdx || originalSeqStore->longLengthPos > endIdx) { + resultSeqStore->longLengthType = ZSTD_llt_none; + } else { + resultSeqStore->longLengthPos -= (U32)startIdx; + } + } + resultSeqStore->sequencesStart = originalSeqStore->sequencesStart + startIdx; + resultSeqStore->sequences = originalSeqStore->sequencesStart + endIdx; + if (endIdx == (size_t)(originalSeqStore->sequences - originalSeqStore->sequencesStart)) { + /* This accounts for possible last literals if the derived chunk reaches the end of the block */ + assert(resultSeqStore->lit == originalSeqStore->lit); + } else { + size_t const literalsBytes = ZSTD_countSeqStoreLiteralsBytes(resultSeqStore); + resultSeqStore->lit = resultSeqStore->litStart + literalsBytes; + } + resultSeqStore->llCode += startIdx; + resultSeqStore->mlCode += startIdx; + resultSeqStore->ofCode += startIdx; +} + +/** + * Returns the raw offset represented by the combination of offBase, ll0, and repcode history. + * offBase must represent a repcode in the numeric representation of ZSTD_storeSeq(). + */ +static U32 +ZSTD_resolveRepcodeToRawOffset(const U32 rep[ZSTD_REP_NUM], const U32 offBase, const U32 ll0) +{ + U32 const adjustedRepCode = OFFBASE_TO_REPCODE(offBase) - 1 + ll0; /* [ 0 - 3 ] */ + assert(OFFBASE_IS_REPCODE(offBase)); + if (adjustedRepCode == ZSTD_REP_NUM) { + assert(ll0); + /* litlength == 0 and offCode == 2 implies selection of first repcode - 1 + * This is only valid if it results in a valid offset value, aka > 0. + * Note : it may happen that `rep[0]==1` in exceptional circumstances. + * In which case this function will return 0, which is an invalid offset. + * It's not an issue though, since this value will be + * compared and discarded within ZSTD_seqStore_resolveOffCodes(). + */ + return rep[0] - 1; + } + return rep[adjustedRepCode]; +} + +/** + * ZSTD_seqStore_resolveOffCodes() reconciles any possible divergences in offset history that may arise + * due to emission of RLE/raw blocks that disturb the offset history, + * and replaces any repcodes within the seqStore that may be invalid. + * + * dRepcodes are updated as would be on the decompression side. + * cRepcodes are updated exactly in accordance with the seqStore. + * + * Note : this function assumes seq->offBase respects the following numbering scheme : + * 0 : invalid + * 1-3 : repcode 1-3 + * 4+ : real_offset+3 + */ +static void +ZSTD_seqStore_resolveOffCodes(Repcodes_t* const dRepcodes, Repcodes_t* const cRepcodes, + const SeqStore_t* const seqStore, U32 const nbSeq) +{ + U32 idx = 0; + U32 const longLitLenIdx = seqStore->longLengthType == ZSTD_llt_literalLength ? seqStore->longLengthPos : nbSeq; + for (; idx < nbSeq; ++idx) { + SeqDef* const seq = seqStore->sequencesStart + idx; + U32 const ll0 = (seq->litLength == 0) && (idx != longLitLenIdx); + U32 const offBase = seq->offBase; + assert(offBase > 0); + if (OFFBASE_IS_REPCODE(offBase)) { + U32 const dRawOffset = ZSTD_resolveRepcodeToRawOffset(dRepcodes->rep, offBase, ll0); + U32 const cRawOffset = ZSTD_resolveRepcodeToRawOffset(cRepcodes->rep, offBase, ll0); + /* Adjust simulated decompression repcode history if we come across a mismatch. Replace + * the repcode with the offset it actually references, determined by the compression + * repcode history. + */ + if (dRawOffset != cRawOffset) { + seq->offBase = OFFSET_TO_OFFBASE(cRawOffset); + } + } + /* Compression repcode history is always updated with values directly from the unmodified seqStore. + * Decompression repcode history may use modified seq->offset value taken from compression repcode history. + */ + ZSTD_updateRep(dRepcodes->rep, seq->offBase, ll0); + ZSTD_updateRep(cRepcodes->rep, offBase, ll0); + } +} + +/* ZSTD_compressSeqStore_singleBlock(): + * Compresses a seqStore into a block with a block header, into the buffer dst. + * + * Returns the total size of that block (including header) or a ZSTD error code. + */ +static size_t +ZSTD_compressSeqStore_singleBlock(ZSTD_CCtx* zc, + const SeqStore_t* const seqStore, + Repcodes_t* const dRep, Repcodes_t* const cRep, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + U32 lastBlock, U32 isPartition) +{ + const U32 rleMaxLength = 25; + BYTE* op = (BYTE*)dst; + const BYTE* ip = (const BYTE*)src; + size_t cSize; + size_t cSeqsSize; + + /* In case of an RLE or raw block, the simulated decompression repcode history must be reset */ + Repcodes_t const dRepOriginal = *dRep; + DEBUGLOG(5, "ZSTD_compressSeqStore_singleBlock"); + if (isPartition) + ZSTD_seqStore_resolveOffCodes(dRep, cRep, seqStore, (U32)(seqStore->sequences - seqStore->sequencesStart)); + + RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize, dstSize_tooSmall, "Block header doesn't fit"); + cSeqsSize = ZSTD_entropyCompressSeqStore(seqStore, + &zc->blockState.prevCBlock->entropy, &zc->blockState.nextCBlock->entropy, + &zc->appliedParams, + op + ZSTD_blockHeaderSize, dstCapacity - ZSTD_blockHeaderSize, + srcSize, + zc->tmpWorkspace, zc->tmpWkspSize /* statically allocated in resetCCtx */, + zc->bmi2); + FORWARD_IF_ERROR(cSeqsSize, "ZSTD_entropyCompressSeqStore failed!"); + + if (!zc->isFirstBlock && + cSeqsSize < rleMaxLength && + ZSTD_isRLE((BYTE const*)src, srcSize)) { + /* We don't want to emit our first block as a RLE even if it qualifies because + * doing so will cause the decoder (cli only) to throw a "should consume all input error." + * This is only an issue for zstd <= v1.4.3 + */ + cSeqsSize = 1; + } + + /* Sequence collection not supported when block splitting */ + if (zc->seqCollector.collectSequences) { + FORWARD_IF_ERROR(ZSTD_copyBlockSequences(&zc->seqCollector, seqStore, dRepOriginal.rep), "copyBlockSequences failed"); + ZSTD_blockState_confirmRepcodesAndEntropyTables(&zc->blockState); + return 0; + } + + if (cSeqsSize == 0) { + cSize = ZSTD_noCompressBlock(op, dstCapacity, ip, srcSize, lastBlock); + FORWARD_IF_ERROR(cSize, "Nocompress block failed"); + DEBUGLOG(4, "Writing out nocompress block, size: %zu", cSize); + *dRep = dRepOriginal; /* reset simulated decompression repcode history */ + } else if (cSeqsSize == 1) { + cSize = ZSTD_rleCompressBlock(op, dstCapacity, *ip, srcSize, lastBlock); + FORWARD_IF_ERROR(cSize, "RLE compress block failed"); + DEBUGLOG(4, "Writing out RLE block, size: %zu", cSize); + *dRep = dRepOriginal; /* reset simulated decompression repcode history */ + } else { + ZSTD_blockState_confirmRepcodesAndEntropyTables(&zc->blockState); + writeBlockHeader(op, cSeqsSize, srcSize, lastBlock); + cSize = ZSTD_blockHeaderSize + cSeqsSize; + DEBUGLOG(4, "Writing out compressed block, size: %zu", cSize); + } + + if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid) + zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check; + + return cSize; +} + +/* Struct to keep track of where we are in our recursive calls. */ +typedef struct { + U32* splitLocations; /* Array of split indices */ + size_t idx; /* The current index within splitLocations being worked on */ +} seqStoreSplits; + +#define MIN_SEQUENCES_BLOCK_SPLITTING 300 + +/* Helper function to perform the recursive search for block splits. + * Estimates the cost of seqStore prior to split, and estimates the cost of splitting the sequences in half. + * If advantageous to split, then we recurse down the two sub-blocks. + * If not, or if an error occurred in estimation, then we do not recurse. + * + * Note: The recursion depth is capped by a heuristic minimum number of sequences, + * defined by MIN_SEQUENCES_BLOCK_SPLITTING. + * In theory, this means the absolute largest recursion depth is 10 == log2(maxNbSeqInBlock/MIN_SEQUENCES_BLOCK_SPLITTING). + * In practice, recursion depth usually doesn't go beyond 4. + * + * Furthermore, the number of splits is capped by ZSTD_MAX_NB_BLOCK_SPLITS. + * At ZSTD_MAX_NB_BLOCK_SPLITS == 196 with the current existing blockSize + * maximum of 128 KB, this value is actually impossible to reach. + */ +static void +ZSTD_deriveBlockSplitsHelper(seqStoreSplits* splits, size_t startIdx, size_t endIdx, + ZSTD_CCtx* zc, const SeqStore_t* origSeqStore) +{ + SeqStore_t* const fullSeqStoreChunk = &zc->blockSplitCtx.fullSeqStoreChunk; + SeqStore_t* const firstHalfSeqStore = &zc->blockSplitCtx.firstHalfSeqStore; + SeqStore_t* const secondHalfSeqStore = &zc->blockSplitCtx.secondHalfSeqStore; + size_t estimatedOriginalSize; + size_t estimatedFirstHalfSize; + size_t estimatedSecondHalfSize; + size_t midIdx = (startIdx + endIdx)/2; + + DEBUGLOG(5, "ZSTD_deriveBlockSplitsHelper: startIdx=%zu endIdx=%zu", startIdx, endIdx); + assert(endIdx >= startIdx); + if (endIdx - startIdx < MIN_SEQUENCES_BLOCK_SPLITTING || splits->idx >= ZSTD_MAX_NB_BLOCK_SPLITS) { + DEBUGLOG(6, "ZSTD_deriveBlockSplitsHelper: Too few sequences (%zu)", endIdx - startIdx); + return; + } + ZSTD_deriveSeqStoreChunk(fullSeqStoreChunk, origSeqStore, startIdx, endIdx); + ZSTD_deriveSeqStoreChunk(firstHalfSeqStore, origSeqStore, startIdx, midIdx); + ZSTD_deriveSeqStoreChunk(secondHalfSeqStore, origSeqStore, midIdx, endIdx); + estimatedOriginalSize = ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize(fullSeqStoreChunk, zc); + estimatedFirstHalfSize = ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize(firstHalfSeqStore, zc); + estimatedSecondHalfSize = ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize(secondHalfSeqStore, zc); + DEBUGLOG(5, "Estimated original block size: %zu -- First half split: %zu -- Second half split: %zu", + estimatedOriginalSize, estimatedFirstHalfSize, estimatedSecondHalfSize); + if (ZSTD_isError(estimatedOriginalSize) || ZSTD_isError(estimatedFirstHalfSize) || ZSTD_isError(estimatedSecondHalfSize)) { + return; + } + if (estimatedFirstHalfSize + estimatedSecondHalfSize < estimatedOriginalSize) { + DEBUGLOG(5, "split decided at seqNb:%zu", midIdx); + ZSTD_deriveBlockSplitsHelper(splits, startIdx, midIdx, zc, origSeqStore); + splits->splitLocations[splits->idx] = (U32)midIdx; + splits->idx++; + ZSTD_deriveBlockSplitsHelper(splits, midIdx, endIdx, zc, origSeqStore); + } +} + +/* Base recursive function. + * Populates a table with intra-block partition indices that can improve compression ratio. + * + * @return: number of splits made (which equals the size of the partition table - 1). + */ +static size_t ZSTD_deriveBlockSplits(ZSTD_CCtx* zc, U32 partitions[], U32 nbSeq) +{ + seqStoreSplits splits; + splits.splitLocations = partitions; + splits.idx = 0; + if (nbSeq <= 4) { + DEBUGLOG(5, "ZSTD_deriveBlockSplits: Too few sequences to split (%u <= 4)", nbSeq); + /* Refuse to try and split anything with less than 4 sequences */ + return 0; + } + ZSTD_deriveBlockSplitsHelper(&splits, 0, nbSeq, zc, &zc->seqStore); + splits.splitLocations[splits.idx] = nbSeq; + DEBUGLOG(5, "ZSTD_deriveBlockSplits: final nb partitions: %zu", splits.idx+1); + return splits.idx; +} + +/* ZSTD_compressBlock_splitBlock(): + * Attempts to split a given block into multiple blocks to improve compression ratio. + * + * Returns combined size of all blocks (which includes headers), or a ZSTD error code. + */ +static size_t +ZSTD_compressBlock_splitBlock_internal(ZSTD_CCtx* zc, + void* dst, size_t dstCapacity, + const void* src, size_t blockSize, + U32 lastBlock, U32 nbSeq) +{ + size_t cSize = 0; + const BYTE* ip = (const BYTE*)src; + BYTE* op = (BYTE*)dst; + size_t i = 0; + size_t srcBytesTotal = 0; + U32* const partitions = zc->blockSplitCtx.partitions; /* size == ZSTD_MAX_NB_BLOCK_SPLITS */ + SeqStore_t* const nextSeqStore = &zc->blockSplitCtx.nextSeqStore; + SeqStore_t* const currSeqStore = &zc->blockSplitCtx.currSeqStore; + size_t const numSplits = ZSTD_deriveBlockSplits(zc, partitions, nbSeq); + + /* If a block is split and some partitions are emitted as RLE/uncompressed, then repcode history + * may become invalid. In order to reconcile potentially invalid repcodes, we keep track of two + * separate repcode histories that simulate repcode history on compression and decompression side, + * and use the histories to determine whether we must replace a particular repcode with its raw offset. + * + * 1) cRep gets updated for each partition, regardless of whether the block was emitted as uncompressed + * or RLE. This allows us to retrieve the offset value that an invalid repcode references within + * a nocompress/RLE block. + * 2) dRep gets updated only for compressed partitions, and when a repcode gets replaced, will use + * the replacement offset value rather than the original repcode to update the repcode history. + * dRep also will be the final repcode history sent to the next block. + * + * See ZSTD_seqStore_resolveOffCodes() for more details. + */ + Repcodes_t dRep; + Repcodes_t cRep; + ZSTD_memcpy(dRep.rep, zc->blockState.prevCBlock->rep, sizeof(Repcodes_t)); + ZSTD_memcpy(cRep.rep, zc->blockState.prevCBlock->rep, sizeof(Repcodes_t)); + ZSTD_memset(nextSeqStore, 0, sizeof(SeqStore_t)); + + DEBUGLOG(5, "ZSTD_compressBlock_splitBlock_internal (dstCapacity=%u, dictLimit=%u, nextToUpdate=%u)", + (unsigned)dstCapacity, (unsigned)zc->blockState.matchState.window.dictLimit, + (unsigned)zc->blockState.matchState.nextToUpdate); + + if (numSplits == 0) { + size_t cSizeSingleBlock = + ZSTD_compressSeqStore_singleBlock(zc, &zc->seqStore, + &dRep, &cRep, + op, dstCapacity, + ip, blockSize, + lastBlock, 0 /* isPartition */); + FORWARD_IF_ERROR(cSizeSingleBlock, "Compressing single block from splitBlock_internal() failed!"); + DEBUGLOG(5, "ZSTD_compressBlock_splitBlock_internal: No splits"); + assert(zc->blockSizeMax <= ZSTD_BLOCKSIZE_MAX); + assert(cSizeSingleBlock <= zc->blockSizeMax + ZSTD_blockHeaderSize); + return cSizeSingleBlock; + } + + ZSTD_deriveSeqStoreChunk(currSeqStore, &zc->seqStore, 0, partitions[0]); + for (i = 0; i <= numSplits; ++i) { + size_t cSizeChunk; + U32 const lastPartition = (i == numSplits); + U32 lastBlockEntireSrc = 0; + + size_t srcBytes = ZSTD_countSeqStoreLiteralsBytes(currSeqStore) + ZSTD_countSeqStoreMatchBytes(currSeqStore); + srcBytesTotal += srcBytes; + if (lastPartition) { + /* This is the final partition, need to account for possible last literals */ + srcBytes += blockSize - srcBytesTotal; + lastBlockEntireSrc = lastBlock; + } else { + ZSTD_deriveSeqStoreChunk(nextSeqStore, &zc->seqStore, partitions[i], partitions[i+1]); + } + + cSizeChunk = ZSTD_compressSeqStore_singleBlock(zc, currSeqStore, + &dRep, &cRep, + op, dstCapacity, + ip, srcBytes, + lastBlockEntireSrc, 1 /* isPartition */); + DEBUGLOG(5, "Estimated size: %zu vs %zu : actual size", + ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize(currSeqStore, zc), cSizeChunk); + FORWARD_IF_ERROR(cSizeChunk, "Compressing chunk failed!"); + + ip += srcBytes; + op += cSizeChunk; + dstCapacity -= cSizeChunk; + cSize += cSizeChunk; + *currSeqStore = *nextSeqStore; + assert(cSizeChunk <= zc->blockSizeMax + ZSTD_blockHeaderSize); + } + /* cRep and dRep may have diverged during the compression. + * If so, we use the dRep repcodes for the next block. + */ + ZSTD_memcpy(zc->blockState.prevCBlock->rep, dRep.rep, sizeof(Repcodes_t)); + return cSize; +} + +static size_t +ZSTD_compressBlock_splitBlock(ZSTD_CCtx* zc, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, U32 lastBlock) +{ + U32 nbSeq; + size_t cSize; + DEBUGLOG(4, "ZSTD_compressBlock_splitBlock"); + assert(zc->appliedParams.postBlockSplitter == ZSTD_ps_enable); + + { const size_t bss = ZSTD_buildSeqStore(zc, src, srcSize); + FORWARD_IF_ERROR(bss, "ZSTD_buildSeqStore failed"); + if (bss == ZSTDbss_noCompress) { + if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid) + zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check; + RETURN_ERROR_IF(zc->seqCollector.collectSequences, sequenceProducer_failed, "Uncompressible block"); + cSize = ZSTD_noCompressBlock(dst, dstCapacity, src, srcSize, lastBlock); + FORWARD_IF_ERROR(cSize, "ZSTD_noCompressBlock failed"); + DEBUGLOG(4, "ZSTD_compressBlock_splitBlock: Nocompress block"); + return cSize; + } + nbSeq = (U32)(zc->seqStore.sequences - zc->seqStore.sequencesStart); + } + + cSize = ZSTD_compressBlock_splitBlock_internal(zc, dst, dstCapacity, src, srcSize, lastBlock, nbSeq); + FORWARD_IF_ERROR(cSize, "Splitting blocks failed!"); + return cSize; +} + +static size_t +ZSTD_compressBlock_internal(ZSTD_CCtx* zc, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, U32 frame) +{ + /* This is an estimated upper bound for the length of an rle block. + * This isn't the actual upper bound. + * Finding the real threshold needs further investigation. + */ + const U32 rleMaxLength = 25; + size_t cSize; + const BYTE* ip = (const BYTE*)src; + BYTE* op = (BYTE*)dst; + DEBUGLOG(5, "ZSTD_compressBlock_internal (dstCapacity=%u, dictLimit=%u, nextToUpdate=%u)", + (unsigned)dstCapacity, (unsigned)zc->blockState.matchState.window.dictLimit, + (unsigned)zc->blockState.matchState.nextToUpdate); + + { const size_t bss = ZSTD_buildSeqStore(zc, src, srcSize); + FORWARD_IF_ERROR(bss, "ZSTD_buildSeqStore failed"); + if (bss == ZSTDbss_noCompress) { + RETURN_ERROR_IF(zc->seqCollector.collectSequences, sequenceProducer_failed, "Uncompressible block"); + cSize = 0; + goto out; + } + } + + if (zc->seqCollector.collectSequences) { + FORWARD_IF_ERROR(ZSTD_copyBlockSequences(&zc->seqCollector, ZSTD_getSeqStore(zc), zc->blockState.prevCBlock->rep), "copyBlockSequences failed"); + ZSTD_blockState_confirmRepcodesAndEntropyTables(&zc->blockState); + return 0; + } + + /* encode sequences and literals */ + cSize = ZSTD_entropyCompressSeqStore(&zc->seqStore, + &zc->blockState.prevCBlock->entropy, &zc->blockState.nextCBlock->entropy, + &zc->appliedParams, + dst, dstCapacity, + srcSize, + zc->tmpWorkspace, zc->tmpWkspSize /* statically allocated in resetCCtx */, + zc->bmi2); + + if (frame && + /* We don't want to emit our first block as a RLE even if it qualifies because + * doing so will cause the decoder (cli only) to throw a "should consume all input error." + * This is only an issue for zstd <= v1.4.3 + */ + !zc->isFirstBlock && + cSize < rleMaxLength && + ZSTD_isRLE(ip, srcSize)) + { + cSize = 1; + op[0] = ip[0]; + } + +out: + if (!ZSTD_isError(cSize) && cSize > 1) { + ZSTD_blockState_confirmRepcodesAndEntropyTables(&zc->blockState); + } + /* We check that dictionaries have offset codes available for the first + * block. After the first block, the offcode table might not have large + * enough codes to represent the offsets in the data. + */ + if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid) + zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check; + + return cSize; +} + +static size_t ZSTD_compressBlock_targetCBlockSize_body(ZSTD_CCtx* zc, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const size_t bss, U32 lastBlock) +{ + DEBUGLOG(6, "Attempting ZSTD_compressSuperBlock()"); + if (bss == ZSTDbss_compress) { + if (/* We don't want to emit our first block as a RLE even if it qualifies because + * doing so will cause the decoder (cli only) to throw a "should consume all input error." + * This is only an issue for zstd <= v1.4.3 + */ + !zc->isFirstBlock && + ZSTD_maybeRLE(&zc->seqStore) && + ZSTD_isRLE((BYTE const*)src, srcSize)) + { + return ZSTD_rleCompressBlock(dst, dstCapacity, *(BYTE const*)src, srcSize, lastBlock); + } + /* Attempt superblock compression. + * + * Note that compressed size of ZSTD_compressSuperBlock() is not bound by the + * standard ZSTD_compressBound(). This is a problem, because even if we have + * space now, taking an extra byte now could cause us to run out of space later + * and violate ZSTD_compressBound(). + * + * Define blockBound(blockSize) = blockSize + ZSTD_blockHeaderSize. + * + * In order to respect ZSTD_compressBound() we must attempt to emit a raw + * uncompressed block in these cases: + * * cSize == 0: Return code for an uncompressed block. + * * cSize == dstSize_tooSmall: We may have expanded beyond blockBound(srcSize). + * ZSTD_noCompressBlock() will return dstSize_tooSmall if we are really out of + * output space. + * * cSize >= blockBound(srcSize): We have expanded the block too much so + * emit an uncompressed block. + */ + { size_t const cSize = + ZSTD_compressSuperBlock(zc, dst, dstCapacity, src, srcSize, lastBlock); + if (cSize != ERROR(dstSize_tooSmall)) { + size_t const maxCSize = + srcSize - ZSTD_minGain(srcSize, zc->appliedParams.cParams.strategy); + FORWARD_IF_ERROR(cSize, "ZSTD_compressSuperBlock failed"); + if (cSize != 0 && cSize < maxCSize + ZSTD_blockHeaderSize) { + ZSTD_blockState_confirmRepcodesAndEntropyTables(&zc->blockState); + return cSize; + } + } + } + } /* if (bss == ZSTDbss_compress)*/ + + DEBUGLOG(6, "Resorting to ZSTD_noCompressBlock()"); + /* Superblock compression failed, attempt to emit a single no compress block. + * The decoder will be able to stream this block since it is uncompressed. + */ + return ZSTD_noCompressBlock(dst, dstCapacity, src, srcSize, lastBlock); +} + +static size_t ZSTD_compressBlock_targetCBlockSize(ZSTD_CCtx* zc, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + U32 lastBlock) +{ + size_t cSize = 0; + const size_t bss = ZSTD_buildSeqStore(zc, src, srcSize); + DEBUGLOG(5, "ZSTD_compressBlock_targetCBlockSize (dstCapacity=%u, dictLimit=%u, nextToUpdate=%u, srcSize=%zu)", + (unsigned)dstCapacity, (unsigned)zc->blockState.matchState.window.dictLimit, (unsigned)zc->blockState.matchState.nextToUpdate, srcSize); + FORWARD_IF_ERROR(bss, "ZSTD_buildSeqStore failed"); + + cSize = ZSTD_compressBlock_targetCBlockSize_body(zc, dst, dstCapacity, src, srcSize, bss, lastBlock); + FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_targetCBlockSize_body failed"); + + if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid) + zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check; + + return cSize; +} + +static void ZSTD_overflowCorrectIfNeeded(ZSTD_MatchState_t* ms, + ZSTD_cwksp* ws, + ZSTD_CCtx_params const* params, + void const* ip, + void const* iend) +{ + U32 const cycleLog = ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy); + U32 const maxDist = (U32)1 << params->cParams.windowLog; + if (ZSTD_window_needOverflowCorrection(ms->window, cycleLog, maxDist, ms->loadedDictEnd, ip, iend)) { + U32 const correction = ZSTD_window_correctOverflow(&ms->window, cycleLog, maxDist, ip); + ZSTD_STATIC_ASSERT(ZSTD_CHAINLOG_MAX <= 30); + ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX_32 <= 30); + ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31); + ZSTD_cwksp_mark_tables_dirty(ws); + ZSTD_reduceIndex(ms, params, correction); + ZSTD_cwksp_mark_tables_clean(ws); + if (ms->nextToUpdate < correction) ms->nextToUpdate = 0; + else ms->nextToUpdate -= correction; + /* invalidate dictionaries on overflow correction */ + ms->loadedDictEnd = 0; + ms->dictMatchState = NULL; + } +} + +#include "zstd_preSplit.h" + +static size_t ZSTD_optimalBlockSize(ZSTD_CCtx* cctx, const void* src, size_t srcSize, size_t blockSizeMax, int splitLevel, ZSTD_strategy strat, S64 savings) +{ + /* split level based on compression strategy, from `fast` to `btultra2` */ + static const int splitLevels[] = { 0, 0, 1, 2, 2, 3, 3, 4, 4, 4 }; + /* note: conservatively only split full blocks (128 KB) currently. + * While it's possible to go lower, let's keep it simple for a first implementation. + * Besides, benefits of splitting are reduced when blocks are already small. + */ + if (srcSize < 128 KB || blockSizeMax < 128 KB) + return MIN(srcSize, blockSizeMax); + /* do not split incompressible data though: + * require verified savings to allow pre-splitting. + * Note: as a consequence, the first full block is not split. + */ + if (savings < 3) { + DEBUGLOG(6, "don't attempt splitting: savings (%i) too low", (int)savings); + return 128 KB; + } + /* apply @splitLevel, or use default value (which depends on @strat). + * note that splitting heuristic is still conditioned by @savings >= 3, + * so the first block will not reach this code path */ + if (splitLevel == 1) return 128 KB; + if (splitLevel == 0) { + assert(ZSTD_fast <= strat && strat <= ZSTD_btultra2); + splitLevel = splitLevels[strat]; + } else { + assert(2 <= splitLevel && splitLevel <= 6); + splitLevel -= 2; + } + return ZSTD_splitBlock(src, blockSizeMax, splitLevel, cctx->tmpWorkspace, cctx->tmpWkspSize); +} + +/*! ZSTD_compress_frameChunk() : +* Compress a chunk of data into one or multiple blocks. +* All blocks will be terminated, all input will be consumed. +* Function will issue an error if there is not enough `dstCapacity` to hold the compressed content. +* Frame is supposed already started (header already produced) +* @return : compressed size, or an error code +*/ +static size_t ZSTD_compress_frameChunk(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + U32 lastFrameChunk) +{ + size_t blockSizeMax = cctx->blockSizeMax; + size_t remaining = srcSize; + const BYTE* ip = (const BYTE*)src; + BYTE* const ostart = (BYTE*)dst; + BYTE* op = ostart; + U32 const maxDist = (U32)1 << cctx->appliedParams.cParams.windowLog; + S64 savings = (S64)cctx->consumedSrcSize - (S64)cctx->producedCSize; + + assert(cctx->appliedParams.cParams.windowLog <= ZSTD_WINDOWLOG_MAX); + + DEBUGLOG(4, "ZSTD_compress_frameChunk (blockSizeMax=%u)", (unsigned)blockSizeMax); + if (cctx->appliedParams.fParams.checksumFlag && srcSize) + XXH64_update(&cctx->xxhState, src, srcSize); + + while (remaining) { + ZSTD_MatchState_t* const ms = &cctx->blockState.matchState; + size_t const blockSize = ZSTD_optimalBlockSize(cctx, + ip, remaining, + blockSizeMax, + cctx->appliedParams.preBlockSplitter_level, + cctx->appliedParams.cParams.strategy, + savings); + U32 const lastBlock = lastFrameChunk & (blockSize == remaining); + assert(blockSize <= remaining); + + /* TODO: See 3090. We reduced MIN_CBLOCK_SIZE from 3 to 2 so to compensate we are adding + * additional 1. We need to revisit and change this logic to be more consistent */ + RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize + MIN_CBLOCK_SIZE + 1, + dstSize_tooSmall, + "not enough space to store compressed block"); + + ZSTD_overflowCorrectIfNeeded( + ms, &cctx->workspace, &cctx->appliedParams, ip, ip + blockSize); + ZSTD_checkDictValidity(&ms->window, ip + blockSize, maxDist, &ms->loadedDictEnd, &ms->dictMatchState); + ZSTD_window_enforceMaxDist(&ms->window, ip, maxDist, &ms->loadedDictEnd, &ms->dictMatchState); + + /* Ensure hash/chain table insertion resumes no sooner than lowlimit */ + if (ms->nextToUpdate < ms->window.lowLimit) ms->nextToUpdate = ms->window.lowLimit; + + { size_t cSize; + if (ZSTD_useTargetCBlockSize(&cctx->appliedParams)) { + cSize = ZSTD_compressBlock_targetCBlockSize(cctx, op, dstCapacity, ip, blockSize, lastBlock); + FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_targetCBlockSize failed"); + assert(cSize > 0); + assert(cSize <= blockSize + ZSTD_blockHeaderSize); + } else if (ZSTD_blockSplitterEnabled(&cctx->appliedParams)) { + cSize = ZSTD_compressBlock_splitBlock(cctx, op, dstCapacity, ip, blockSize, lastBlock); + FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_splitBlock failed"); + assert(cSize > 0 || cctx->seqCollector.collectSequences == 1); + } else { + cSize = ZSTD_compressBlock_internal(cctx, + op+ZSTD_blockHeaderSize, dstCapacity-ZSTD_blockHeaderSize, + ip, blockSize, 1 /* frame */); + FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_internal failed"); + + if (cSize == 0) { /* block is not compressible */ + cSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock); + FORWARD_IF_ERROR(cSize, "ZSTD_noCompressBlock failed"); + } else { + U32 const cBlockHeader = cSize == 1 ? + lastBlock + (((U32)bt_rle)<<1) + (U32)(blockSize << 3) : + lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3); + MEM_writeLE24(op, cBlockHeader); + cSize += ZSTD_blockHeaderSize; + } + } /* if (ZSTD_useTargetCBlockSize(&cctx->appliedParams))*/ + + /* @savings is employed to ensure that splitting doesn't worsen expansion of incompressible data. + * Without splitting, the maximum expansion is 3 bytes per full block. + * An adversarial input could attempt to fudge the split detector, + * and make it split incompressible data, resulting in more block headers. + * Note that, since ZSTD_COMPRESSBOUND() assumes a worst case scenario of 1KB per block, + * and the splitter never creates blocks that small (current lower limit is 8 KB), + * there is already no risk to expand beyond ZSTD_COMPRESSBOUND() limit. + * But if the goal is to not expand by more than 3-bytes per 128 KB full block, + * then yes, it becomes possible to make the block splitter oversplit incompressible data. + * Using @savings, we enforce an even more conservative condition, + * requiring the presence of enough savings (at least 3 bytes) to authorize splitting, + * otherwise only full blocks are used. + * But being conservative is fine, + * since splitting barely compressible blocks is not fruitful anyway */ + savings += (S64)blockSize - (S64)cSize; + + ip += blockSize; + assert(remaining >= blockSize); + remaining -= blockSize; + op += cSize; + assert(dstCapacity >= cSize); + dstCapacity -= cSize; + cctx->isFirstBlock = 0; + DEBUGLOG(5, "ZSTD_compress_frameChunk: adding a block of size %u", + (unsigned)cSize); + } } + + if (lastFrameChunk && (op>ostart)) cctx->stage = ZSTDcs_ending; + return (size_t)(op-ostart); +} + + +static size_t ZSTD_writeFrameHeader(void* dst, size_t dstCapacity, + const ZSTD_CCtx_params* params, + U64 pledgedSrcSize, U32 dictID) +{ + BYTE* const op = (BYTE*)dst; + U32 const dictIDSizeCodeLength = (dictID>0) + (dictID>=256) + (dictID>=65536); /* 0-3 */ + U32 const dictIDSizeCode = params->fParams.noDictIDFlag ? 0 : dictIDSizeCodeLength; /* 0-3 */ + U32 const checksumFlag = params->fParams.checksumFlag>0; + U32 const windowSize = (U32)1 << params->cParams.windowLog; + U32 const singleSegment = params->fParams.contentSizeFlag && (windowSize >= pledgedSrcSize); + BYTE const windowLogByte = (BYTE)((params->cParams.windowLog - ZSTD_WINDOWLOG_ABSOLUTEMIN) << 3); + U32 const fcsCode = params->fParams.contentSizeFlag ? + (pledgedSrcSize>=256) + (pledgedSrcSize>=65536+256) + (pledgedSrcSize>=0xFFFFFFFFU) : 0; /* 0-3 */ + BYTE const frameHeaderDescriptionByte = (BYTE)(dictIDSizeCode + (checksumFlag<<2) + (singleSegment<<5) + (fcsCode<<6) ); + size_t pos=0; + + assert(!(params->fParams.contentSizeFlag && pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN)); + RETURN_ERROR_IF(dstCapacity < ZSTD_FRAMEHEADERSIZE_MAX, dstSize_tooSmall, + "dst buf is too small to fit worst-case frame header size."); + DEBUGLOG(4, "ZSTD_writeFrameHeader : dictIDFlag : %u ; dictID : %u ; dictIDSizeCode : %u", + !params->fParams.noDictIDFlag, (unsigned)dictID, (unsigned)dictIDSizeCode); + if (params->format == ZSTD_f_zstd1) { + MEM_writeLE32(dst, ZSTD_MAGICNUMBER); + pos = 4; + } + op[pos++] = frameHeaderDescriptionByte; + if (!singleSegment) op[pos++] = windowLogByte; + switch(dictIDSizeCode) + { + default: + assert(0); /* impossible */ + ZSTD_FALLTHROUGH; + case 0 : break; + case 1 : op[pos] = (BYTE)(dictID); pos++; break; + case 2 : MEM_writeLE16(op+pos, (U16)dictID); pos+=2; break; + case 3 : MEM_writeLE32(op+pos, dictID); pos+=4; break; + } + switch(fcsCode) + { + default: + assert(0); /* impossible */ + ZSTD_FALLTHROUGH; + case 0 : if (singleSegment) op[pos++] = (BYTE)(pledgedSrcSize); break; + case 1 : MEM_writeLE16(op+pos, (U16)(pledgedSrcSize-256)); pos+=2; break; + case 2 : MEM_writeLE32(op+pos, (U32)(pledgedSrcSize)); pos+=4; break; + case 3 : MEM_writeLE64(op+pos, (U64)(pledgedSrcSize)); pos+=8; break; + } + return pos; +} + +/* ZSTD_writeSkippableFrame_advanced() : + * Writes out a skippable frame with the specified magic number variant (16 are supported), + * from ZSTD_MAGIC_SKIPPABLE_START to ZSTD_MAGIC_SKIPPABLE_START+15, and the desired source data. + * + * Returns the total number of bytes written, or a ZSTD error code. + */ +size_t ZSTD_writeSkippableFrame(void* dst, size_t dstCapacity, + const void* src, size_t srcSize, unsigned magicVariant) { + BYTE* op = (BYTE*)dst; + RETURN_ERROR_IF(dstCapacity < srcSize + ZSTD_SKIPPABLEHEADERSIZE /* Skippable frame overhead */, + dstSize_tooSmall, "Not enough room for skippable frame"); + RETURN_ERROR_IF(srcSize > (unsigned)0xFFFFFFFF, srcSize_wrong, "Src size too large for skippable frame"); + RETURN_ERROR_IF(magicVariant > 15, parameter_outOfBound, "Skippable frame magic number variant not supported"); + + MEM_writeLE32(op, (U32)(ZSTD_MAGIC_SKIPPABLE_START + magicVariant)); + MEM_writeLE32(op+4, (U32)srcSize); + ZSTD_memcpy(op+8, src, srcSize); + return srcSize + ZSTD_SKIPPABLEHEADERSIZE; +} + +/* ZSTD_writeLastEmptyBlock() : + * output an empty Block with end-of-frame mark to complete a frame + * @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h)) + * or an error code if `dstCapacity` is too small (stage == ZSTDcs_init); + assert(nbSeq == 0 || cctx->appliedParams.ldmParams.enableLdm != ZSTD_ps_enable); + cctx->externSeqStore.seq = seq; + cctx->externSeqStore.size = nbSeq; + cctx->externSeqStore.capacity = nbSeq; + cctx->externSeqStore.pos = 0; + cctx->externSeqStore.posInSequence = 0; +} + + +static size_t ZSTD_compressContinue_internal (ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + U32 frame, U32 lastFrameChunk) +{ + ZSTD_MatchState_t* const ms = &cctx->blockState.matchState; + size_t fhSize = 0; + + DEBUGLOG(5, "ZSTD_compressContinue_internal, stage: %u, srcSize: %u", + cctx->stage, (unsigned)srcSize); + RETURN_ERROR_IF(cctx->stage==ZSTDcs_created, stage_wrong, + "missing init (ZSTD_compressBegin)"); + + if (frame && (cctx->stage==ZSTDcs_init)) { + fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, &cctx->appliedParams, + cctx->pledgedSrcSizePlusOne-1, cctx->dictID); + FORWARD_IF_ERROR(fhSize, "ZSTD_writeFrameHeader failed"); + assert(fhSize <= dstCapacity); + dstCapacity -= fhSize; + dst = (char*)dst + fhSize; + cctx->stage = ZSTDcs_ongoing; + } + + if (!srcSize) return fhSize; /* do not generate an empty block if no input */ + + if (!ZSTD_window_update(&ms->window, src, srcSize, ms->forceNonContiguous)) { + ms->forceNonContiguous = 0; + ms->nextToUpdate = ms->window.dictLimit; + } + if (cctx->appliedParams.ldmParams.enableLdm == ZSTD_ps_enable) { + ZSTD_window_update(&cctx->ldmState.window, src, srcSize, /* forceNonContiguous */ 0); + } + + if (!frame) { + /* overflow check and correction for block mode */ + ZSTD_overflowCorrectIfNeeded( + ms, &cctx->workspace, &cctx->appliedParams, + src, (BYTE const*)src + srcSize); + } + + DEBUGLOG(5, "ZSTD_compressContinue_internal (blockSize=%u)", (unsigned)cctx->blockSizeMax); + { size_t const cSize = frame ? + ZSTD_compress_frameChunk (cctx, dst, dstCapacity, src, srcSize, lastFrameChunk) : + ZSTD_compressBlock_internal (cctx, dst, dstCapacity, src, srcSize, 0 /* frame */); + FORWARD_IF_ERROR(cSize, "%s", frame ? "ZSTD_compress_frameChunk failed" : "ZSTD_compressBlock_internal failed"); + cctx->consumedSrcSize += srcSize; + cctx->producedCSize += (cSize + fhSize); + assert(!(cctx->appliedParams.fParams.contentSizeFlag && cctx->pledgedSrcSizePlusOne == 0)); + if (cctx->pledgedSrcSizePlusOne != 0) { /* control src size */ + ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN == (unsigned long long)-1); + RETURN_ERROR_IF( + cctx->consumedSrcSize+1 > cctx->pledgedSrcSizePlusOne, + srcSize_wrong, + "error : pledgedSrcSize = %u, while realSrcSize >= %u", + (unsigned)cctx->pledgedSrcSizePlusOne-1, + (unsigned)cctx->consumedSrcSize); + } + return cSize + fhSize; + } +} + +size_t ZSTD_compressContinue_public(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize) +{ + DEBUGLOG(5, "ZSTD_compressContinue (srcSize=%u)", (unsigned)srcSize); + return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1 /* frame mode */, 0 /* last chunk */); +} + +/* NOTE: Must just wrap ZSTD_compressContinue_public() */ +size_t ZSTD_compressContinue(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize) +{ + return ZSTD_compressContinue_public(cctx, dst, dstCapacity, src, srcSize); +} + +static size_t ZSTD_getBlockSize_deprecated(const ZSTD_CCtx* cctx) +{ + ZSTD_compressionParameters const cParams = cctx->appliedParams.cParams; + assert(!ZSTD_checkCParams(cParams)); + return MIN(cctx->appliedParams.maxBlockSize, (size_t)1 << cParams.windowLog); +} + +/* NOTE: Must just wrap ZSTD_getBlockSize_deprecated() */ +size_t ZSTD_getBlockSize(const ZSTD_CCtx* cctx) +{ + return ZSTD_getBlockSize_deprecated(cctx); +} + +/* NOTE: Must just wrap ZSTD_compressBlock_deprecated() */ +size_t ZSTD_compressBlock_deprecated(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) +{ + DEBUGLOG(5, "ZSTD_compressBlock: srcSize = %u", (unsigned)srcSize); + { size_t const blockSizeMax = ZSTD_getBlockSize_deprecated(cctx); + RETURN_ERROR_IF(srcSize > blockSizeMax, srcSize_wrong, "input is larger than a block"); } + + return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 0 /* frame mode */, 0 /* last chunk */); +} + +/* NOTE: Must just wrap ZSTD_compressBlock_deprecated() */ +size_t ZSTD_compressBlock(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) +{ + return ZSTD_compressBlock_deprecated(cctx, dst, dstCapacity, src, srcSize); +} + +/*! ZSTD_loadDictionaryContent() : + * @return : 0, or an error code + */ +static size_t ZSTD_loadDictionaryContent(ZSTD_MatchState_t* ms, + ldmState_t* ls, + ZSTD_cwksp* ws, + ZSTD_CCtx_params const* params, + const void* src, size_t srcSize, + ZSTD_dictTableLoadMethod_e dtlm, + ZSTD_tableFillPurpose_e tfp) +{ + const BYTE* ip = (const BYTE*) src; + const BYTE* const iend = ip + srcSize; + int const loadLdmDict = params->ldmParams.enableLdm == ZSTD_ps_enable && ls != NULL; + + /* Assert that the ms params match the params we're being given */ + ZSTD_assertEqualCParams(params->cParams, ms->cParams); + + { /* Ensure large dictionaries can't cause index overflow */ + + /* Allow the dictionary to set indices up to exactly ZSTD_CURRENT_MAX. + * Dictionaries right at the edge will immediately trigger overflow + * correction, but I don't want to insert extra constraints here. + */ + U32 maxDictSize = ZSTD_CURRENT_MAX - ZSTD_WINDOW_START_INDEX; + + int const CDictTaggedIndices = ZSTD_CDictIndicesAreTagged(¶ms->cParams); + if (CDictTaggedIndices && tfp == ZSTD_tfp_forCDict) { + /* Some dictionary matchfinders in zstd use "short cache", + * which treats the lower ZSTD_SHORT_CACHE_TAG_BITS of each + * CDict hashtable entry as a tag rather than as part of an index. + * When short cache is used, we need to truncate the dictionary + * so that its indices don't overlap with the tag. */ + U32 const shortCacheMaxDictSize = (1u << (32 - ZSTD_SHORT_CACHE_TAG_BITS)) - ZSTD_WINDOW_START_INDEX; + maxDictSize = MIN(maxDictSize, shortCacheMaxDictSize); + assert(!loadLdmDict); + } + + /* If the dictionary is too large, only load the suffix of the dictionary. */ + if (srcSize > maxDictSize) { + ip = iend - maxDictSize; + src = ip; + srcSize = maxDictSize; + } + } + + if (srcSize > ZSTD_CHUNKSIZE_MAX) { + /* We must have cleared our windows when our source is this large. */ + assert(ZSTD_window_isEmpty(ms->window)); + if (loadLdmDict) assert(ZSTD_window_isEmpty(ls->window)); + } + ZSTD_window_update(&ms->window, src, srcSize, /* forceNonContiguous */ 0); + + DEBUGLOG(4, "ZSTD_loadDictionaryContent(): useRowMatchFinder=%d", (int)params->useRowMatchFinder); + + if (loadLdmDict) { /* Load the entire dict into LDM matchfinders. */ + ZSTD_window_update(&ls->window, src, srcSize, /* forceNonContiguous */ 0); + ls->loadedDictEnd = params->forceWindow ? 0 : (U32)(iend - ls->window.base); + ZSTD_ldm_fillHashTable(ls, ip, iend, ¶ms->ldmParams); + } + + /* If the dict is larger than we can reasonably index in our tables, only load the suffix. */ + if (params->cParams.strategy < ZSTD_btultra) { + U32 maxDictSize = 8U << MIN(MAX(params->cParams.hashLog, params->cParams.chainLog), 28); + if (srcSize > maxDictSize) { + ip = iend - maxDictSize; + src = ip; + srcSize = maxDictSize; + } + } + + ms->nextToUpdate = (U32)(ip - ms->window.base); + ms->loadedDictEnd = params->forceWindow ? 0 : (U32)(iend - ms->window.base); + ms->forceNonContiguous = params->deterministicRefPrefix; + + if (srcSize <= HASH_READ_SIZE) return 0; + + ZSTD_overflowCorrectIfNeeded(ms, ws, params, ip, iend); + + switch(params->cParams.strategy) + { + case ZSTD_fast: + ZSTD_fillHashTable(ms, iend, dtlm, tfp); + break; + case ZSTD_dfast: +#ifndef ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR + ZSTD_fillDoubleHashTable(ms, iend, dtlm, tfp); +#else + assert(0); /* shouldn't be called: cparams should've been adjusted. */ +#endif + break; + + case ZSTD_greedy: + case ZSTD_lazy: + case ZSTD_lazy2: +#if !defined(ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR) \ + || !defined(ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR) \ + || !defined(ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR) + assert(srcSize >= HASH_READ_SIZE); + if (ms->dedicatedDictSearch) { + assert(ms->chainTable != NULL); + ZSTD_dedicatedDictSearch_lazy_loadDictionary(ms, iend-HASH_READ_SIZE); + } else { + assert(params->useRowMatchFinder != ZSTD_ps_auto); + if (params->useRowMatchFinder == ZSTD_ps_enable) { + size_t const tagTableSize = ((size_t)1 << params->cParams.hashLog); + ZSTD_memset(ms->tagTable, 0, tagTableSize); + ZSTD_row_update(ms, iend-HASH_READ_SIZE); + DEBUGLOG(4, "Using row-based hash table for lazy dict"); + } else { + ZSTD_insertAndFindFirstIndex(ms, iend-HASH_READ_SIZE); + DEBUGLOG(4, "Using chain-based hash table for lazy dict"); + } + } +#else + assert(0); /* shouldn't be called: cparams should've been adjusted. */ +#endif + break; + + case ZSTD_btlazy2: /* we want the dictionary table fully sorted */ + case ZSTD_btopt: + case ZSTD_btultra: + case ZSTD_btultra2: +#if !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR) \ + || !defined(ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR) \ + || !defined(ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR) + assert(srcSize >= HASH_READ_SIZE); + ZSTD_updateTree(ms, iend-HASH_READ_SIZE, iend); +#else + assert(0); /* shouldn't be called: cparams should've been adjusted. */ +#endif + break; + + default: + assert(0); /* not possible : not a valid strategy id */ + } + + ms->nextToUpdate = (U32)(iend - ms->window.base); + return 0; +} + + +/* Dictionaries that assign zero probability to symbols that show up causes problems + * when FSE encoding. Mark dictionaries with zero probability symbols as FSE_repeat_check + * and only dictionaries with 100% valid symbols can be assumed valid. + */ +static FSE_repeat ZSTD_dictNCountRepeat(short* normalizedCounter, unsigned dictMaxSymbolValue, unsigned maxSymbolValue) +{ + U32 s; + if (dictMaxSymbolValue < maxSymbolValue) { + return FSE_repeat_check; + } + for (s = 0; s <= maxSymbolValue; ++s) { + if (normalizedCounter[s] == 0) { + return FSE_repeat_check; + } + } + return FSE_repeat_valid; +} + +size_t ZSTD_loadCEntropy(ZSTD_compressedBlockState_t* bs, void* workspace, + const void* const dict, size_t dictSize) +{ + short offcodeNCount[MaxOff+1]; + unsigned offcodeMaxValue = MaxOff; + const BYTE* dictPtr = (const BYTE*)dict; /* skip magic num and dict ID */ + const BYTE* const dictEnd = dictPtr + dictSize; + dictPtr += 8; + bs->entropy.huf.repeatMode = HUF_repeat_check; + + { unsigned maxSymbolValue = 255; + unsigned hasZeroWeights = 1; + size_t const hufHeaderSize = HUF_readCTable((HUF_CElt*)bs->entropy.huf.CTable, &maxSymbolValue, dictPtr, + (size_t)(dictEnd-dictPtr), &hasZeroWeights); + + /* We only set the loaded table as valid if it contains all non-zero + * weights. Otherwise, we set it to check */ + if (!hasZeroWeights && maxSymbolValue == 255) + bs->entropy.huf.repeatMode = HUF_repeat_valid; + + RETURN_ERROR_IF(HUF_isError(hufHeaderSize), dictionary_corrupted, ""); + dictPtr += hufHeaderSize; + } + + { unsigned offcodeLog; + size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, (size_t)(dictEnd-dictPtr)); + RETURN_ERROR_IF(FSE_isError(offcodeHeaderSize), dictionary_corrupted, ""); + RETURN_ERROR_IF(offcodeLog > OffFSELog, dictionary_corrupted, ""); + /* fill all offset symbols to avoid garbage at end of table */ + RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp( + bs->entropy.fse.offcodeCTable, + offcodeNCount, MaxOff, offcodeLog, + workspace, HUF_WORKSPACE_SIZE)), + dictionary_corrupted, ""); + /* Defer checking offcodeMaxValue because we need to know the size of the dictionary content */ + dictPtr += offcodeHeaderSize; + } + + { short matchlengthNCount[MaxML+1]; + unsigned matchlengthMaxValue = MaxML, matchlengthLog; + size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, (size_t)(dictEnd-dictPtr)); + RETURN_ERROR_IF(FSE_isError(matchlengthHeaderSize), dictionary_corrupted, ""); + RETURN_ERROR_IF(matchlengthLog > MLFSELog, dictionary_corrupted, ""); + RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp( + bs->entropy.fse.matchlengthCTable, + matchlengthNCount, matchlengthMaxValue, matchlengthLog, + workspace, HUF_WORKSPACE_SIZE)), + dictionary_corrupted, ""); + bs->entropy.fse.matchlength_repeatMode = ZSTD_dictNCountRepeat(matchlengthNCount, matchlengthMaxValue, MaxML); + dictPtr += matchlengthHeaderSize; + } + + { short litlengthNCount[MaxLL+1]; + unsigned litlengthMaxValue = MaxLL, litlengthLog; + size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, (size_t)(dictEnd-dictPtr)); + RETURN_ERROR_IF(FSE_isError(litlengthHeaderSize), dictionary_corrupted, ""); + RETURN_ERROR_IF(litlengthLog > LLFSELog, dictionary_corrupted, ""); + RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp( + bs->entropy.fse.litlengthCTable, + litlengthNCount, litlengthMaxValue, litlengthLog, + workspace, HUF_WORKSPACE_SIZE)), + dictionary_corrupted, ""); + bs->entropy.fse.litlength_repeatMode = ZSTD_dictNCountRepeat(litlengthNCount, litlengthMaxValue, MaxLL); + dictPtr += litlengthHeaderSize; + } + + RETURN_ERROR_IF(dictPtr+12 > dictEnd, dictionary_corrupted, ""); + bs->rep[0] = MEM_readLE32(dictPtr+0); + bs->rep[1] = MEM_readLE32(dictPtr+4); + bs->rep[2] = MEM_readLE32(dictPtr+8); + dictPtr += 12; + + { size_t const dictContentSize = (size_t)(dictEnd - dictPtr); + U32 offcodeMax = MaxOff; + if (dictContentSize <= ((U32)-1) - 128 KB) { + U32 const maxOffset = (U32)dictContentSize + 128 KB; /* The maximum offset that must be supported */ + offcodeMax = ZSTD_highbit32(maxOffset); /* Calculate minimum offset code required to represent maxOffset */ + } + /* All offset values <= dictContentSize + 128 KB must be representable for a valid table */ + bs->entropy.fse.offcode_repeatMode = ZSTD_dictNCountRepeat(offcodeNCount, offcodeMaxValue, MIN(offcodeMax, MaxOff)); + + /* All repCodes must be <= dictContentSize and != 0 */ + { U32 u; + for (u=0; u<3; u++) { + RETURN_ERROR_IF(bs->rep[u] == 0, dictionary_corrupted, ""); + RETURN_ERROR_IF(bs->rep[u] > dictContentSize, dictionary_corrupted, ""); + } } } + + return (size_t)(dictPtr - (const BYTE*)dict); +} + +/* Dictionary format : + * See : + * https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#dictionary-format + */ +/*! ZSTD_loadZstdDictionary() : + * @return : dictID, or an error code + * assumptions : magic number supposed already checked + * dictSize supposed >= 8 + */ +static size_t ZSTD_loadZstdDictionary(ZSTD_compressedBlockState_t* bs, + ZSTD_MatchState_t* ms, + ZSTD_cwksp* ws, + ZSTD_CCtx_params const* params, + const void* dict, size_t dictSize, + ZSTD_dictTableLoadMethod_e dtlm, + ZSTD_tableFillPurpose_e tfp, + void* workspace) +{ + const BYTE* dictPtr = (const BYTE*)dict; + const BYTE* const dictEnd = dictPtr + dictSize; + size_t dictID; + size_t eSize; + ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1<= 8); + assert(MEM_readLE32(dictPtr) == ZSTD_MAGIC_DICTIONARY); + + dictID = params->fParams.noDictIDFlag ? 0 : MEM_readLE32(dictPtr + 4 /* skip magic number */ ); + eSize = ZSTD_loadCEntropy(bs, workspace, dict, dictSize); + FORWARD_IF_ERROR(eSize, "ZSTD_loadCEntropy failed"); + dictPtr += eSize; + + { + size_t const dictContentSize = (size_t)(dictEnd - dictPtr); + FORWARD_IF_ERROR(ZSTD_loadDictionaryContent( + ms, NULL, ws, params, dictPtr, dictContentSize, dtlm, tfp), ""); + } + return dictID; +} + +/** ZSTD_compress_insertDictionary() : +* @return : dictID, or an error code */ +static size_t +ZSTD_compress_insertDictionary(ZSTD_compressedBlockState_t* bs, + ZSTD_MatchState_t* ms, + ldmState_t* ls, + ZSTD_cwksp* ws, + const ZSTD_CCtx_params* params, + const void* dict, size_t dictSize, + ZSTD_dictContentType_e dictContentType, + ZSTD_dictTableLoadMethod_e dtlm, + ZSTD_tableFillPurpose_e tfp, + void* workspace) +{ + DEBUGLOG(4, "ZSTD_compress_insertDictionary (dictSize=%u)", (U32)dictSize); + if ((dict==NULL) || (dictSize<8)) { + RETURN_ERROR_IF(dictContentType == ZSTD_dct_fullDict, dictionary_wrong, ""); + return 0; + } + + ZSTD_reset_compressedBlockState(bs); + + /* dict restricted modes */ + if (dictContentType == ZSTD_dct_rawContent) + return ZSTD_loadDictionaryContent(ms, ls, ws, params, dict, dictSize, dtlm, tfp); + + if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) { + if (dictContentType == ZSTD_dct_auto) { + DEBUGLOG(4, "raw content dictionary detected"); + return ZSTD_loadDictionaryContent( + ms, ls, ws, params, dict, dictSize, dtlm, tfp); + } + RETURN_ERROR_IF(dictContentType == ZSTD_dct_fullDict, dictionary_wrong, ""); + assert(0); /* impossible */ + } + + /* dict as full zstd dictionary */ + return ZSTD_loadZstdDictionary( + bs, ms, ws, params, dict, dictSize, dtlm, tfp, workspace); +} + +#define ZSTD_USE_CDICT_PARAMS_SRCSIZE_CUTOFF (128 KB) +#define ZSTD_USE_CDICT_PARAMS_DICTSIZE_MULTIPLIER (6ULL) + +/*! ZSTD_compressBegin_internal() : + * Assumption : either @dict OR @cdict (or none) is non-NULL, never both + * @return : 0, or an error code */ +static size_t ZSTD_compressBegin_internal(ZSTD_CCtx* cctx, + const void* dict, size_t dictSize, + ZSTD_dictContentType_e dictContentType, + ZSTD_dictTableLoadMethod_e dtlm, + const ZSTD_CDict* cdict, + const ZSTD_CCtx_params* params, U64 pledgedSrcSize, + ZSTD_buffered_policy_e zbuff) +{ + size_t const dictContentSize = cdict ? cdict->dictContentSize : dictSize; +#if ZSTD_TRACE + cctx->traceCtx = (ZSTD_trace_compress_begin != NULL) ? ZSTD_trace_compress_begin(cctx) : 0; +#endif + DEBUGLOG(4, "ZSTD_compressBegin_internal: wlog=%u", params->cParams.windowLog); + /* params are supposed to be fully validated at this point */ + assert(!ZSTD_isError(ZSTD_checkCParams(params->cParams))); + assert(!((dict) && (cdict))); /* either dict or cdict, not both */ + if ( (cdict) + && (cdict->dictContentSize > 0) + && ( pledgedSrcSize < ZSTD_USE_CDICT_PARAMS_SRCSIZE_CUTOFF + || pledgedSrcSize < cdict->dictContentSize * ZSTD_USE_CDICT_PARAMS_DICTSIZE_MULTIPLIER + || pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN + || cdict->compressionLevel == 0) + && (params->attachDictPref != ZSTD_dictForceLoad) ) { + return ZSTD_resetCCtx_usingCDict(cctx, cdict, params, pledgedSrcSize, zbuff); + } + + FORWARD_IF_ERROR( ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize, + dictContentSize, + ZSTDcrp_makeClean, zbuff) , ""); + { size_t const dictID = cdict ? + ZSTD_compress_insertDictionary( + cctx->blockState.prevCBlock, &cctx->blockState.matchState, + &cctx->ldmState, &cctx->workspace, &cctx->appliedParams, cdict->dictContent, + cdict->dictContentSize, cdict->dictContentType, dtlm, + ZSTD_tfp_forCCtx, cctx->tmpWorkspace) + : ZSTD_compress_insertDictionary( + cctx->blockState.prevCBlock, &cctx->blockState.matchState, + &cctx->ldmState, &cctx->workspace, &cctx->appliedParams, dict, dictSize, + dictContentType, dtlm, ZSTD_tfp_forCCtx, cctx->tmpWorkspace); + FORWARD_IF_ERROR(dictID, "ZSTD_compress_insertDictionary failed"); + assert(dictID <= UINT_MAX); + cctx->dictID = (U32)dictID; + cctx->dictContentSize = dictContentSize; + } + return 0; +} + +size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx, + const void* dict, size_t dictSize, + ZSTD_dictContentType_e dictContentType, + ZSTD_dictTableLoadMethod_e dtlm, + const ZSTD_CDict* cdict, + const ZSTD_CCtx_params* params, + unsigned long long pledgedSrcSize) +{ + DEBUGLOG(4, "ZSTD_compressBegin_advanced_internal: wlog=%u", params->cParams.windowLog); + /* compression parameters verification and optimization */ + FORWARD_IF_ERROR( ZSTD_checkCParams(params->cParams) , ""); + return ZSTD_compressBegin_internal(cctx, + dict, dictSize, dictContentType, dtlm, + cdict, + params, pledgedSrcSize, + ZSTDb_not_buffered); +} + +/*! ZSTD_compressBegin_advanced() : +* @return : 0, or an error code */ +size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, + const void* dict, size_t dictSize, + ZSTD_parameters params, unsigned long long pledgedSrcSize) +{ + ZSTD_CCtx_params cctxParams; + ZSTD_CCtxParams_init_internal(&cctxParams, ¶ms, ZSTD_NO_CLEVEL); + return ZSTD_compressBegin_advanced_internal(cctx, + dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, + NULL /*cdict*/, + &cctxParams, pledgedSrcSize); +} + +static size_t +ZSTD_compressBegin_usingDict_deprecated(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel) +{ + ZSTD_CCtx_params cctxParams; + { ZSTD_parameters const params = ZSTD_getParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_noAttachDict); + ZSTD_CCtxParams_init_internal(&cctxParams, ¶ms, (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : compressionLevel); + } + DEBUGLOG(4, "ZSTD_compressBegin_usingDict (dictSize=%u)", (unsigned)dictSize); + return ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL, + &cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, ZSTDb_not_buffered); +} + +size_t +ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel) +{ + return ZSTD_compressBegin_usingDict_deprecated(cctx, dict, dictSize, compressionLevel); +} + +size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel) +{ + return ZSTD_compressBegin_usingDict_deprecated(cctx, NULL, 0, compressionLevel); +} + + +/*! ZSTD_writeEpilogue() : +* Ends a frame. +* @return : nb of bytes written into dst (or an error code) */ +static size_t ZSTD_writeEpilogue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity) +{ + BYTE* const ostart = (BYTE*)dst; + BYTE* op = ostart; + + DEBUGLOG(4, "ZSTD_writeEpilogue"); + RETURN_ERROR_IF(cctx->stage == ZSTDcs_created, stage_wrong, "init missing"); + + /* special case : empty frame */ + if (cctx->stage == ZSTDcs_init) { + size_t fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, &cctx->appliedParams, 0, 0); + FORWARD_IF_ERROR(fhSize, "ZSTD_writeFrameHeader failed"); + dstCapacity -= fhSize; + op += fhSize; + cctx->stage = ZSTDcs_ongoing; + } + + if (cctx->stage != ZSTDcs_ending) { + /* write one last empty block, make it the "last" block */ + U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1) + 0; + ZSTD_STATIC_ASSERT(ZSTD_BLOCKHEADERSIZE == 3); + RETURN_ERROR_IF(dstCapacity<3, dstSize_tooSmall, "no room for epilogue"); + MEM_writeLE24(op, cBlockHeader24); + op += ZSTD_blockHeaderSize; + dstCapacity -= ZSTD_blockHeaderSize; + } + + if (cctx->appliedParams.fParams.checksumFlag) { + U32 const checksum = (U32) XXH64_digest(&cctx->xxhState); + RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "no room for checksum"); + DEBUGLOG(4, "ZSTD_writeEpilogue: write checksum : %08X", (unsigned)checksum); + MEM_writeLE32(op, checksum); + op += 4; + } + + cctx->stage = ZSTDcs_created; /* return to "created but no init" status */ + return (size_t)(op-ostart); +} + +void ZSTD_CCtx_trace(ZSTD_CCtx* cctx, size_t extraCSize) +{ +#if ZSTD_TRACE + if (cctx->traceCtx && ZSTD_trace_compress_end != NULL) { + int const streaming = cctx->inBuffSize > 0 || cctx->outBuffSize > 0 || cctx->appliedParams.nbWorkers > 0; + ZSTD_Trace trace; + ZSTD_memset(&trace, 0, sizeof(trace)); + trace.version = ZSTD_VERSION_NUMBER; + trace.streaming = streaming; + trace.dictionaryID = cctx->dictID; + trace.dictionarySize = cctx->dictContentSize; + trace.uncompressedSize = cctx->consumedSrcSize; + trace.compressedSize = cctx->producedCSize + extraCSize; + trace.params = &cctx->appliedParams; + trace.cctx = cctx; + ZSTD_trace_compress_end(cctx->traceCtx, &trace); + } + cctx->traceCtx = 0; +#else + (void)cctx; + (void)extraCSize; +#endif +} + +size_t ZSTD_compressEnd_public(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize) +{ + size_t endResult; + size_t const cSize = ZSTD_compressContinue_internal(cctx, + dst, dstCapacity, src, srcSize, + 1 /* frame mode */, 1 /* last chunk */); + FORWARD_IF_ERROR(cSize, "ZSTD_compressContinue_internal failed"); + endResult = ZSTD_writeEpilogue(cctx, (char*)dst + cSize, dstCapacity-cSize); + FORWARD_IF_ERROR(endResult, "ZSTD_writeEpilogue failed"); + assert(!(cctx->appliedParams.fParams.contentSizeFlag && cctx->pledgedSrcSizePlusOne == 0)); + if (cctx->pledgedSrcSizePlusOne != 0) { /* control src size */ + ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN == (unsigned long long)-1); + DEBUGLOG(4, "end of frame : controlling src size"); + RETURN_ERROR_IF( + cctx->pledgedSrcSizePlusOne != cctx->consumedSrcSize+1, + srcSize_wrong, + "error : pledgedSrcSize = %u, while realSrcSize = %u", + (unsigned)cctx->pledgedSrcSizePlusOne-1, + (unsigned)cctx->consumedSrcSize); + } + ZSTD_CCtx_trace(cctx, endResult); + return cSize + endResult; +} + +/* NOTE: Must just wrap ZSTD_compressEnd_public() */ +size_t ZSTD_compressEnd(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize) +{ + return ZSTD_compressEnd_public(cctx, dst, dstCapacity, src, srcSize); +} + +size_t ZSTD_compress_advanced (ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict,size_t dictSize, + ZSTD_parameters params) +{ + DEBUGLOG(4, "ZSTD_compress_advanced"); + FORWARD_IF_ERROR(ZSTD_checkCParams(params.cParams), ""); + ZSTD_CCtxParams_init_internal(&cctx->simpleApiParams, ¶ms, ZSTD_NO_CLEVEL); + return ZSTD_compress_advanced_internal(cctx, + dst, dstCapacity, + src, srcSize, + dict, dictSize, + &cctx->simpleApiParams); +} + +/* Internal */ +size_t ZSTD_compress_advanced_internal( + ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict,size_t dictSize, + const ZSTD_CCtx_params* params) +{ + DEBUGLOG(4, "ZSTD_compress_advanced_internal (srcSize:%u)", (unsigned)srcSize); + FORWARD_IF_ERROR( ZSTD_compressBegin_internal(cctx, + dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL, + params, srcSize, ZSTDb_not_buffered) , ""); + return ZSTD_compressEnd_public(cctx, dst, dstCapacity, src, srcSize); +} + +size_t ZSTD_compress_usingDict(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict, size_t dictSize, + int compressionLevel) +{ + { + ZSTD_parameters const params = ZSTD_getParams_internal(compressionLevel, srcSize, dict ? dictSize : 0, ZSTD_cpm_noAttachDict); + assert(params.fParams.contentSizeFlag == 1); + ZSTD_CCtxParams_init_internal(&cctx->simpleApiParams, ¶ms, (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT: compressionLevel); + } + DEBUGLOG(4, "ZSTD_compress_usingDict (srcSize=%u)", (unsigned)srcSize); + return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, dict, dictSize, &cctx->simpleApiParams); +} + +size_t ZSTD_compressCCtx(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + int compressionLevel) +{ + DEBUGLOG(4, "ZSTD_compressCCtx (srcSize=%u)", (unsigned)srcSize); + assert(cctx != NULL); + return ZSTD_compress_usingDict(cctx, dst, dstCapacity, src, srcSize, NULL, 0, compressionLevel); +} + +size_t ZSTD_compress(void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + int compressionLevel) +{ + size_t result; +#if ZSTD_COMPRESS_HEAPMODE + ZSTD_CCtx* cctx = ZSTD_createCCtx(); + RETURN_ERROR_IF(!cctx, memory_allocation, "ZSTD_createCCtx failed"); + result = ZSTD_compressCCtx(cctx, dst, dstCapacity, src, srcSize, compressionLevel); + ZSTD_freeCCtx(cctx); +#else + ZSTD_CCtx ctxBody; + ZSTD_initCCtx(&ctxBody, ZSTD_defaultCMem); + result = ZSTD_compressCCtx(&ctxBody, dst, dstCapacity, src, srcSize, compressionLevel); + ZSTD_freeCCtxContent(&ctxBody); /* can't free ctxBody itself, as it's on stack; free only heap content */ +#endif + return result; +} + + +/* ===== Dictionary API ===== */ + +/*! ZSTD_estimateCDictSize_advanced() : + * Estimate amount of memory that will be needed to create a dictionary with following arguments */ +size_t ZSTD_estimateCDictSize_advanced( + size_t dictSize, ZSTD_compressionParameters cParams, + ZSTD_dictLoadMethod_e dictLoadMethod) +{ + DEBUGLOG(5, "sizeof(ZSTD_CDict) : %u", (unsigned)sizeof(ZSTD_CDict)); + return ZSTD_cwksp_alloc_size(sizeof(ZSTD_CDict)) + + ZSTD_cwksp_alloc_size(HUF_WORKSPACE_SIZE) + /* enableDedicatedDictSearch == 1 ensures that CDict estimation will not be too small + * in case we are using DDS with row-hash. */ + + ZSTD_sizeof_matchState(&cParams, ZSTD_resolveRowMatchFinderMode(ZSTD_ps_auto, &cParams), + /* enableDedicatedDictSearch */ 1, /* forCCtx */ 0) + + (dictLoadMethod == ZSTD_dlm_byRef ? 0 + : ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(dictSize, sizeof(void *)))); +} + +size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel) +{ + ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict); + return ZSTD_estimateCDictSize_advanced(dictSize, cParams, ZSTD_dlm_byCopy); +} + +size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict) +{ + if (cdict==NULL) return 0; /* support sizeof on NULL */ + DEBUGLOG(5, "sizeof(*cdict) : %u", (unsigned)sizeof(*cdict)); + /* cdict may be in the workspace */ + return (cdict->workspace.workspace == cdict ? 0 : sizeof(*cdict)) + + ZSTD_cwksp_sizeof(&cdict->workspace); +} + +static size_t ZSTD_initCDict_internal( + ZSTD_CDict* cdict, + const void* dictBuffer, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType, + ZSTD_CCtx_params params) +{ + DEBUGLOG(3, "ZSTD_initCDict_internal (dictContentType:%u)", (unsigned)dictContentType); + assert(!ZSTD_checkCParams(params.cParams)); + cdict->matchState.cParams = params.cParams; + cdict->matchState.dedicatedDictSearch = params.enableDedicatedDictSearch; + if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dictBuffer) || (!dictSize)) { + cdict->dictContent = dictBuffer; + } else { + void *internalBuffer = ZSTD_cwksp_reserve_object(&cdict->workspace, ZSTD_cwksp_align(dictSize, sizeof(void*))); + RETURN_ERROR_IF(!internalBuffer, memory_allocation, "NULL pointer!"); + cdict->dictContent = internalBuffer; + ZSTD_memcpy(internalBuffer, dictBuffer, dictSize); + } + cdict->dictContentSize = dictSize; + cdict->dictContentType = dictContentType; + + cdict->entropyWorkspace = (U32*)ZSTD_cwksp_reserve_object(&cdict->workspace, HUF_WORKSPACE_SIZE); + + + /* Reset the state to no dictionary */ + ZSTD_reset_compressedBlockState(&cdict->cBlockState); + FORWARD_IF_ERROR(ZSTD_reset_matchState( + &cdict->matchState, + &cdict->workspace, + ¶ms.cParams, + params.useRowMatchFinder, + ZSTDcrp_makeClean, + ZSTDirp_reset, + ZSTD_resetTarget_CDict), ""); + /* (Maybe) load the dictionary + * Skips loading the dictionary if it is < 8 bytes. + */ + { params.compressionLevel = ZSTD_CLEVEL_DEFAULT; + params.fParams.contentSizeFlag = 1; + { size_t const dictID = ZSTD_compress_insertDictionary( + &cdict->cBlockState, &cdict->matchState, NULL, &cdict->workspace, + ¶ms, cdict->dictContent, cdict->dictContentSize, + dictContentType, ZSTD_dtlm_full, ZSTD_tfp_forCDict, cdict->entropyWorkspace); + FORWARD_IF_ERROR(dictID, "ZSTD_compress_insertDictionary failed"); + assert(dictID <= (size_t)(U32)-1); + cdict->dictID = (U32)dictID; + } + } + + return 0; +} + +static ZSTD_CDict* ZSTD_createCDict_advanced_internal(size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_compressionParameters cParams, + ZSTD_ParamSwitch_e useRowMatchFinder, + int enableDedicatedDictSearch, + ZSTD_customMem customMem) +{ + if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL; + + { size_t const workspaceSize = + ZSTD_cwksp_alloc_size(sizeof(ZSTD_CDict)) + + ZSTD_cwksp_alloc_size(HUF_WORKSPACE_SIZE) + + ZSTD_sizeof_matchState(&cParams, useRowMatchFinder, enableDedicatedDictSearch, /* forCCtx */ 0) + + (dictLoadMethod == ZSTD_dlm_byRef ? 0 + : ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(dictSize, sizeof(void*)))); + void* const workspace = ZSTD_customMalloc(workspaceSize, customMem); + ZSTD_cwksp ws; + ZSTD_CDict* cdict; + + if (!workspace) { + ZSTD_customFree(workspace, customMem); + return NULL; + } + + ZSTD_cwksp_init(&ws, workspace, workspaceSize, ZSTD_cwksp_dynamic_alloc); + + cdict = (ZSTD_CDict*)ZSTD_cwksp_reserve_object(&ws, sizeof(ZSTD_CDict)); + assert(cdict != NULL); + ZSTD_cwksp_move(&cdict->workspace, &ws); + cdict->customMem = customMem; + cdict->compressionLevel = ZSTD_NO_CLEVEL; /* signals advanced API usage */ + cdict->useRowMatchFinder = useRowMatchFinder; + return cdict; + } +} + +ZSTD_CDict* ZSTD_createCDict_advanced(const void* dictBuffer, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType, + ZSTD_compressionParameters cParams, + ZSTD_customMem customMem) +{ + ZSTD_CCtx_params cctxParams; + ZSTD_memset(&cctxParams, 0, sizeof(cctxParams)); + ZSTD_CCtxParams_init(&cctxParams, 0); + cctxParams.cParams = cParams; + cctxParams.customMem = customMem; + return ZSTD_createCDict_advanced2( + dictBuffer, dictSize, + dictLoadMethod, dictContentType, + &cctxParams, customMem); +} + +ZSTD_CDict* ZSTD_createCDict_advanced2( + const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType, + const ZSTD_CCtx_params* originalCctxParams, + ZSTD_customMem customMem) +{ + ZSTD_CCtx_params cctxParams = *originalCctxParams; + ZSTD_compressionParameters cParams; + ZSTD_CDict* cdict; + + DEBUGLOG(3, "ZSTD_createCDict_advanced2, mode %u", (unsigned)dictContentType); + if (!customMem.customAlloc ^ !customMem.customFree) return NULL; + + if (cctxParams.enableDedicatedDictSearch) { + cParams = ZSTD_dedicatedDictSearch_getCParams( + cctxParams.compressionLevel, dictSize); + ZSTD_overrideCParams(&cParams, &cctxParams.cParams); + } else { + cParams = ZSTD_getCParamsFromCCtxParams( + &cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict); + } + + if (!ZSTD_dedicatedDictSearch_isSupported(&cParams)) { + /* Fall back to non-DDSS params */ + cctxParams.enableDedicatedDictSearch = 0; + cParams = ZSTD_getCParamsFromCCtxParams( + &cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict); + } + + DEBUGLOG(3, "ZSTD_createCDict_advanced2: DDS: %u", cctxParams.enableDedicatedDictSearch); + cctxParams.cParams = cParams; + cctxParams.useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(cctxParams.useRowMatchFinder, &cParams); + + cdict = ZSTD_createCDict_advanced_internal(dictSize, + dictLoadMethod, cctxParams.cParams, + cctxParams.useRowMatchFinder, cctxParams.enableDedicatedDictSearch, + customMem); + + if (!cdict || ZSTD_isError( ZSTD_initCDict_internal(cdict, + dict, dictSize, + dictLoadMethod, dictContentType, + cctxParams) )) { + ZSTD_freeCDict(cdict); + return NULL; + } + + return cdict; +} + +ZSTD_CDict* ZSTD_createCDict(const void* dict, size_t dictSize, int compressionLevel) +{ + ZSTD_compressionParameters cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict); + ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dict, dictSize, + ZSTD_dlm_byCopy, ZSTD_dct_auto, + cParams, ZSTD_defaultCMem); + if (cdict) + cdict->compressionLevel = (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : compressionLevel; + return cdict; +} + +ZSTD_CDict* ZSTD_createCDict_byReference(const void* dict, size_t dictSize, int compressionLevel) +{ + ZSTD_compressionParameters cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict); + ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dict, dictSize, + ZSTD_dlm_byRef, ZSTD_dct_auto, + cParams, ZSTD_defaultCMem); + if (cdict) + cdict->compressionLevel = (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : compressionLevel; + return cdict; +} + +size_t ZSTD_freeCDict(ZSTD_CDict* cdict) +{ + if (cdict==NULL) return 0; /* support free on NULL */ + { ZSTD_customMem const cMem = cdict->customMem; + int cdictInWorkspace = ZSTD_cwksp_owns_buffer(&cdict->workspace, cdict); + ZSTD_cwksp_free(&cdict->workspace, cMem); + if (!cdictInWorkspace) { + ZSTD_customFree(cdict, cMem); + } + return 0; + } +} + +/*! ZSTD_initStaticCDict_advanced() : + * Generate a digested dictionary in provided memory area. + * workspace: The memory area to emplace the dictionary into. + * Provided pointer must 8-bytes aligned. + * It must outlive dictionary usage. + * workspaceSize: Use ZSTD_estimateCDictSize() + * to determine how large workspace must be. + * cParams : use ZSTD_getCParams() to transform a compression level + * into its relevant cParams. + * @return : pointer to ZSTD_CDict*, or NULL if error (size too small) + * Note : there is no corresponding "free" function. + * Since workspace was allocated externally, it must be freed externally. + */ +const ZSTD_CDict* ZSTD_initStaticCDict( + void* workspace, size_t workspaceSize, + const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType, + ZSTD_compressionParameters cParams) +{ + ZSTD_ParamSwitch_e const useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(ZSTD_ps_auto, &cParams); + /* enableDedicatedDictSearch == 1 ensures matchstate is not too small in case this CDict will be used for DDS + row hash */ + size_t const matchStateSize = ZSTD_sizeof_matchState(&cParams, useRowMatchFinder, /* enableDedicatedDictSearch */ 1, /* forCCtx */ 0); + size_t const neededSize = ZSTD_cwksp_alloc_size(sizeof(ZSTD_CDict)) + + (dictLoadMethod == ZSTD_dlm_byRef ? 0 + : ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(dictSize, sizeof(void*)))) + + ZSTD_cwksp_alloc_size(HUF_WORKSPACE_SIZE) + + matchStateSize; + ZSTD_CDict* cdict; + ZSTD_CCtx_params params; + + if ((size_t)workspace & 7) return NULL; /* 8-aligned */ + + { + ZSTD_cwksp ws; + ZSTD_cwksp_init(&ws, workspace, workspaceSize, ZSTD_cwksp_static_alloc); + cdict = (ZSTD_CDict*)ZSTD_cwksp_reserve_object(&ws, sizeof(ZSTD_CDict)); + if (cdict == NULL) return NULL; + ZSTD_cwksp_move(&cdict->workspace, &ws); + } + + DEBUGLOG(4, "(workspaceSize < neededSize) : (%u < %u) => %u", + (unsigned)workspaceSize, (unsigned)neededSize, (unsigned)(workspaceSize < neededSize)); + if (workspaceSize < neededSize) return NULL; + + ZSTD_CCtxParams_init(¶ms, 0); + params.cParams = cParams; + params.useRowMatchFinder = useRowMatchFinder; + cdict->useRowMatchFinder = useRowMatchFinder; + cdict->compressionLevel = ZSTD_NO_CLEVEL; + + if (ZSTD_isError( ZSTD_initCDict_internal(cdict, + dict, dictSize, + dictLoadMethod, dictContentType, + params) )) + return NULL; + + return cdict; +} + +ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict) +{ + assert(cdict != NULL); + return cdict->matchState.cParams; +} + +/*! ZSTD_getDictID_fromCDict() : + * Provides the dictID of the dictionary loaded into `cdict`. + * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty. + * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */ +unsigned ZSTD_getDictID_fromCDict(const ZSTD_CDict* cdict) +{ + if (cdict==NULL) return 0; + return cdict->dictID; +} + +/* ZSTD_compressBegin_usingCDict_internal() : + * Implementation of various ZSTD_compressBegin_usingCDict* functions. + */ +static size_t ZSTD_compressBegin_usingCDict_internal( + ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict, + ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize) +{ + ZSTD_CCtx_params cctxParams; + DEBUGLOG(4, "ZSTD_compressBegin_usingCDict_internal"); + RETURN_ERROR_IF(cdict==NULL, dictionary_wrong, "NULL pointer!"); + /* Initialize the cctxParams from the cdict */ + { + ZSTD_parameters params; + params.fParams = fParams; + params.cParams = ( pledgedSrcSize < ZSTD_USE_CDICT_PARAMS_SRCSIZE_CUTOFF + || pledgedSrcSize < cdict->dictContentSize * ZSTD_USE_CDICT_PARAMS_DICTSIZE_MULTIPLIER + || pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN + || cdict->compressionLevel == 0 ) ? + ZSTD_getCParamsFromCDict(cdict) + : ZSTD_getCParams(cdict->compressionLevel, + pledgedSrcSize, + cdict->dictContentSize); + ZSTD_CCtxParams_init_internal(&cctxParams, ¶ms, cdict->compressionLevel); + } + /* Increase window log to fit the entire dictionary and source if the + * source size is known. Limit the increase to 19, which is the + * window log for compression level 1 with the largest source size. + */ + if (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN) { + U32 const limitedSrcSize = (U32)MIN(pledgedSrcSize, 1U << 19); + U32 const limitedSrcLog = limitedSrcSize > 1 ? ZSTD_highbit32(limitedSrcSize - 1) + 1 : 1; + cctxParams.cParams.windowLog = MAX(cctxParams.cParams.windowLog, limitedSrcLog); + } + return ZSTD_compressBegin_internal(cctx, + NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, + cdict, + &cctxParams, pledgedSrcSize, + ZSTDb_not_buffered); +} + + +/* ZSTD_compressBegin_usingCDict_advanced() : + * This function is DEPRECATED. + * cdict must be != NULL */ +size_t ZSTD_compressBegin_usingCDict_advanced( + ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict, + ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize) +{ + return ZSTD_compressBegin_usingCDict_internal(cctx, cdict, fParams, pledgedSrcSize); +} + +/* ZSTD_compressBegin_usingCDict() : + * cdict must be != NULL */ +size_t ZSTD_compressBegin_usingCDict_deprecated(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict) +{ + ZSTD_frameParameters const fParams = { 0 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; + return ZSTD_compressBegin_usingCDict_internal(cctx, cdict, fParams, ZSTD_CONTENTSIZE_UNKNOWN); +} + +size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict) +{ + return ZSTD_compressBegin_usingCDict_deprecated(cctx, cdict); +} + +/*! ZSTD_compress_usingCDict_internal(): + * Implementation of various ZSTD_compress_usingCDict* functions. + */ +static size_t ZSTD_compress_usingCDict_internal(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const ZSTD_CDict* cdict, ZSTD_frameParameters fParams) +{ + FORWARD_IF_ERROR(ZSTD_compressBegin_usingCDict_internal(cctx, cdict, fParams, srcSize), ""); /* will check if cdict != NULL */ + return ZSTD_compressEnd_public(cctx, dst, dstCapacity, src, srcSize); +} + +/*! ZSTD_compress_usingCDict_advanced(): + * This function is DEPRECATED. + */ +size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const ZSTD_CDict* cdict, ZSTD_frameParameters fParams) +{ + return ZSTD_compress_usingCDict_internal(cctx, dst, dstCapacity, src, srcSize, cdict, fParams); +} + +/*! ZSTD_compress_usingCDict() : + * Compression using a digested Dictionary. + * Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times. + * Note that compression parameters are decided at CDict creation time + * while frame parameters are hardcoded */ +size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const ZSTD_CDict* cdict) +{ + ZSTD_frameParameters const fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; + return ZSTD_compress_usingCDict_internal(cctx, dst, dstCapacity, src, srcSize, cdict, fParams); +} + + + +/* ****************************************************************** +* Streaming +********************************************************************/ + +ZSTD_CStream* ZSTD_createCStream(void) +{ + DEBUGLOG(3, "ZSTD_createCStream"); + return ZSTD_createCStream_advanced(ZSTD_defaultCMem); +} + +ZSTD_CStream* ZSTD_initStaticCStream(void *workspace, size_t workspaceSize) +{ + return ZSTD_initStaticCCtx(workspace, workspaceSize); +} + +ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem) +{ /* CStream and CCtx are now same object */ + return ZSTD_createCCtx_advanced(customMem); +} + +size_t ZSTD_freeCStream(ZSTD_CStream* zcs) +{ + return ZSTD_freeCCtx(zcs); /* same object */ +} + + + +/*====== Initialization ======*/ + +size_t ZSTD_CStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX; } + +size_t ZSTD_CStreamOutSize(void) +{ + return ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + 4 /* 32-bits hash */ ; +} + +static ZSTD_CParamMode_e ZSTD_getCParamMode(ZSTD_CDict const* cdict, ZSTD_CCtx_params const* params, U64 pledgedSrcSize) +{ + if (cdict != NULL && ZSTD_shouldAttachDict(cdict, params, pledgedSrcSize)) + return ZSTD_cpm_attachDict; + else + return ZSTD_cpm_noAttachDict; +} + +/* ZSTD_resetCStream(): + * pledgedSrcSize == 0 means "unknown" */ +size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pss) +{ + /* temporary : 0 interpreted as "unknown" during transition period. + * Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN. + * 0 will be interpreted as "empty" in the future. + */ + U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss; + DEBUGLOG(4, "ZSTD_resetCStream: pledgedSrcSize = %u", (unsigned)pledgedSrcSize); + FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , ""); + FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , ""); + return 0; +} + +/*! ZSTD_initCStream_internal() : + * Note : for lib/compress only. Used by zstdmt_compress.c. + * Assumption 1 : params are valid + * Assumption 2 : either dict, or cdict, is defined, not both */ +size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs, + const void* dict, size_t dictSize, const ZSTD_CDict* cdict, + const ZSTD_CCtx_params* params, + unsigned long long pledgedSrcSize) +{ + DEBUGLOG(4, "ZSTD_initCStream_internal"); + FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , ""); + FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , ""); + assert(!ZSTD_isError(ZSTD_checkCParams(params->cParams))); + zcs->requestedParams = *params; + assert(!((dict) && (cdict))); /* either dict or cdict, not both */ + if (dict) { + FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) , ""); + } else { + /* Dictionary is cleared if !cdict */ + FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) , ""); + } + return 0; +} + +/* ZSTD_initCStream_usingCDict_advanced() : + * same as ZSTD_initCStream_usingCDict(), with control over frame parameters */ +size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs, + const ZSTD_CDict* cdict, + ZSTD_frameParameters fParams, + unsigned long long pledgedSrcSize) +{ + DEBUGLOG(4, "ZSTD_initCStream_usingCDict_advanced"); + FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , ""); + FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , ""); + zcs->requestedParams.fParams = fParams; + FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) , ""); + return 0; +} + +/* note : cdict must outlive compression session */ +size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict) +{ + DEBUGLOG(4, "ZSTD_initCStream_usingCDict"); + FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , ""); + FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) , ""); + return 0; +} + + +/* ZSTD_initCStream_advanced() : + * pledgedSrcSize must be exact. + * if srcSize is not known at init time, use value ZSTD_CONTENTSIZE_UNKNOWN. + * dict is loaded with default parameters ZSTD_dct_auto and ZSTD_dlm_byCopy. */ +size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs, + const void* dict, size_t dictSize, + ZSTD_parameters params, unsigned long long pss) +{ + /* for compatibility with older programs relying on this behavior. + * Users should now specify ZSTD_CONTENTSIZE_UNKNOWN. + * This line will be removed in the future. + */ + U64 const pledgedSrcSize = (pss==0 && params.fParams.contentSizeFlag==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss; + DEBUGLOG(4, "ZSTD_initCStream_advanced"); + FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , ""); + FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , ""); + FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) , ""); + ZSTD_CCtxParams_setZstdParams(&zcs->requestedParams, ¶ms); + FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) , ""); + return 0; +} + +size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel) +{ + DEBUGLOG(4, "ZSTD_initCStream_usingDict"); + FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , ""); + FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) , ""); + FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) , ""); + return 0; +} + +size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs, int compressionLevel, unsigned long long pss) +{ + /* temporary : 0 interpreted as "unknown" during transition period. + * Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN. + * 0 will be interpreted as "empty" in the future. + */ + U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss; + DEBUGLOG(4, "ZSTD_initCStream_srcSize"); + FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , ""); + FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, NULL) , ""); + FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) , ""); + FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , ""); + return 0; +} + +size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel) +{ + DEBUGLOG(4, "ZSTD_initCStream"); + FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , ""); + FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, NULL) , ""); + FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) , ""); + return 0; +} + +/*====== Compression ======*/ + +static size_t ZSTD_nextInputSizeHint(const ZSTD_CCtx* cctx) +{ + if (cctx->appliedParams.inBufferMode == ZSTD_bm_stable) { + return cctx->blockSizeMax - cctx->stableIn_notConsumed; + } + assert(cctx->appliedParams.inBufferMode == ZSTD_bm_buffered); + { size_t hintInSize = cctx->inBuffTarget - cctx->inBuffPos; + if (hintInSize==0) hintInSize = cctx->blockSizeMax; + return hintInSize; + } +} + +/** ZSTD_compressStream_generic(): + * internal function for all *compressStream*() variants + * @return : hint size for next input to complete ongoing block */ +static size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs, + ZSTD_outBuffer* output, + ZSTD_inBuffer* input, + ZSTD_EndDirective const flushMode) +{ + const char* const istart = (assert(input != NULL), (const char*)input->src); + const char* const iend = (istart != NULL) ? istart + input->size : istart; + const char* ip = (istart != NULL) ? istart + input->pos : istart; + char* const ostart = (assert(output != NULL), (char*)output->dst); + char* const oend = (ostart != NULL) ? ostart + output->size : ostart; + char* op = (ostart != NULL) ? ostart + output->pos : ostart; + U32 someMoreWork = 1; + + /* check expectations */ + DEBUGLOG(5, "ZSTD_compressStream_generic, flush=%i, srcSize = %zu", (int)flushMode, input->size - input->pos); + assert(zcs != NULL); + if (zcs->appliedParams.inBufferMode == ZSTD_bm_stable) { + assert(input->pos >= zcs->stableIn_notConsumed); + input->pos -= zcs->stableIn_notConsumed; + if (ip) ip -= zcs->stableIn_notConsumed; + zcs->stableIn_notConsumed = 0; + } + if (zcs->appliedParams.inBufferMode == ZSTD_bm_buffered) { + assert(zcs->inBuff != NULL); + assert(zcs->inBuffSize > 0); + } + if (zcs->appliedParams.outBufferMode == ZSTD_bm_buffered) { + assert(zcs->outBuff != NULL); + assert(zcs->outBuffSize > 0); + } + if (input->src == NULL) assert(input->size == 0); + assert(input->pos <= input->size); + if (output->dst == NULL) assert(output->size == 0); + assert(output->pos <= output->size); + assert((U32)flushMode <= (U32)ZSTD_e_end); + + while (someMoreWork) { + switch(zcs->streamStage) + { + case zcss_init: + RETURN_ERROR(init_missing, "call ZSTD_initCStream() first!"); + + case zcss_load: + if ( (flushMode == ZSTD_e_end) + && ( (size_t)(oend-op) >= ZSTD_compressBound((size_t)(iend-ip)) /* Enough output space */ + || zcs->appliedParams.outBufferMode == ZSTD_bm_stable) /* OR we are allowed to return dstSizeTooSmall */ + && (zcs->inBuffPos == 0) ) { + /* shortcut to compression pass directly into output buffer */ + size_t const cSize = ZSTD_compressEnd_public(zcs, + op, (size_t)(oend-op), + ip, (size_t)(iend-ip)); + DEBUGLOG(4, "ZSTD_compressEnd : cSize=%u", (unsigned)cSize); + FORWARD_IF_ERROR(cSize, "ZSTD_compressEnd failed"); + ip = iend; + op += cSize; + zcs->frameEnded = 1; + ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + someMoreWork = 0; break; + } + /* complete loading into inBuffer in buffered mode */ + if (zcs->appliedParams.inBufferMode == ZSTD_bm_buffered) { + size_t const toLoad = zcs->inBuffTarget - zcs->inBuffPos; + size_t const loaded = ZSTD_limitCopy( + zcs->inBuff + zcs->inBuffPos, toLoad, + ip, (size_t)(iend-ip)); + zcs->inBuffPos += loaded; + if (ip) ip += loaded; + if ( (flushMode == ZSTD_e_continue) + && (zcs->inBuffPos < zcs->inBuffTarget) ) { + /* not enough input to fill full block : stop here */ + someMoreWork = 0; break; + } + if ( (flushMode == ZSTD_e_flush) + && (zcs->inBuffPos == zcs->inToCompress) ) { + /* empty */ + someMoreWork = 0; break; + } + } else { + assert(zcs->appliedParams.inBufferMode == ZSTD_bm_stable); + if ( (flushMode == ZSTD_e_continue) + && ( (size_t)(iend - ip) < zcs->blockSizeMax) ) { + /* can't compress a full block : stop here */ + zcs->stableIn_notConsumed = (size_t)(iend - ip); + ip = iend; /* pretend to have consumed input */ + someMoreWork = 0; break; + } + if ( (flushMode == ZSTD_e_flush) + && (ip == iend) ) { + /* empty */ + someMoreWork = 0; break; + } + } + /* compress current block (note : this stage cannot be stopped in the middle) */ + DEBUGLOG(5, "stream compression stage (flushMode==%u)", flushMode); + { int const inputBuffered = (zcs->appliedParams.inBufferMode == ZSTD_bm_buffered); + void* cDst; + size_t cSize; + size_t oSize = (size_t)(oend-op); + size_t const iSize = inputBuffered ? zcs->inBuffPos - zcs->inToCompress + : MIN((size_t)(iend - ip), zcs->blockSizeMax); + if (oSize >= ZSTD_compressBound(iSize) || zcs->appliedParams.outBufferMode == ZSTD_bm_stable) + cDst = op; /* compress into output buffer, to skip flush stage */ + else + cDst = zcs->outBuff, oSize = zcs->outBuffSize; + if (inputBuffered) { + unsigned const lastBlock = (flushMode == ZSTD_e_end) && (ip==iend); + cSize = lastBlock ? + ZSTD_compressEnd_public(zcs, cDst, oSize, + zcs->inBuff + zcs->inToCompress, iSize) : + ZSTD_compressContinue_public(zcs, cDst, oSize, + zcs->inBuff + zcs->inToCompress, iSize); + FORWARD_IF_ERROR(cSize, "%s", lastBlock ? "ZSTD_compressEnd failed" : "ZSTD_compressContinue failed"); + zcs->frameEnded = lastBlock; + /* prepare next block */ + zcs->inBuffTarget = zcs->inBuffPos + zcs->blockSizeMax; + if (zcs->inBuffTarget > zcs->inBuffSize) + zcs->inBuffPos = 0, zcs->inBuffTarget = zcs->blockSizeMax; + DEBUGLOG(5, "inBuffTarget:%u / inBuffSize:%u", + (unsigned)zcs->inBuffTarget, (unsigned)zcs->inBuffSize); + if (!lastBlock) + assert(zcs->inBuffTarget <= zcs->inBuffSize); + zcs->inToCompress = zcs->inBuffPos; + } else { /* !inputBuffered, hence ZSTD_bm_stable */ + unsigned const lastBlock = (flushMode == ZSTD_e_end) && (ip + iSize == iend); + cSize = lastBlock ? + ZSTD_compressEnd_public(zcs, cDst, oSize, ip, iSize) : + ZSTD_compressContinue_public(zcs, cDst, oSize, ip, iSize); + /* Consume the input prior to error checking to mirror buffered mode. */ + if (ip) ip += iSize; + FORWARD_IF_ERROR(cSize, "%s", lastBlock ? "ZSTD_compressEnd failed" : "ZSTD_compressContinue failed"); + zcs->frameEnded = lastBlock; + if (lastBlock) assert(ip == iend); + } + if (cDst == op) { /* no need to flush */ + op += cSize; + if (zcs->frameEnded) { + DEBUGLOG(5, "Frame completed directly in outBuffer"); + someMoreWork = 0; + ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + } + break; + } + zcs->outBuffContentSize = cSize; + zcs->outBuffFlushedSize = 0; + zcs->streamStage = zcss_flush; /* pass-through to flush stage */ + } + ZSTD_FALLTHROUGH; + case zcss_flush: + DEBUGLOG(5, "flush stage"); + assert(zcs->appliedParams.outBufferMode == ZSTD_bm_buffered); + { size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize; + size_t const flushed = ZSTD_limitCopy(op, (size_t)(oend-op), + zcs->outBuff + zcs->outBuffFlushedSize, toFlush); + DEBUGLOG(5, "toFlush: %u into %u ==> flushed: %u", + (unsigned)toFlush, (unsigned)(oend-op), (unsigned)flushed); + if (flushed) + op += flushed; + zcs->outBuffFlushedSize += flushed; + if (toFlush!=flushed) { + /* flush not fully completed, presumably because dst is too small */ + assert(op==oend); + someMoreWork = 0; + break; + } + zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0; + if (zcs->frameEnded) { + DEBUGLOG(5, "Frame completed on flush"); + someMoreWork = 0; + ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + break; + } + zcs->streamStage = zcss_load; + break; + } + + default: /* impossible */ + assert(0); + } + } + + input->pos = (size_t)(ip - istart); + output->pos = (size_t)(op - ostart); + if (zcs->frameEnded) return 0; + return ZSTD_nextInputSizeHint(zcs); +} + +static size_t ZSTD_nextInputSizeHint_MTorST(const ZSTD_CCtx* cctx) +{ +#ifdef ZSTD_MULTITHREAD + if (cctx->appliedParams.nbWorkers >= 1) { + assert(cctx->mtctx != NULL); + return ZSTDMT_nextInputSizeHint(cctx->mtctx); + } +#endif + return ZSTD_nextInputSizeHint(cctx); + +} + +size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input) +{ + FORWARD_IF_ERROR( ZSTD_compressStream2(zcs, output, input, ZSTD_e_continue) , ""); + return ZSTD_nextInputSizeHint_MTorST(zcs); +} + +/* After a compression call set the expected input/output buffer. + * This is validated at the start of the next compression call. + */ +static void +ZSTD_setBufferExpectations(ZSTD_CCtx* cctx, const ZSTD_outBuffer* output, const ZSTD_inBuffer* input) +{ + DEBUGLOG(5, "ZSTD_setBufferExpectations (for advanced stable in/out modes)"); + if (cctx->appliedParams.inBufferMode == ZSTD_bm_stable) { + cctx->expectedInBuffer = *input; + } + if (cctx->appliedParams.outBufferMode == ZSTD_bm_stable) { + cctx->expectedOutBufferSize = output->size - output->pos; + } +} + +/* Validate that the input/output buffers match the expectations set by + * ZSTD_setBufferExpectations. + */ +static size_t ZSTD_checkBufferStability(ZSTD_CCtx const* cctx, + ZSTD_outBuffer const* output, + ZSTD_inBuffer const* input, + ZSTD_EndDirective endOp) +{ + if (cctx->appliedParams.inBufferMode == ZSTD_bm_stable) { + ZSTD_inBuffer const expect = cctx->expectedInBuffer; + if (expect.src != input->src || expect.pos != input->pos) + RETURN_ERROR(stabilityCondition_notRespected, "ZSTD_c_stableInBuffer enabled but input differs!"); + } + (void)endOp; + if (cctx->appliedParams.outBufferMode == ZSTD_bm_stable) { + size_t const outBufferSize = output->size - output->pos; + if (cctx->expectedOutBufferSize != outBufferSize) + RETURN_ERROR(stabilityCondition_notRespected, "ZSTD_c_stableOutBuffer enabled but output size differs!"); + } + return 0; +} + +/* + * If @endOp == ZSTD_e_end, @inSize becomes pledgedSrcSize. + * Otherwise, it's ignored. + * @return: 0 on success, or a ZSTD_error code otherwise. + */ +static size_t ZSTD_CCtx_init_compressStream2(ZSTD_CCtx* cctx, + ZSTD_EndDirective endOp, + size_t inSize) +{ + ZSTD_CCtx_params params = cctx->requestedParams; + ZSTD_prefixDict const prefixDict = cctx->prefixDict; + FORWARD_IF_ERROR( ZSTD_initLocalDict(cctx) , ""); /* Init the local dict if present. */ + ZSTD_memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); /* single usage */ + assert(prefixDict.dict==NULL || cctx->cdict==NULL); /* only one can be set */ + if (cctx->cdict && !cctx->localDict.cdict) { + /* Let the cdict's compression level take priority over the requested params. + * But do not take the cdict's compression level if the "cdict" is actually a localDict + * generated from ZSTD_initLocalDict(). + */ + params.compressionLevel = cctx->cdict->compressionLevel; + } + DEBUGLOG(4, "ZSTD_compressStream2 : transparent init stage"); + if (endOp == ZSTD_e_end) cctx->pledgedSrcSizePlusOne = inSize + 1; /* auto-determine pledgedSrcSize */ + + { size_t const dictSize = prefixDict.dict + ? prefixDict.dictSize + : (cctx->cdict ? cctx->cdict->dictContentSize : 0); + ZSTD_CParamMode_e const mode = ZSTD_getCParamMode(cctx->cdict, ¶ms, cctx->pledgedSrcSizePlusOne - 1); + params.cParams = ZSTD_getCParamsFromCCtxParams( + ¶ms, cctx->pledgedSrcSizePlusOne-1, + dictSize, mode); + } + + params.postBlockSplitter = ZSTD_resolveBlockSplitterMode(params.postBlockSplitter, ¶ms.cParams); + params.ldmParams.enableLdm = ZSTD_resolveEnableLdm(params.ldmParams.enableLdm, ¶ms.cParams); + params.useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(params.useRowMatchFinder, ¶ms.cParams); + params.validateSequences = ZSTD_resolveExternalSequenceValidation(params.validateSequences); + params.maxBlockSize = ZSTD_resolveMaxBlockSize(params.maxBlockSize); + params.searchForExternalRepcodes = ZSTD_resolveExternalRepcodeSearch(params.searchForExternalRepcodes, params.compressionLevel); + +#ifdef ZSTD_MULTITHREAD + /* If external matchfinder is enabled, make sure to fail before checking job size (for consistency) */ + RETURN_ERROR_IF( + ZSTD_hasExtSeqProd(¶ms) && params.nbWorkers >= 1, + parameter_combination_unsupported, + "External sequence producer isn't supported with nbWorkers >= 1" + ); + + if ((cctx->pledgedSrcSizePlusOne-1) <= ZSTDMT_JOBSIZE_MIN) { + params.nbWorkers = 0; /* do not invoke multi-threading when src size is too small */ + } + if (params.nbWorkers > 0) { +#if ZSTD_TRACE + cctx->traceCtx = (ZSTD_trace_compress_begin != NULL) ? ZSTD_trace_compress_begin(cctx) : 0; +#endif + /* mt context creation */ + if (cctx->mtctx == NULL) { + DEBUGLOG(4, "ZSTD_compressStream2: creating new mtctx for nbWorkers=%u", + params.nbWorkers); + cctx->mtctx = ZSTDMT_createCCtx_advanced((U32)params.nbWorkers, cctx->customMem, cctx->pool); + RETURN_ERROR_IF(cctx->mtctx == NULL, memory_allocation, "NULL pointer!"); + } + /* mt compression */ + DEBUGLOG(4, "call ZSTDMT_initCStream_internal as nbWorkers=%u", params.nbWorkers); + FORWARD_IF_ERROR( ZSTDMT_initCStream_internal( + cctx->mtctx, + prefixDict.dict, prefixDict.dictSize, prefixDict.dictContentType, + cctx->cdict, params, cctx->pledgedSrcSizePlusOne-1) , ""); + cctx->dictID = cctx->cdict ? cctx->cdict->dictID : 0; + cctx->dictContentSize = cctx->cdict ? cctx->cdict->dictContentSize : prefixDict.dictSize; + cctx->consumedSrcSize = 0; + cctx->producedCSize = 0; + cctx->streamStage = zcss_load; + cctx->appliedParams = params; + } else +#endif /* ZSTD_MULTITHREAD */ + { U64 const pledgedSrcSize = cctx->pledgedSrcSizePlusOne - 1; + assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); + FORWARD_IF_ERROR( ZSTD_compressBegin_internal(cctx, + prefixDict.dict, prefixDict.dictSize, prefixDict.dictContentType, ZSTD_dtlm_fast, + cctx->cdict, + ¶ms, pledgedSrcSize, + ZSTDb_buffered) , ""); + assert(cctx->appliedParams.nbWorkers == 0); + cctx->inToCompress = 0; + cctx->inBuffPos = 0; + if (cctx->appliedParams.inBufferMode == ZSTD_bm_buffered) { + /* for small input: avoid automatic flush on reaching end of block, since + * it would require to add a 3-bytes null block to end frame + */ + cctx->inBuffTarget = cctx->blockSizeMax + (cctx->blockSizeMax == pledgedSrcSize); + } else { + cctx->inBuffTarget = 0; + } + cctx->outBuffContentSize = cctx->outBuffFlushedSize = 0; + cctx->streamStage = zcss_load; + cctx->frameEnded = 0; + } + return 0; +} + +/* @return provides a minimum amount of data remaining to be flushed from internal buffers + */ +size_t ZSTD_compressStream2( ZSTD_CCtx* cctx, + ZSTD_outBuffer* output, + ZSTD_inBuffer* input, + ZSTD_EndDirective endOp) +{ + DEBUGLOG(5, "ZSTD_compressStream2, endOp=%u ", (unsigned)endOp); + /* check conditions */ + RETURN_ERROR_IF(output->pos > output->size, dstSize_tooSmall, "invalid output buffer"); + RETURN_ERROR_IF(input->pos > input->size, srcSize_wrong, "invalid input buffer"); + RETURN_ERROR_IF((U32)endOp > (U32)ZSTD_e_end, parameter_outOfBound, "invalid endDirective"); + assert(cctx != NULL); + + /* transparent initialization stage */ + if (cctx->streamStage == zcss_init) { + size_t const inputSize = input->size - input->pos; /* no obligation to start from pos==0 */ + size_t const totalInputSize = inputSize + cctx->stableIn_notConsumed; + if ( (cctx->requestedParams.inBufferMode == ZSTD_bm_stable) /* input is presumed stable, across invocations */ + && (endOp == ZSTD_e_continue) /* no flush requested, more input to come */ + && (totalInputSize < ZSTD_BLOCKSIZE_MAX) ) { /* not even reached one block yet */ + if (cctx->stableIn_notConsumed) { /* not the first time */ + /* check stable source guarantees */ + RETURN_ERROR_IF(input->src != cctx->expectedInBuffer.src, stabilityCondition_notRespected, "stableInBuffer condition not respected: wrong src pointer"); + RETURN_ERROR_IF(input->pos != cctx->expectedInBuffer.size, stabilityCondition_notRespected, "stableInBuffer condition not respected: externally modified pos"); + } + /* pretend input was consumed, to give a sense forward progress */ + input->pos = input->size; + /* save stable inBuffer, for later control, and flush/end */ + cctx->expectedInBuffer = *input; + /* but actually input wasn't consumed, so keep track of position from where compression shall resume */ + cctx->stableIn_notConsumed += inputSize; + /* don't initialize yet, wait for the first block of flush() order, for better parameters adaptation */ + return ZSTD_FRAMEHEADERSIZE_MIN(cctx->requestedParams.format); /* at least some header to produce */ + } + FORWARD_IF_ERROR(ZSTD_CCtx_init_compressStream2(cctx, endOp, totalInputSize), "compressStream2 initialization failed"); + ZSTD_setBufferExpectations(cctx, output, input); /* Set initial buffer expectations now that we've initialized */ + } + /* end of transparent initialization stage */ + + FORWARD_IF_ERROR(ZSTD_checkBufferStability(cctx, output, input, endOp), "invalid buffers"); + /* compression stage */ +#ifdef ZSTD_MULTITHREAD + if (cctx->appliedParams.nbWorkers > 0) { + size_t flushMin; + if (cctx->cParamsChanged) { + ZSTDMT_updateCParams_whileCompressing(cctx->mtctx, &cctx->requestedParams); + cctx->cParamsChanged = 0; + } + if (cctx->stableIn_notConsumed) { + assert(cctx->appliedParams.inBufferMode == ZSTD_bm_stable); + /* some early data was skipped - make it available for consumption */ + assert(input->pos >= cctx->stableIn_notConsumed); + input->pos -= cctx->stableIn_notConsumed; + cctx->stableIn_notConsumed = 0; + } + for (;;) { + size_t const ipos = input->pos; + size_t const opos = output->pos; + flushMin = ZSTDMT_compressStream_generic(cctx->mtctx, output, input, endOp); + cctx->consumedSrcSize += (U64)(input->pos - ipos); + cctx->producedCSize += (U64)(output->pos - opos); + if ( ZSTD_isError(flushMin) + || (endOp == ZSTD_e_end && flushMin == 0) ) { /* compression completed */ + if (flushMin == 0) + ZSTD_CCtx_trace(cctx, 0); + ZSTD_CCtx_reset(cctx, ZSTD_reset_session_only); + } + FORWARD_IF_ERROR(flushMin, "ZSTDMT_compressStream_generic failed"); + + if (endOp == ZSTD_e_continue) { + /* We only require some progress with ZSTD_e_continue, not maximal progress. + * We're done if we've consumed or produced any bytes, or either buffer is + * full. + */ + if (input->pos != ipos || output->pos != opos || input->pos == input->size || output->pos == output->size) + break; + } else { + assert(endOp == ZSTD_e_flush || endOp == ZSTD_e_end); + /* We require maximal progress. We're done when the flush is complete or the + * output buffer is full. + */ + if (flushMin == 0 || output->pos == output->size) + break; + } + } + DEBUGLOG(5, "completed ZSTD_compressStream2 delegating to ZSTDMT_compressStream_generic"); + /* Either we don't require maximum forward progress, we've finished the + * flush, or we are out of output space. + */ + assert(endOp == ZSTD_e_continue || flushMin == 0 || output->pos == output->size); + ZSTD_setBufferExpectations(cctx, output, input); + return flushMin; + } +#endif /* ZSTD_MULTITHREAD */ + FORWARD_IF_ERROR( ZSTD_compressStream_generic(cctx, output, input, endOp) , ""); + DEBUGLOG(5, "completed ZSTD_compressStream2"); + ZSTD_setBufferExpectations(cctx, output, input); + return cctx->outBuffContentSize - cctx->outBuffFlushedSize; /* remaining to flush */ +} + +size_t ZSTD_compressStream2_simpleArgs ( + ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, size_t* dstPos, + const void* src, size_t srcSize, size_t* srcPos, + ZSTD_EndDirective endOp) +{ + ZSTD_outBuffer output; + ZSTD_inBuffer input; + output.dst = dst; + output.size = dstCapacity; + output.pos = *dstPos; + input.src = src; + input.size = srcSize; + input.pos = *srcPos; + /* ZSTD_compressStream2() will check validity of dstPos and srcPos */ + { size_t const cErr = ZSTD_compressStream2(cctx, &output, &input, endOp); + *dstPos = output.pos; + *srcPos = input.pos; + return cErr; + } +} + +size_t ZSTD_compress2(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize) +{ + ZSTD_bufferMode_e const originalInBufferMode = cctx->requestedParams.inBufferMode; + ZSTD_bufferMode_e const originalOutBufferMode = cctx->requestedParams.outBufferMode; + DEBUGLOG(4, "ZSTD_compress2 (srcSize=%u)", (unsigned)srcSize); + ZSTD_CCtx_reset(cctx, ZSTD_reset_session_only); + /* Enable stable input/output buffers. */ + cctx->requestedParams.inBufferMode = ZSTD_bm_stable; + cctx->requestedParams.outBufferMode = ZSTD_bm_stable; + { size_t oPos = 0; + size_t iPos = 0; + size_t const result = ZSTD_compressStream2_simpleArgs(cctx, + dst, dstCapacity, &oPos, + src, srcSize, &iPos, + ZSTD_e_end); + /* Reset to the original values. */ + cctx->requestedParams.inBufferMode = originalInBufferMode; + cctx->requestedParams.outBufferMode = originalOutBufferMode; + + FORWARD_IF_ERROR(result, "ZSTD_compressStream2_simpleArgs failed"); + if (result != 0) { /* compression not completed, due to lack of output space */ + assert(oPos == dstCapacity); + RETURN_ERROR(dstSize_tooSmall, ""); + } + assert(iPos == srcSize); /* all input is expected consumed */ + return oPos; + } +} + +/* ZSTD_validateSequence() : + * @offBase : must use the format required by ZSTD_storeSeq() + * @returns a ZSTD error code if sequence is not valid + */ +static size_t +ZSTD_validateSequence(U32 offBase, U32 matchLength, U32 minMatch, + size_t posInSrc, U32 windowLog, size_t dictSize, int useSequenceProducer) +{ + U32 const windowSize = 1u << windowLog; + /* posInSrc represents the amount of data the decoder would decode up to this point. + * As long as the amount of data decoded is less than or equal to window size, offsets may be + * larger than the total length of output decoded in order to reference the dict, even larger than + * window size. After output surpasses windowSize, we're limited to windowSize offsets again. + */ + size_t const offsetBound = posInSrc > windowSize ? (size_t)windowSize : posInSrc + (size_t)dictSize; + size_t const matchLenLowerBound = (minMatch == 3 || useSequenceProducer) ? 3 : 4; + RETURN_ERROR_IF(offBase > OFFSET_TO_OFFBASE(offsetBound), externalSequences_invalid, "Offset too large!"); + /* Validate maxNbSeq is large enough for the given matchLength and minMatch */ + RETURN_ERROR_IF(matchLength < matchLenLowerBound, externalSequences_invalid, "Matchlength too small for the minMatch"); + return 0; +} + +/* Returns an offset code, given a sequence's raw offset, the ongoing repcode array, and whether litLength == 0 */ +static U32 ZSTD_finalizeOffBase(U32 rawOffset, const U32 rep[ZSTD_REP_NUM], U32 ll0) +{ + U32 offBase = OFFSET_TO_OFFBASE(rawOffset); + + if (!ll0 && rawOffset == rep[0]) { + offBase = REPCODE1_TO_OFFBASE; + } else if (rawOffset == rep[1]) { + offBase = REPCODE_TO_OFFBASE(2 - ll0); + } else if (rawOffset == rep[2]) { + offBase = REPCODE_TO_OFFBASE(3 - ll0); + } else if (ll0 && rawOffset == rep[0] - 1) { + offBase = REPCODE3_TO_OFFBASE; + } + return offBase; +} + +/* This function scans through an array of ZSTD_Sequence, + * storing the sequences it reads, until it reaches a block delimiter. + * Note that the block delimiter includes the last literals of the block. + * @blockSize must be == sum(sequence_lengths). + * @returns @blockSize on success, and a ZSTD_error otherwise. + */ +static size_t +ZSTD_transferSequences_wBlockDelim(ZSTD_CCtx* cctx, + ZSTD_SequencePosition* seqPos, + const ZSTD_Sequence* const inSeqs, size_t inSeqsSize, + const void* src, size_t blockSize, + ZSTD_ParamSwitch_e externalRepSearch) +{ + U32 idx = seqPos->idx; + U32 const startIdx = idx; + BYTE const* ip = (BYTE const*)(src); + const BYTE* const iend = ip + blockSize; + Repcodes_t updatedRepcodes; + U32 dictSize; + + DEBUGLOG(5, "ZSTD_transferSequences_wBlockDelim (blockSize = %zu)", blockSize); + + if (cctx->cdict) { + dictSize = (U32)cctx->cdict->dictContentSize; + } else if (cctx->prefixDict.dict) { + dictSize = (U32)cctx->prefixDict.dictSize; + } else { + dictSize = 0; + } + ZSTD_memcpy(updatedRepcodes.rep, cctx->blockState.prevCBlock->rep, sizeof(Repcodes_t)); + for (; idx < inSeqsSize && (inSeqs[idx].matchLength != 0 || inSeqs[idx].offset != 0); ++idx) { + U32 const litLength = inSeqs[idx].litLength; + U32 const matchLength = inSeqs[idx].matchLength; + U32 offBase; + + if (externalRepSearch == ZSTD_ps_disable) { + offBase = OFFSET_TO_OFFBASE(inSeqs[idx].offset); + } else { + U32 const ll0 = (litLength == 0); + offBase = ZSTD_finalizeOffBase(inSeqs[idx].offset, updatedRepcodes.rep, ll0); + ZSTD_updateRep(updatedRepcodes.rep, offBase, ll0); + } + + DEBUGLOG(6, "Storing sequence: (of: %u, ml: %u, ll: %u)", offBase, matchLength, litLength); + if (cctx->appliedParams.validateSequences) { + seqPos->posInSrc += litLength + matchLength; + FORWARD_IF_ERROR(ZSTD_validateSequence(offBase, matchLength, cctx->appliedParams.cParams.minMatch, + seqPos->posInSrc, + cctx->appliedParams.cParams.windowLog, dictSize, + ZSTD_hasExtSeqProd(&cctx->appliedParams)), + "Sequence validation failed"); + } + RETURN_ERROR_IF(idx - seqPos->idx >= cctx->seqStore.maxNbSeq, externalSequences_invalid, + "Not enough memory allocated. Try adjusting ZSTD_c_minMatch."); + ZSTD_storeSeq(&cctx->seqStore, litLength, ip, iend, offBase, matchLength); + ip += matchLength + litLength; + } + RETURN_ERROR_IF(idx == inSeqsSize, externalSequences_invalid, "Block delimiter not found."); + + /* If we skipped repcode search while parsing, we need to update repcodes now */ + assert(externalRepSearch != ZSTD_ps_auto); + assert(idx >= startIdx); + if (externalRepSearch == ZSTD_ps_disable && idx != startIdx) { + U32* const rep = updatedRepcodes.rep; + U32 lastSeqIdx = idx - 1; /* index of last non-block-delimiter sequence */ + + if (lastSeqIdx >= startIdx + 2) { + rep[2] = inSeqs[lastSeqIdx - 2].offset; + rep[1] = inSeqs[lastSeqIdx - 1].offset; + rep[0] = inSeqs[lastSeqIdx].offset; + } else if (lastSeqIdx == startIdx + 1) { + rep[2] = rep[0]; + rep[1] = inSeqs[lastSeqIdx - 1].offset; + rep[0] = inSeqs[lastSeqIdx].offset; + } else { + assert(lastSeqIdx == startIdx); + rep[2] = rep[1]; + rep[1] = rep[0]; + rep[0] = inSeqs[lastSeqIdx].offset; + } + } + + ZSTD_memcpy(cctx->blockState.nextCBlock->rep, updatedRepcodes.rep, sizeof(Repcodes_t)); + + if (inSeqs[idx].litLength) { + DEBUGLOG(6, "Storing last literals of size: %u", inSeqs[idx].litLength); + ZSTD_storeLastLiterals(&cctx->seqStore, ip, inSeqs[idx].litLength); + ip += inSeqs[idx].litLength; + seqPos->posInSrc += inSeqs[idx].litLength; + } + RETURN_ERROR_IF(ip != iend, externalSequences_invalid, "Blocksize doesn't agree with block delimiter!"); + seqPos->idx = idx+1; + return blockSize; +} + +/* + * This function attempts to scan through @blockSize bytes in @src + * represented by the sequences in @inSeqs, + * storing any (partial) sequences. + * + * Occasionally, we may want to reduce the actual number of bytes consumed from @src + * to avoid splitting a match, notably if it would produce a match smaller than MINMATCH. + * + * @returns the number of bytes consumed from @src, necessarily <= @blockSize. + * Otherwise, it may return a ZSTD error if something went wrong. + */ +static size_t +ZSTD_transferSequences_noDelim(ZSTD_CCtx* cctx, + ZSTD_SequencePosition* seqPos, + const ZSTD_Sequence* const inSeqs, size_t inSeqsSize, + const void* src, size_t blockSize, + ZSTD_ParamSwitch_e externalRepSearch) +{ + U32 idx = seqPos->idx; + U32 startPosInSequence = seqPos->posInSequence; + U32 endPosInSequence = seqPos->posInSequence + (U32)blockSize; + size_t dictSize; + const BYTE* const istart = (const BYTE*)(src); + const BYTE* ip = istart; + const BYTE* iend = istart + blockSize; /* May be adjusted if we decide to process fewer than blockSize bytes */ + Repcodes_t updatedRepcodes; + U32 bytesAdjustment = 0; + U32 finalMatchSplit = 0; + + /* TODO(embg) support fast parsing mode in noBlockDelim mode */ + (void)externalRepSearch; + + if (cctx->cdict) { + dictSize = cctx->cdict->dictContentSize; + } else if (cctx->prefixDict.dict) { + dictSize = cctx->prefixDict.dictSize; + } else { + dictSize = 0; + } + DEBUGLOG(5, "ZSTD_transferSequences_noDelim: idx: %u PIS: %u blockSize: %zu", idx, startPosInSequence, blockSize); + DEBUGLOG(5, "Start seq: idx: %u (of: %u ml: %u ll: %u)", idx, inSeqs[idx].offset, inSeqs[idx].matchLength, inSeqs[idx].litLength); + ZSTD_memcpy(updatedRepcodes.rep, cctx->blockState.prevCBlock->rep, sizeof(Repcodes_t)); + while (endPosInSequence && idx < inSeqsSize && !finalMatchSplit) { + const ZSTD_Sequence currSeq = inSeqs[idx]; + U32 litLength = currSeq.litLength; + U32 matchLength = currSeq.matchLength; + U32 const rawOffset = currSeq.offset; + U32 offBase; + + /* Modify the sequence depending on where endPosInSequence lies */ + if (endPosInSequence >= currSeq.litLength + currSeq.matchLength) { + if (startPosInSequence >= litLength) { + startPosInSequence -= litLength; + litLength = 0; + matchLength -= startPosInSequence; + } else { + litLength -= startPosInSequence; + } + /* Move to the next sequence */ + endPosInSequence -= currSeq.litLength + currSeq.matchLength; + startPosInSequence = 0; + } else { + /* This is the final (partial) sequence we're adding from inSeqs, and endPosInSequence + does not reach the end of the match. So, we have to split the sequence */ + DEBUGLOG(6, "Require a split: diff: %u, idx: %u PIS: %u", + currSeq.litLength + currSeq.matchLength - endPosInSequence, idx, endPosInSequence); + if (endPosInSequence > litLength) { + U32 firstHalfMatchLength; + litLength = startPosInSequence >= litLength ? 0 : litLength - startPosInSequence; + firstHalfMatchLength = endPosInSequence - startPosInSequence - litLength; + if (matchLength > blockSize && firstHalfMatchLength >= cctx->appliedParams.cParams.minMatch) { + /* Only ever split the match if it is larger than the block size */ + U32 secondHalfMatchLength = currSeq.matchLength + currSeq.litLength - endPosInSequence; + if (secondHalfMatchLength < cctx->appliedParams.cParams.minMatch) { + /* Move the endPosInSequence backward so that it creates match of minMatch length */ + endPosInSequence -= cctx->appliedParams.cParams.minMatch - secondHalfMatchLength; + bytesAdjustment = cctx->appliedParams.cParams.minMatch - secondHalfMatchLength; + firstHalfMatchLength -= bytesAdjustment; + } + matchLength = firstHalfMatchLength; + /* Flag that we split the last match - after storing the sequence, exit the loop, + but keep the value of endPosInSequence */ + finalMatchSplit = 1; + } else { + /* Move the position in sequence backwards so that we don't split match, and break to store + * the last literals. We use the original currSeq.litLength as a marker for where endPosInSequence + * should go. We prefer to do this whenever it is not necessary to split the match, or if doing so + * would cause the first half of the match to be too small + */ + bytesAdjustment = endPosInSequence - currSeq.litLength; + endPosInSequence = currSeq.litLength; + break; + } + } else { + /* This sequence ends inside the literals, break to store the last literals */ + break; + } + } + /* Check if this offset can be represented with a repcode */ + { U32 const ll0 = (litLength == 0); + offBase = ZSTD_finalizeOffBase(rawOffset, updatedRepcodes.rep, ll0); + ZSTD_updateRep(updatedRepcodes.rep, offBase, ll0); + } + + if (cctx->appliedParams.validateSequences) { + seqPos->posInSrc += litLength + matchLength; + FORWARD_IF_ERROR(ZSTD_validateSequence(offBase, matchLength, cctx->appliedParams.cParams.minMatch, seqPos->posInSrc, + cctx->appliedParams.cParams.windowLog, dictSize, ZSTD_hasExtSeqProd(&cctx->appliedParams)), + "Sequence validation failed"); + } + DEBUGLOG(6, "Storing sequence: (of: %u, ml: %u, ll: %u)", offBase, matchLength, litLength); + RETURN_ERROR_IF(idx - seqPos->idx >= cctx->seqStore.maxNbSeq, externalSequences_invalid, + "Not enough memory allocated. Try adjusting ZSTD_c_minMatch."); + ZSTD_storeSeq(&cctx->seqStore, litLength, ip, iend, offBase, matchLength); + ip += matchLength + litLength; + if (!finalMatchSplit) + idx++; /* Next Sequence */ + } + DEBUGLOG(5, "Ending seq: idx: %u (of: %u ml: %u ll: %u)", idx, inSeqs[idx].offset, inSeqs[idx].matchLength, inSeqs[idx].litLength); + assert(idx == inSeqsSize || endPosInSequence <= inSeqs[idx].litLength + inSeqs[idx].matchLength); + seqPos->idx = idx; + seqPos->posInSequence = endPosInSequence; + ZSTD_memcpy(cctx->blockState.nextCBlock->rep, updatedRepcodes.rep, sizeof(Repcodes_t)); + + iend -= bytesAdjustment; + if (ip != iend) { + /* Store any last literals */ + U32 const lastLLSize = (U32)(iend - ip); + assert(ip <= iend); + DEBUGLOG(6, "Storing last literals of size: %u", lastLLSize); + ZSTD_storeLastLiterals(&cctx->seqStore, ip, lastLLSize); + seqPos->posInSrc += lastLLSize; + } + + return (size_t)(iend-istart); +} + +/* @seqPos represents a position within @inSeqs, + * it is read and updated by this function, + * once the goal to produce a block of size @blockSize is reached. + * @return: nb of bytes consumed from @src, necessarily <= @blockSize. + */ +typedef size_t (*ZSTD_SequenceCopier_f)(ZSTD_CCtx* cctx, + ZSTD_SequencePosition* seqPos, + const ZSTD_Sequence* const inSeqs, size_t inSeqsSize, + const void* src, size_t blockSize, + ZSTD_ParamSwitch_e externalRepSearch); + +static ZSTD_SequenceCopier_f ZSTD_selectSequenceCopier(ZSTD_SequenceFormat_e mode) +{ + assert(ZSTD_cParam_withinBounds(ZSTD_c_blockDelimiters, (int)mode)); + if (mode == ZSTD_sf_explicitBlockDelimiters) { + return ZSTD_transferSequences_wBlockDelim; + } + assert(mode == ZSTD_sf_noBlockDelimiters); + return ZSTD_transferSequences_noDelim; +} + +/* Discover the size of next block by searching for the delimiter. + * Note that a block delimiter **must** exist in this mode, + * otherwise it's an input error. + * The block size retrieved will be later compared to ensure it remains within bounds */ +static size_t +blockSize_explicitDelimiter(const ZSTD_Sequence* inSeqs, size_t inSeqsSize, ZSTD_SequencePosition seqPos) +{ + int end = 0; + size_t blockSize = 0; + size_t spos = seqPos.idx; + DEBUGLOG(6, "blockSize_explicitDelimiter : seq %zu / %zu", spos, inSeqsSize); + assert(spos <= inSeqsSize); + while (spos < inSeqsSize) { + end = (inSeqs[spos].offset == 0); + blockSize += inSeqs[spos].litLength + inSeqs[spos].matchLength; + if (end) { + if (inSeqs[spos].matchLength != 0) + RETURN_ERROR(externalSequences_invalid, "delimiter format error : both matchlength and offset must be == 0"); + break; + } + spos++; + } + if (!end) + RETURN_ERROR(externalSequences_invalid, "Reached end of sequences without finding a block delimiter"); + return blockSize; +} + +static size_t determine_blockSize(ZSTD_SequenceFormat_e mode, + size_t blockSize, size_t remaining, + const ZSTD_Sequence* inSeqs, size_t inSeqsSize, + ZSTD_SequencePosition seqPos) +{ + DEBUGLOG(6, "determine_blockSize : remainingSize = %zu", remaining); + if (mode == ZSTD_sf_noBlockDelimiters) { + /* Note: more a "target" block size */ + return MIN(remaining, blockSize); + } + assert(mode == ZSTD_sf_explicitBlockDelimiters); + { size_t const explicitBlockSize = blockSize_explicitDelimiter(inSeqs, inSeqsSize, seqPos); + FORWARD_IF_ERROR(explicitBlockSize, "Error while determining block size with explicit delimiters"); + if (explicitBlockSize > blockSize) + RETURN_ERROR(externalSequences_invalid, "sequences incorrectly define a too large block"); + if (explicitBlockSize > remaining) + RETURN_ERROR(externalSequences_invalid, "sequences define a frame longer than source"); + return explicitBlockSize; + } +} + +/* Compress all provided sequences, block-by-block. + * + * Returns the cumulative size of all compressed blocks (including their headers), + * otherwise a ZSTD error. + */ +static size_t +ZSTD_compressSequences_internal(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const ZSTD_Sequence* inSeqs, size_t inSeqsSize, + const void* src, size_t srcSize) +{ + size_t cSize = 0; + size_t remaining = srcSize; + ZSTD_SequencePosition seqPos = {0, 0, 0}; + + const BYTE* ip = (BYTE const*)src; + BYTE* op = (BYTE*)dst; + ZSTD_SequenceCopier_f const sequenceCopier = ZSTD_selectSequenceCopier(cctx->appliedParams.blockDelimiters); + + DEBUGLOG(4, "ZSTD_compressSequences_internal srcSize: %zu, inSeqsSize: %zu", srcSize, inSeqsSize); + /* Special case: empty frame */ + if (remaining == 0) { + U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1); + RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "No room for empty frame block header"); + MEM_writeLE32(op, cBlockHeader24); + op += ZSTD_blockHeaderSize; + dstCapacity -= ZSTD_blockHeaderSize; + cSize += ZSTD_blockHeaderSize; + } + + while (remaining) { + size_t compressedSeqsSize; + size_t cBlockSize; + size_t blockSize = determine_blockSize(cctx->appliedParams.blockDelimiters, + cctx->blockSizeMax, remaining, + inSeqs, inSeqsSize, seqPos); + U32 const lastBlock = (blockSize == remaining); + FORWARD_IF_ERROR(blockSize, "Error while trying to determine block size"); + assert(blockSize <= remaining); + ZSTD_resetSeqStore(&cctx->seqStore); + + blockSize = sequenceCopier(cctx, + &seqPos, inSeqs, inSeqsSize, + ip, blockSize, + cctx->appliedParams.searchForExternalRepcodes); + FORWARD_IF_ERROR(blockSize, "Bad sequence copy"); + + /* If blocks are too small, emit as a nocompress block */ + /* TODO: See 3090. We reduced MIN_CBLOCK_SIZE from 3 to 2 so to compensate we are adding + * additional 1. We need to revisit and change this logic to be more consistent */ + if (blockSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1+1) { + cBlockSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock); + FORWARD_IF_ERROR(cBlockSize, "Nocompress block failed"); + DEBUGLOG(5, "Block too small (%zu): data remains uncompressed: cSize=%zu", blockSize, cBlockSize); + cSize += cBlockSize; + ip += blockSize; + op += cBlockSize; + remaining -= blockSize; + dstCapacity -= cBlockSize; + continue; + } + + RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize, dstSize_tooSmall, "not enough dstCapacity to write a new compressed block"); + compressedSeqsSize = ZSTD_entropyCompressSeqStore(&cctx->seqStore, + &cctx->blockState.prevCBlock->entropy, &cctx->blockState.nextCBlock->entropy, + &cctx->appliedParams, + op + ZSTD_blockHeaderSize /* Leave space for block header */, dstCapacity - ZSTD_blockHeaderSize, + blockSize, + cctx->tmpWorkspace, cctx->tmpWkspSize /* statically allocated in resetCCtx */, + cctx->bmi2); + FORWARD_IF_ERROR(compressedSeqsSize, "Compressing sequences of block failed"); + DEBUGLOG(5, "Compressed sequences size: %zu", compressedSeqsSize); + + if (!cctx->isFirstBlock && + ZSTD_maybeRLE(&cctx->seqStore) && + ZSTD_isRLE(ip, blockSize)) { + /* Note: don't emit the first block as RLE even if it qualifies because + * doing so will cause the decoder (cli <= v1.4.3 only) to throw an (invalid) error + * "should consume all input error." + */ + compressedSeqsSize = 1; + } + + if (compressedSeqsSize == 0) { + /* ZSTD_noCompressBlock writes the block header as well */ + cBlockSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock); + FORWARD_IF_ERROR(cBlockSize, "ZSTD_noCompressBlock failed"); + DEBUGLOG(5, "Writing out nocompress block, size: %zu", cBlockSize); + } else if (compressedSeqsSize == 1) { + cBlockSize = ZSTD_rleCompressBlock(op, dstCapacity, *ip, blockSize, lastBlock); + FORWARD_IF_ERROR(cBlockSize, "ZSTD_rleCompressBlock failed"); + DEBUGLOG(5, "Writing out RLE block, size: %zu", cBlockSize); + } else { + U32 cBlockHeader; + /* Error checking and repcodes update */ + ZSTD_blockState_confirmRepcodesAndEntropyTables(&cctx->blockState); + if (cctx->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid) + cctx->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check; + + /* Write block header into beginning of block*/ + cBlockHeader = lastBlock + (((U32)bt_compressed)<<1) + (U32)(compressedSeqsSize << 3); + MEM_writeLE24(op, cBlockHeader); + cBlockSize = ZSTD_blockHeaderSize + compressedSeqsSize; + DEBUGLOG(5, "Writing out compressed block, size: %zu", cBlockSize); + } + + cSize += cBlockSize; + + if (lastBlock) { + break; + } else { + ip += blockSize; + op += cBlockSize; + remaining -= blockSize; + dstCapacity -= cBlockSize; + cctx->isFirstBlock = 0; + } + DEBUGLOG(5, "cSize running total: %zu (remaining dstCapacity=%zu)", cSize, dstCapacity); + } + + DEBUGLOG(4, "cSize final total: %zu", cSize); + return cSize; +} + +size_t ZSTD_compressSequences(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const ZSTD_Sequence* inSeqs, size_t inSeqsSize, + const void* src, size_t srcSize) +{ + BYTE* op = (BYTE*)dst; + size_t cSize = 0; + + /* Transparent initialization stage, same as compressStream2() */ + DEBUGLOG(4, "ZSTD_compressSequences (nbSeqs=%zu,dstCapacity=%zu)", inSeqsSize, dstCapacity); + assert(cctx != NULL); + FORWARD_IF_ERROR(ZSTD_CCtx_init_compressStream2(cctx, ZSTD_e_end, srcSize), "CCtx initialization failed"); + + /* Begin writing output, starting with frame header */ + { size_t const frameHeaderSize = ZSTD_writeFrameHeader(op, dstCapacity, + &cctx->appliedParams, srcSize, cctx->dictID); + op += frameHeaderSize; + assert(frameHeaderSize <= dstCapacity); + dstCapacity -= frameHeaderSize; + cSize += frameHeaderSize; + } + if (cctx->appliedParams.fParams.checksumFlag && srcSize) { + XXH64_update(&cctx->xxhState, src, srcSize); + } + + /* Now generate compressed blocks */ + { size_t const cBlocksSize = ZSTD_compressSequences_internal(cctx, + op, dstCapacity, + inSeqs, inSeqsSize, + src, srcSize); + FORWARD_IF_ERROR(cBlocksSize, "Compressing blocks failed!"); + cSize += cBlocksSize; + assert(cBlocksSize <= dstCapacity); + dstCapacity -= cBlocksSize; + } + + /* Complete with frame checksum, if needed */ + if (cctx->appliedParams.fParams.checksumFlag) { + U32 const checksum = (U32) XXH64_digest(&cctx->xxhState); + RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "no room for checksum"); + DEBUGLOG(4, "Write checksum : %08X", (unsigned)checksum); + MEM_writeLE32((char*)dst + cSize, checksum); + cSize += 4; + } + + DEBUGLOG(4, "Final compressed size: %zu", cSize); + return cSize; +} + + +#if defined(__AVX2__) + +#include /* AVX2 intrinsics */ + +/* + * Convert 2 sequences per iteration, using AVX2 intrinsics: + * - offset -> offBase = offset + 2 + * - litLength -> (U16) litLength + * - matchLength -> (U16)(matchLength - 3) + * - rep is ignored + * Store only 8 bytes per SeqDef (offBase[4], litLength[2], mlBase[2]). + * + * At the end, instead of extracting two __m128i, + * we use _mm256_permute4x64_epi64(..., 0xE8) to move lane2 into lane1, + * then store the lower 16 bytes in one go. + * + * @returns 0 on succes, with no long length detected + * @returns > 0 if there is one long length (> 65535), + * indicating the position, and type. + */ +size_t convertSequences_noRepcodes( + SeqDef* dstSeqs, + const ZSTD_Sequence* inSeqs, + size_t nbSequences) +{ + /* + * addition: + * For each 128-bit half: (offset+2, litLength+0, matchLength-3, rep+0) + */ + const __m256i addition = _mm256_setr_epi32( + ZSTD_REP_NUM, 0, -MINMATCH, 0, /* for sequence i */ + ZSTD_REP_NUM, 0, -MINMATCH, 0 /* for sequence i+1 */ + ); + + /* limit: check if there is a long length */ + const __m256i limit = _mm256_set1_epi32(65535); + + /* + * shuffle mask for byte-level rearrangement in each 128-bit half: + * + * Input layout (after addition) per 128-bit half: + * [ offset+2 (4 bytes) | litLength (4 bytes) | matchLength (4 bytes) | rep (4 bytes) ] + * We only need: + * offBase (4 bytes) = offset+2 + * litLength (2 bytes) = low 2 bytes of litLength + * mlBase (2 bytes) = low 2 bytes of (matchLength) + * => Bytes [0..3, 4..5, 8..9], zero the rest. + */ + const __m256i mask = _mm256_setr_epi8( + /* For the lower 128 bits => sequence i */ + 0, 1, 2, 3, /* offset+2 */ + 4, 5, /* litLength (16 bits) */ + 8, 9, /* matchLength (16 bits) */ + (BYTE)0x80, (BYTE)0x80, (BYTE)0x80, (BYTE)0x80, + (BYTE)0x80, (BYTE)0x80, (BYTE)0x80, (BYTE)0x80, + + /* For the upper 128 bits => sequence i+1 */ + 16,17,18,19, /* offset+2 */ + 20,21, /* litLength */ + 24,25, /* matchLength */ + (BYTE)0x80, (BYTE)0x80, (BYTE)0x80, (BYTE)0x80, + (BYTE)0x80, (BYTE)0x80, (BYTE)0x80, (BYTE)0x80 + ); + + /* + * Next, we'll use _mm256_permute4x64_epi64(vshf, 0xE8). + * Explanation of 0xE8 = 11101000b => [lane0, lane2, lane2, lane3]. + * So the lower 128 bits become [lane0, lane2] => combining seq0 and seq1. + */ +#define PERM_LANE_0X_E8 0xE8 /* [0,2,2,3] in lane indices */ + + size_t longLen = 0, i = 0; + + /* AVX permutation depends on the specific definition of target structures */ + ZSTD_STATIC_ASSERT(sizeof(ZSTD_Sequence) == 16); + ZSTD_STATIC_ASSERT(offsetof(ZSTD_Sequence, offset) == 0); + ZSTD_STATIC_ASSERT(offsetof(ZSTD_Sequence, litLength) == 4); + ZSTD_STATIC_ASSERT(offsetof(ZSTD_Sequence, matchLength) == 8); + ZSTD_STATIC_ASSERT(sizeof(SeqDef) == 8); + ZSTD_STATIC_ASSERT(offsetof(SeqDef, offBase) == 0); + ZSTD_STATIC_ASSERT(offsetof(SeqDef, litLength) == 4); + ZSTD_STATIC_ASSERT(offsetof(SeqDef, mlBase) == 6); + + /* Process 2 sequences per loop iteration */ + for (; i + 1 < nbSequences; i += 2) { + /* Load 2 ZSTD_Sequence (32 bytes) */ + __m256i vin = _mm256_loadu_si256((__m256i const*)&inSeqs[i]); + + /* Add {2, 0, -3, 0} in each 128-bit half */ + __m256i vadd = _mm256_add_epi32(vin, addition); + + /* Check for long length */ + __m256i ll_cmp = _mm256_cmpgt_epi32(vadd, limit); /* 0xFFFFFFFF for element > 65535 */ + int ll_res = _mm256_movemask_epi8(ll_cmp); + + /* Shuffle bytes so each half gives us the 8 bytes we need */ + __m256i vshf = _mm256_shuffle_epi8(vadd, mask); + /* + * Now: + * Lane0 = seq0's 8 bytes + * Lane1 = 0 + * Lane2 = seq1's 8 bytes + * Lane3 = 0 + */ + + /* Permute 64-bit lanes => move Lane2 down into Lane1. */ + __m256i vperm = _mm256_permute4x64_epi64(vshf, PERM_LANE_0X_E8); + /* + * Now the lower 16 bytes (Lane0+Lane1) = [seq0, seq1]. + * The upper 16 bytes are [Lane2, Lane3] = [seq1, 0], but we won't use them. + */ + + /* Store only the lower 16 bytes => 2 SeqDef (8 bytes each) */ + _mm_storeu_si128((__m128i *)&dstSeqs[i], _mm256_castsi256_si128(vperm)); + /* + * This writes out 16 bytes total: + * - offset 0..7 => seq0 (offBase, litLength, mlBase) + * - offset 8..15 => seq1 (offBase, litLength, mlBase) + */ + + /* check (unlikely) long lengths > 65535 + * indices for lengths correspond to bits [4..7], [8..11], [20..23], [24..27] + * => combined mask = 0x0FF00FF0 + */ + if (UNLIKELY((ll_res & 0x0FF00FF0) != 0)) { + /* long length detected: let's figure out which one*/ + if (inSeqs[i].matchLength > 65535+MINMATCH) { + assert(longLen == 0); + longLen = i + 1; + } + if (inSeqs[i].litLength > 65535) { + assert(longLen == 0); + longLen = i + nbSequences + 1; + } + if (inSeqs[i+1].matchLength > 65535+MINMATCH) { + assert(longLen == 0); + longLen = i + 1 + 1; + } + if (inSeqs[i+1].litLength > 65535) { + assert(longLen == 0); + longLen = i + 1 + nbSequences + 1; + } + } + } + + /* Handle leftover if @nbSequences is odd */ + if (i < nbSequences) { + /* process last sequence */ + assert(i == nbSequences - 1); + dstSeqs[i].offBase = OFFSET_TO_OFFBASE(inSeqs[i].offset); + dstSeqs[i].litLength = (U16)inSeqs[i].litLength; + dstSeqs[i].mlBase = (U16)(inSeqs[i].matchLength - MINMATCH); + /* check (unlikely) long lengths > 65535 */ + if (UNLIKELY(inSeqs[i].matchLength > 65535+MINMATCH)) { + assert(longLen == 0); + longLen = i + 1; + } + if (UNLIKELY(inSeqs[i].litLength > 65535)) { + assert(longLen == 0); + longLen = i + nbSequences + 1; + } + } + + return longLen; +} + +/* the vector implementation could also be ported to SSSE3, + * but since this implementation is targeting modern systems (>= Sapphire Rapid), + * it's not useful to develop and maintain code for older pre-AVX2 platforms */ + +#else /* no AVX2 */ + +static size_t +convertSequences_noRepcodes(SeqDef* dstSeqs, + const ZSTD_Sequence* const inSeqs, size_t nbSequences) +{ + size_t longLen = 0; + size_t n; + for (n=0; n 65535 */ + if (UNLIKELY(inSeqs[n].matchLength > 65535+MINMATCH)) { + assert(longLen == 0); + longLen = n + 1; + } + if (UNLIKELY(inSeqs[n].litLength > 65535)) { + assert(longLen == 0); + longLen = n + nbSequences + 1; + } + } + return longLen; +} + +#endif + +/* + * Precondition: Sequences must end on an explicit Block Delimiter + * @return: 0 on success, or an error code. + * Note: Sequence validation functionality has been disabled (removed). + * This is helpful to generate a lean main pipeline, improving performance. + * It may be re-inserted later. + */ +size_t ZSTD_convertBlockSequences(ZSTD_CCtx* cctx, + const ZSTD_Sequence* const inSeqs, size_t nbSequences, + int repcodeResolution) +{ + Repcodes_t updatedRepcodes; + size_t seqNb = 0; + + DEBUGLOG(5, "ZSTD_convertBlockSequences (nbSequences = %zu)", nbSequences); + + RETURN_ERROR_IF(nbSequences >= cctx->seqStore.maxNbSeq, externalSequences_invalid, + "Not enough memory allocated. Try adjusting ZSTD_c_minMatch."); + + ZSTD_memcpy(updatedRepcodes.rep, cctx->blockState.prevCBlock->rep, sizeof(Repcodes_t)); + + /* check end condition */ + assert(nbSequences >= 1); + assert(inSeqs[nbSequences-1].matchLength == 0); + assert(inSeqs[nbSequences-1].offset == 0); + + /* Convert Sequences from public format to internal format */ + if (!repcodeResolution) { + size_t const longl = convertSequences_noRepcodes(cctx->seqStore.sequencesStart, inSeqs, nbSequences-1); + cctx->seqStore.sequences = cctx->seqStore.sequencesStart + nbSequences-1; + if (longl) { + DEBUGLOG(5, "long length"); + assert(cctx->seqStore.longLengthType == ZSTD_llt_none); + if (longl <= nbSequences-1) { + DEBUGLOG(5, "long match length detected at pos %zu", longl-1); + cctx->seqStore.longLengthType = ZSTD_llt_matchLength; + cctx->seqStore.longLengthPos = (U32)(longl-1); + } else { + DEBUGLOG(5, "long literals length detected at pos %zu", longl-nbSequences); + assert(longl <= 2* (nbSequences-1)); + cctx->seqStore.longLengthType = ZSTD_llt_literalLength; + cctx->seqStore.longLengthPos = (U32)(longl-(nbSequences-1)-1); + } + } + } else { + for (seqNb = 0; seqNb < nbSequences - 1 ; seqNb++) { + U32 const litLength = inSeqs[seqNb].litLength; + U32 const matchLength = inSeqs[seqNb].matchLength; + U32 const ll0 = (litLength == 0); + U32 const offBase = ZSTD_finalizeOffBase(inSeqs[seqNb].offset, updatedRepcodes.rep, ll0); + + DEBUGLOG(6, "Storing sequence: (of: %u, ml: %u, ll: %u)", offBase, matchLength, litLength); + ZSTD_storeSeqOnly(&cctx->seqStore, litLength, offBase, matchLength); + ZSTD_updateRep(updatedRepcodes.rep, offBase, ll0); + } + } + + /* If we skipped repcode search while parsing, we need to update repcodes now */ + if (!repcodeResolution && nbSequences > 1) { + U32* const rep = updatedRepcodes.rep; + + if (nbSequences >= 4) { + U32 lastSeqIdx = (U32)nbSequences - 2; /* index of last full sequence */ + rep[2] = inSeqs[lastSeqIdx - 2].offset; + rep[1] = inSeqs[lastSeqIdx - 1].offset; + rep[0] = inSeqs[lastSeqIdx].offset; + } else if (nbSequences == 3) { + rep[2] = rep[0]; + rep[1] = inSeqs[0].offset; + rep[0] = inSeqs[1].offset; + } else { + assert(nbSequences == 2); + rep[2] = rep[1]; + rep[1] = rep[0]; + rep[0] = inSeqs[0].offset; + } + } + + ZSTD_memcpy(cctx->blockState.nextCBlock->rep, updatedRepcodes.rep, sizeof(Repcodes_t)); + + return 0; +} + +#if defined(ZSTD_ARCH_X86_AVX2) + +BlockSummary ZSTD_get1BlockSummary(const ZSTD_Sequence* seqs, size_t nbSeqs) +{ + size_t i; + __m256i const zeroVec = _mm256_setzero_si256(); + __m256i sumVec = zeroVec; /* accumulates match+lit in 32-bit lanes */ + ZSTD_ALIGNED(32) U32 tmp[8]; /* temporary buffer for reduction */ + size_t mSum = 0, lSum = 0; + ZSTD_STATIC_ASSERT(sizeof(ZSTD_Sequence) == 16); + + /* Process 2 structs (32 bytes) at a time */ + for (i = 0; i + 2 <= nbSeqs; i += 2) { + /* Load two consecutive ZSTD_Sequence (8×4 = 32 bytes) */ + __m256i data = _mm256_loadu_si256((const __m256i*)&seqs[i]); + /* check end of block signal */ + __m256i cmp = _mm256_cmpeq_epi32(data, zeroVec); + int cmp_res = _mm256_movemask_epi8(cmp); + /* indices for match lengths correspond to bits [8..11], [24..27] + * => combined mask = 0x0F000F00 */ + ZSTD_STATIC_ASSERT(offsetof(ZSTD_Sequence, matchLength) == 8); + if (cmp_res & 0x0F000F00) break; + /* Accumulate in sumVec */ + sumVec = _mm256_add_epi32(sumVec, data); + } + + /* Horizontal reduction */ + _mm256_store_si256((__m256i*)tmp, sumVec); + lSum = tmp[1] + tmp[5]; + mSum = tmp[2] + tmp[6]; + + /* Handle the leftover */ + for (; i < nbSeqs; i++) { + lSum += seqs[i].litLength; + mSum += seqs[i].matchLength; + if (seqs[i].matchLength == 0) break; /* end of block */ + } + + if (i==nbSeqs) { + /* reaching end of sequences: end of block signal was not present */ + BlockSummary bs; + bs.nbSequences = ERROR(externalSequences_invalid); + return bs; + } + { BlockSummary bs; + bs.nbSequences = i+1; + bs.blockSize = lSum + mSum; + bs.litSize = lSum; + return bs; + } +} + +#else + +BlockSummary ZSTD_get1BlockSummary(const ZSTD_Sequence* seqs, size_t nbSeqs) +{ + size_t totalMatchSize = 0; + size_t litSize = 0; + size_t n; + assert(seqs); + for (n=0; nappliedParams.searchForExternalRepcodes == ZSTD_ps_enable); + assert(cctx->appliedParams.searchForExternalRepcodes != ZSTD_ps_auto); + + DEBUGLOG(4, "ZSTD_compressSequencesAndLiterals_internal: nbSeqs=%zu, litSize=%zu", nbSequences, litSize); + RETURN_ERROR_IF(nbSequences == 0, externalSequences_invalid, "Requires at least 1 end-of-block"); + + /* Special case: empty frame */ + if ((nbSequences == 1) && (inSeqs[0].litLength == 0)) { + U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1); + RETURN_ERROR_IF(dstCapacity<3, dstSize_tooSmall, "No room for empty frame block header"); + MEM_writeLE24(op, cBlockHeader24); + op += ZSTD_blockHeaderSize; + dstCapacity -= ZSTD_blockHeaderSize; + cSize += ZSTD_blockHeaderSize; + } + + while (nbSequences) { + size_t compressedSeqsSize, cBlockSize, conversionStatus; + BlockSummary const block = ZSTD_get1BlockSummary(inSeqs, nbSequences); + U32 const lastBlock = (block.nbSequences == nbSequences); + FORWARD_IF_ERROR(block.nbSequences, "Error while trying to determine nb of sequences for a block"); + assert(block.nbSequences <= nbSequences); + RETURN_ERROR_IF(block.litSize > litSize, externalSequences_invalid, "discrepancy: Sequences require more literals than present in buffer"); + ZSTD_resetSeqStore(&cctx->seqStore); + + conversionStatus = ZSTD_convertBlockSequences(cctx, + inSeqs, block.nbSequences, + repcodeResolution); + FORWARD_IF_ERROR(conversionStatus, "Bad sequence conversion"); + inSeqs += block.nbSequences; + nbSequences -= block.nbSequences; + remaining -= block.blockSize; + + /* Note: when blockSize is very small, other variant send it uncompressed. + * Here, we still send the sequences, because we don't have the original source to send it uncompressed. + * One could imagine in theory reproducing the source from the sequences, + * but that's complex and costly memory intensive, and goes against the objectives of this variant. */ + + RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize, dstSize_tooSmall, "not enough dstCapacity to write a new compressed block"); + + compressedSeqsSize = ZSTD_entropyCompressSeqStore_internal( + op + ZSTD_blockHeaderSize /* Leave space for block header */, dstCapacity - ZSTD_blockHeaderSize, + literals, block.litSize, + &cctx->seqStore, + &cctx->blockState.prevCBlock->entropy, &cctx->blockState.nextCBlock->entropy, + &cctx->appliedParams, + cctx->tmpWorkspace, cctx->tmpWkspSize /* statically allocated in resetCCtx */, + cctx->bmi2); + FORWARD_IF_ERROR(compressedSeqsSize, "Compressing sequences of block failed"); + /* note: the spec forbids for any compressed block to be larger than maximum block size */ + if (compressedSeqsSize > cctx->blockSizeMax) compressedSeqsSize = 0; + DEBUGLOG(5, "Compressed sequences size: %zu", compressedSeqsSize); + litSize -= block.litSize; + literals = (const char*)literals + block.litSize; + + /* Note: difficult to check source for RLE block when only Literals are provided, + * but it could be considered from analyzing the sequence directly */ + + if (compressedSeqsSize == 0) { + /* Sending uncompressed blocks is out of reach, because the source is not provided. + * In theory, one could use the sequences to regenerate the source, like a decompressor, + * but it's complex, and memory hungry, killing the purpose of this variant. + * Current outcome: generate an error code. + */ + RETURN_ERROR(cannotProduce_uncompressedBlock, "ZSTD_compressSequencesAndLiterals cannot generate an uncompressed block"); + } else { + U32 cBlockHeader; + assert(compressedSeqsSize > 1); /* no RLE */ + /* Error checking and repcodes update */ + ZSTD_blockState_confirmRepcodesAndEntropyTables(&cctx->blockState); + if (cctx->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid) + cctx->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check; + + /* Write block header into beginning of block*/ + cBlockHeader = lastBlock + (((U32)bt_compressed)<<1) + (U32)(compressedSeqsSize << 3); + MEM_writeLE24(op, cBlockHeader); + cBlockSize = ZSTD_blockHeaderSize + compressedSeqsSize; + DEBUGLOG(5, "Writing out compressed block, size: %zu", cBlockSize); + } + + cSize += cBlockSize; + op += cBlockSize; + dstCapacity -= cBlockSize; + cctx->isFirstBlock = 0; + DEBUGLOG(5, "cSize running total: %zu (remaining dstCapacity=%zu)", cSize, dstCapacity); + + if (lastBlock) { + assert(nbSequences == 0); + break; + } + } + + RETURN_ERROR_IF(litSize != 0, externalSequences_invalid, "literals must be entirely and exactly consumed"); + RETURN_ERROR_IF(remaining != 0, externalSequences_invalid, "Sequences must represent a total of exactly srcSize=%zu", srcSize); + DEBUGLOG(4, "cSize final total: %zu", cSize); + return cSize; +} + +size_t +ZSTD_compressSequencesAndLiterals(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const ZSTD_Sequence* inSeqs, size_t inSeqsSize, + const void* literals, size_t litSize, size_t litCapacity, + size_t decompressedSize) +{ + BYTE* op = (BYTE*)dst; + size_t cSize = 0; + + /* Transparent initialization stage, same as compressStream2() */ + DEBUGLOG(4, "ZSTD_compressSequencesAndLiterals (dstCapacity=%zu)", dstCapacity); + assert(cctx != NULL); + if (litCapacity < litSize) { + RETURN_ERROR(workSpace_tooSmall, "literals buffer is not large enough: must be at least 8 bytes larger than litSize (risk of read out-of-bound)"); + } + FORWARD_IF_ERROR(ZSTD_CCtx_init_compressStream2(cctx, ZSTD_e_end, decompressedSize), "CCtx initialization failed"); + + if (cctx->appliedParams.blockDelimiters == ZSTD_sf_noBlockDelimiters) { + RETURN_ERROR(frameParameter_unsupported, "This mode is only compatible with explicit delimiters"); + } + if (cctx->appliedParams.validateSequences) { + RETURN_ERROR(parameter_unsupported, "This mode is not compatible with Sequence validation"); + } + if (cctx->appliedParams.fParams.checksumFlag) { + RETURN_ERROR(frameParameter_unsupported, "this mode is not compatible with frame checksum"); + } + + /* Begin writing output, starting with frame header */ + { size_t const frameHeaderSize = ZSTD_writeFrameHeader(op, dstCapacity, + &cctx->appliedParams, decompressedSize, cctx->dictID); + op += frameHeaderSize; + assert(frameHeaderSize <= dstCapacity); + dstCapacity -= frameHeaderSize; + cSize += frameHeaderSize; + } + + /* Now generate compressed blocks */ + { size_t const cBlocksSize = ZSTD_compressSequencesAndLiterals_internal(cctx, + op, dstCapacity, + inSeqs, inSeqsSize, + literals, litSize, decompressedSize); + FORWARD_IF_ERROR(cBlocksSize, "Compressing blocks failed!"); + cSize += cBlocksSize; + assert(cBlocksSize <= dstCapacity); + dstCapacity -= cBlocksSize; + } + + DEBUGLOG(4, "Final compressed size: %zu", cSize); + return cSize; +} + +/*====== Finalize ======*/ + +static ZSTD_inBuffer inBuffer_forEndFlush(const ZSTD_CStream* zcs) +{ + const ZSTD_inBuffer nullInput = { NULL, 0, 0 }; + const int stableInput = (zcs->appliedParams.inBufferMode == ZSTD_bm_stable); + return stableInput ? zcs->expectedInBuffer : nullInput; +} + +/*! ZSTD_flushStream() : + * @return : amount of data remaining to flush */ +size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output) +{ + ZSTD_inBuffer input = inBuffer_forEndFlush(zcs); + input.size = input.pos; /* do not ingest more input during flush */ + return ZSTD_compressStream2(zcs, output, &input, ZSTD_e_flush); +} + +size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output) +{ + ZSTD_inBuffer input = inBuffer_forEndFlush(zcs); + size_t const remainingToFlush = ZSTD_compressStream2(zcs, output, &input, ZSTD_e_end); + FORWARD_IF_ERROR(remainingToFlush , "ZSTD_compressStream2(,,ZSTD_e_end) failed"); + if (zcs->appliedParams.nbWorkers > 0) return remainingToFlush; /* minimal estimation */ + /* single thread mode : attempt to calculate remaining to flush more precisely */ + { size_t const lastBlockSize = zcs->frameEnded ? 0 : ZSTD_BLOCKHEADERSIZE; + size_t const checksumSize = (size_t)(zcs->frameEnded ? 0 : zcs->appliedParams.fParams.checksumFlag * 4); + size_t const toFlush = remainingToFlush + lastBlockSize + checksumSize; + DEBUGLOG(4, "ZSTD_endStream : remaining to flush : %u", (unsigned)toFlush); + return toFlush; + } +} + + +/*-===== Pre-defined compression levels =====-*/ +#include "clevels.h" + +int ZSTD_maxCLevel(void) { return ZSTD_MAX_CLEVEL; } +int ZSTD_minCLevel(void) { return (int)-ZSTD_TARGETLENGTH_MAX; } +int ZSTD_defaultCLevel(void) { return ZSTD_CLEVEL_DEFAULT; } + +static ZSTD_compressionParameters ZSTD_dedicatedDictSearch_getCParams(int const compressionLevel, size_t const dictSize) +{ + ZSTD_compressionParameters cParams = ZSTD_getCParams_internal(compressionLevel, 0, dictSize, ZSTD_cpm_createCDict); + switch (cParams.strategy) { + case ZSTD_fast: + case ZSTD_dfast: + break; + case ZSTD_greedy: + case ZSTD_lazy: + case ZSTD_lazy2: + cParams.hashLog += ZSTD_LAZY_DDSS_BUCKET_LOG; + break; + case ZSTD_btlazy2: + case ZSTD_btopt: + case ZSTD_btultra: + case ZSTD_btultra2: + break; + } + return cParams; +} + +static int ZSTD_dedicatedDictSearch_isSupported( + ZSTD_compressionParameters const* cParams) +{ + return (cParams->strategy >= ZSTD_greedy) + && (cParams->strategy <= ZSTD_lazy2) + && (cParams->hashLog > cParams->chainLog) + && (cParams->chainLog <= 24); +} + +/** + * Reverses the adjustment applied to cparams when enabling dedicated dict + * search. This is used to recover the params set to be used in the working + * context. (Otherwise, those tables would also grow.) + */ +static void ZSTD_dedicatedDictSearch_revertCParams( + ZSTD_compressionParameters* cParams) { + switch (cParams->strategy) { + case ZSTD_fast: + case ZSTD_dfast: + break; + case ZSTD_greedy: + case ZSTD_lazy: + case ZSTD_lazy2: + cParams->hashLog -= ZSTD_LAZY_DDSS_BUCKET_LOG; + if (cParams->hashLog < ZSTD_HASHLOG_MIN) { + cParams->hashLog = ZSTD_HASHLOG_MIN; + } + break; + case ZSTD_btlazy2: + case ZSTD_btopt: + case ZSTD_btultra: + case ZSTD_btultra2: + break; + } +} + +static U64 ZSTD_getCParamRowSize(U64 srcSizeHint, size_t dictSize, ZSTD_CParamMode_e mode) +{ + switch (mode) { + case ZSTD_cpm_unknown: + case ZSTD_cpm_noAttachDict: + case ZSTD_cpm_createCDict: + break; + case ZSTD_cpm_attachDict: + dictSize = 0; + break; + default: + assert(0); + break; + } + { int const unknown = srcSizeHint == ZSTD_CONTENTSIZE_UNKNOWN; + size_t const addedSize = unknown && dictSize > 0 ? 500 : 0; + return unknown && dictSize == 0 ? ZSTD_CONTENTSIZE_UNKNOWN : srcSizeHint+dictSize+addedSize; + } +} + +/*! ZSTD_getCParams_internal() : + * @return ZSTD_compressionParameters structure for a selected compression level, srcSize and dictSize. + * Note: srcSizeHint 0 means 0, use ZSTD_CONTENTSIZE_UNKNOWN for unknown. + * Use dictSize == 0 for unknown or unused. + * Note: `mode` controls how we treat the `dictSize`. See docs for `ZSTD_CParamMode_e`. */ +static ZSTD_compressionParameters ZSTD_getCParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_CParamMode_e mode) +{ + U64 const rSize = ZSTD_getCParamRowSize(srcSizeHint, dictSize, mode); + U32 const tableID = (rSize <= 256 KB) + (rSize <= 128 KB) + (rSize <= 16 KB); + int row; + DEBUGLOG(5, "ZSTD_getCParams_internal (cLevel=%i)", compressionLevel); + + /* row */ + if (compressionLevel == 0) row = ZSTD_CLEVEL_DEFAULT; /* 0 == default */ + else if (compressionLevel < 0) row = 0; /* entry 0 is baseline for fast mode */ + else if (compressionLevel > ZSTD_MAX_CLEVEL) row = ZSTD_MAX_CLEVEL; + else row = compressionLevel; + + { ZSTD_compressionParameters cp = ZSTD_defaultCParameters[tableID][row]; + DEBUGLOG(5, "ZSTD_getCParams_internal selected tableID: %u row: %u strat: %u", tableID, row, (U32)cp.strategy); + /* acceleration factor */ + if (compressionLevel < 0) { + int const clampedCompressionLevel = MAX(ZSTD_minCLevel(), compressionLevel); + cp.targetLength = (unsigned)(-clampedCompressionLevel); + } + /* refine parameters based on srcSize & dictSize */ + return ZSTD_adjustCParams_internal(cp, srcSizeHint, dictSize, mode, ZSTD_ps_auto); + } +} + +/*! ZSTD_getCParams() : + * @return ZSTD_compressionParameters structure for a selected compression level, srcSize and dictSize. + * Size values are optional, provide 0 if not known or unused */ +ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize) +{ + if (srcSizeHint == 0) srcSizeHint = ZSTD_CONTENTSIZE_UNKNOWN; + return ZSTD_getCParams_internal(compressionLevel, srcSizeHint, dictSize, ZSTD_cpm_unknown); +} + +/*! ZSTD_getParams() : + * same idea as ZSTD_getCParams() + * @return a `ZSTD_parameters` structure (instead of `ZSTD_compressionParameters`). + * Fields of `ZSTD_frameParameters` are set to default values */ +static ZSTD_parameters +ZSTD_getParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_CParamMode_e mode) +{ + ZSTD_parameters params; + ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, srcSizeHint, dictSize, mode); + DEBUGLOG(5, "ZSTD_getParams (cLevel=%i)", compressionLevel); + ZSTD_memset(¶ms, 0, sizeof(params)); + params.cParams = cParams; + params.fParams.contentSizeFlag = 1; + return params; +} + +/*! ZSTD_getParams() : + * same idea as ZSTD_getCParams() + * @return a `ZSTD_parameters` structure (instead of `ZSTD_compressionParameters`). + * Fields of `ZSTD_frameParameters` are set to default values */ +ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize) +{ + if (srcSizeHint == 0) srcSizeHint = ZSTD_CONTENTSIZE_UNKNOWN; + return ZSTD_getParams_internal(compressionLevel, srcSizeHint, dictSize, ZSTD_cpm_unknown); +} + +void ZSTD_registerSequenceProducer( + ZSTD_CCtx* zc, + void* extSeqProdState, + ZSTD_sequenceProducer_F extSeqProdFunc) +{ + assert(zc != NULL); + ZSTD_CCtxParams_registerSequenceProducer( + &zc->requestedParams, extSeqProdState, extSeqProdFunc + ); +} + +void ZSTD_CCtxParams_registerSequenceProducer( + ZSTD_CCtx_params* params, + void* extSeqProdState, + ZSTD_sequenceProducer_F extSeqProdFunc) +{ + assert(params != NULL); + if (extSeqProdFunc != NULL) { + params->extSeqProdFunc = extSeqProdFunc; + params->extSeqProdState = extSeqProdState; + } else { + params->extSeqProdFunc = NULL; + params->extSeqProdState = NULL; + } +} diff --git a/src/third-party/zstd/compress/zstd_compress_internal.h b/src/third-party/zstd/compress/zstd_compress_internal.h new file mode 100644 index 0000000000000..ca5e2a4c5bf6f --- /dev/null +++ b/src/third-party/zstd/compress/zstd_compress_internal.h @@ -0,0 +1,1636 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/* This header contains definitions + * that shall **only** be used by modules within lib/compress. + */ + +#ifndef ZSTD_COMPRESS_H +#define ZSTD_COMPRESS_H + +/*-************************************* +* Dependencies +***************************************/ +#include "../common/zstd_internal.h" +#include "zstd_cwksp.h" +#ifdef ZSTD_MULTITHREAD +# include "zstdmt_compress.h" +#endif +#include "../common/bits.h" /* ZSTD_highbit32, ZSTD_NbCommonBytes */ +#include "zstd_preSplit.h" /* ZSTD_SLIPBLOCK_WORKSPACESIZE */ + +/*-************************************* +* Constants +***************************************/ +#define kSearchStrength 8 +#define HASH_READ_SIZE 8 +#define ZSTD_DUBT_UNSORTED_MARK 1 /* For btlazy2 strategy, index ZSTD_DUBT_UNSORTED_MARK==1 means "unsorted". + It could be confused for a real successor at index "1", if sorted as larger than its predecessor. + It's not a big deal though : candidate will just be sorted again. + Additionally, candidate position 1 will be lost. + But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss. + The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be mishandled after table reuse with a different strategy. + This constant is required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */ + + +/*-************************************* +* Context memory management +***************************************/ +typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e; +typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage; + +typedef struct ZSTD_prefixDict_s { + const void* dict; + size_t dictSize; + ZSTD_dictContentType_e dictContentType; +} ZSTD_prefixDict; + +typedef struct { + void* dictBuffer; + void const* dict; + size_t dictSize; + ZSTD_dictContentType_e dictContentType; + ZSTD_CDict* cdict; +} ZSTD_localDict; + +typedef struct { + HUF_CElt CTable[HUF_CTABLE_SIZE_ST(255)]; + HUF_repeat repeatMode; +} ZSTD_hufCTables_t; + +typedef struct { + FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)]; + FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)]; + FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)]; + FSE_repeat offcode_repeatMode; + FSE_repeat matchlength_repeatMode; + FSE_repeat litlength_repeatMode; +} ZSTD_fseCTables_t; + +typedef struct { + ZSTD_hufCTables_t huf; + ZSTD_fseCTables_t fse; +} ZSTD_entropyCTables_t; + +/*********************************************** +* Sequences * +***********************************************/ +typedef struct SeqDef_s { + U32 offBase; /* offBase == Offset + ZSTD_REP_NUM, or repcode 1,2,3 */ + U16 litLength; + U16 mlBase; /* mlBase == matchLength - MINMATCH */ +} SeqDef; + +/* Controls whether seqStore has a single "long" litLength or matchLength. See SeqStore_t. */ +typedef enum { + ZSTD_llt_none = 0, /* no longLengthType */ + ZSTD_llt_literalLength = 1, /* represents a long literal */ + ZSTD_llt_matchLength = 2 /* represents a long match */ +} ZSTD_longLengthType_e; + +typedef struct { + SeqDef* sequencesStart; + SeqDef* sequences; /* ptr to end of sequences */ + BYTE* litStart; + BYTE* lit; /* ptr to end of literals */ + BYTE* llCode; + BYTE* mlCode; + BYTE* ofCode; + size_t maxNbSeq; + size_t maxNbLit; + + /* longLengthPos and longLengthType to allow us to represent either a single litLength or matchLength + * in the seqStore that has a value larger than U16 (if it exists). To do so, we increment + * the existing value of the litLength or matchLength by 0x10000. + */ + ZSTD_longLengthType_e longLengthType; + U32 longLengthPos; /* Index of the sequence to apply long length modification to */ +} SeqStore_t; + +typedef struct { + U32 litLength; + U32 matchLength; +} ZSTD_SequenceLength; + +/** + * Returns the ZSTD_SequenceLength for the given sequences. It handles the decoding of long sequences + * indicated by longLengthPos and longLengthType, and adds MINMATCH back to matchLength. + */ +MEM_STATIC ZSTD_SequenceLength ZSTD_getSequenceLength(SeqStore_t const* seqStore, SeqDef const* seq) +{ + ZSTD_SequenceLength seqLen; + seqLen.litLength = seq->litLength; + seqLen.matchLength = seq->mlBase + MINMATCH; + if (seqStore->longLengthPos == (U32)(seq - seqStore->sequencesStart)) { + if (seqStore->longLengthType == ZSTD_llt_literalLength) { + seqLen.litLength += 0x10000; + } + if (seqStore->longLengthType == ZSTD_llt_matchLength) { + seqLen.matchLength += 0x10000; + } + } + return seqLen; +} + +const SeqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx); /* compress & dictBuilder */ +int ZSTD_seqToCodes(const SeqStore_t* seqStorePtr); /* compress, dictBuilder, decodeCorpus (shouldn't get its definition from here) */ + + +/*********************************************** +* Entropy buffer statistics structs and funcs * +***********************************************/ +/** ZSTD_hufCTablesMetadata_t : + * Stores Literals Block Type for a super-block in hType, and + * huffman tree description in hufDesBuffer. + * hufDesSize refers to the size of huffman tree description in bytes. + * This metadata is populated in ZSTD_buildBlockEntropyStats_literals() */ +typedef struct { + SymbolEncodingType_e hType; + BYTE hufDesBuffer[ZSTD_MAX_HUF_HEADER_SIZE]; + size_t hufDesSize; +} ZSTD_hufCTablesMetadata_t; + +/** ZSTD_fseCTablesMetadata_t : + * Stores symbol compression modes for a super-block in {ll, ol, ml}Type, and + * fse tables in fseTablesBuffer. + * fseTablesSize refers to the size of fse tables in bytes. + * This metadata is populated in ZSTD_buildBlockEntropyStats_sequences() */ +typedef struct { + SymbolEncodingType_e llType; + SymbolEncodingType_e ofType; + SymbolEncodingType_e mlType; + BYTE fseTablesBuffer[ZSTD_MAX_FSE_HEADERS_SIZE]; + size_t fseTablesSize; + size_t lastCountSize; /* This is to account for bug in 1.3.4. More detail in ZSTD_entropyCompressSeqStore_internal() */ +} ZSTD_fseCTablesMetadata_t; + +typedef struct { + ZSTD_hufCTablesMetadata_t hufMetadata; + ZSTD_fseCTablesMetadata_t fseMetadata; +} ZSTD_entropyCTablesMetadata_t; + +/** ZSTD_buildBlockEntropyStats() : + * Builds entropy for the block. + * @return : 0 on success or error code */ +size_t ZSTD_buildBlockEntropyStats( + const SeqStore_t* seqStorePtr, + const ZSTD_entropyCTables_t* prevEntropy, + ZSTD_entropyCTables_t* nextEntropy, + const ZSTD_CCtx_params* cctxParams, + ZSTD_entropyCTablesMetadata_t* entropyMetadata, + void* workspace, size_t wkspSize); + +/********************************* +* Compression internals structs * +*********************************/ + +typedef struct { + U32 off; /* Offset sumtype code for the match, using ZSTD_storeSeq() format */ + U32 len; /* Raw length of match */ +} ZSTD_match_t; + +typedef struct { + U32 offset; /* Offset of sequence */ + U32 litLength; /* Length of literals prior to match */ + U32 matchLength; /* Raw length of match */ +} rawSeq; + +typedef struct { + rawSeq* seq; /* The start of the sequences */ + size_t pos; /* The index in seq where reading stopped. pos <= size. */ + size_t posInSequence; /* The position within the sequence at seq[pos] where reading + stopped. posInSequence <= seq[pos].litLength + seq[pos].matchLength */ + size_t size; /* The number of sequences. <= capacity. */ + size_t capacity; /* The capacity starting from `seq` pointer */ +} RawSeqStore_t; + +UNUSED_ATTR static const RawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0, 0}; + +typedef struct { + int price; /* price from beginning of segment to this position */ + U32 off; /* offset of previous match */ + U32 mlen; /* length of previous match */ + U32 litlen; /* nb of literals since previous match */ + U32 rep[ZSTD_REP_NUM]; /* offset history after previous match */ +} ZSTD_optimal_t; + +typedef enum { zop_dynamic=0, zop_predef } ZSTD_OptPrice_e; + +#define ZSTD_OPT_SIZE (ZSTD_OPT_NUM+3) +typedef struct { + /* All tables are allocated inside cctx->workspace by ZSTD_resetCCtx_internal() */ + unsigned* litFreq; /* table of literals statistics, of size 256 */ + unsigned* litLengthFreq; /* table of litLength statistics, of size (MaxLL+1) */ + unsigned* matchLengthFreq; /* table of matchLength statistics, of size (MaxML+1) */ + unsigned* offCodeFreq; /* table of offCode statistics, of size (MaxOff+1) */ + ZSTD_match_t* matchTable; /* list of found matches, of size ZSTD_OPT_SIZE */ + ZSTD_optimal_t* priceTable; /* All positions tracked by optimal parser, of size ZSTD_OPT_SIZE */ + + U32 litSum; /* nb of literals */ + U32 litLengthSum; /* nb of litLength codes */ + U32 matchLengthSum; /* nb of matchLength codes */ + U32 offCodeSum; /* nb of offset codes */ + U32 litSumBasePrice; /* to compare to log2(litfreq) */ + U32 litLengthSumBasePrice; /* to compare to log2(llfreq) */ + U32 matchLengthSumBasePrice;/* to compare to log2(mlfreq) */ + U32 offCodeSumBasePrice; /* to compare to log2(offreq) */ + ZSTD_OptPrice_e priceType; /* prices can be determined dynamically, or follow a pre-defined cost structure */ + const ZSTD_entropyCTables_t* symbolCosts; /* pre-calculated dictionary statistics */ + ZSTD_ParamSwitch_e literalCompressionMode; +} optState_t; + +typedef struct { + ZSTD_entropyCTables_t entropy; + U32 rep[ZSTD_REP_NUM]; +} ZSTD_compressedBlockState_t; + +typedef struct { + BYTE const* nextSrc; /* next block here to continue on current prefix */ + BYTE const* base; /* All regular indexes relative to this position */ + BYTE const* dictBase; /* extDict indexes relative to this position */ + U32 dictLimit; /* below that point, need extDict */ + U32 lowLimit; /* below that point, no more valid data */ + U32 nbOverflowCorrections; /* Number of times overflow correction has run since + * ZSTD_window_init(). Useful for debugging coredumps + * and for ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY. + */ +} ZSTD_window_t; + +#define ZSTD_WINDOW_START_INDEX 2 + +typedef struct ZSTD_MatchState_t ZSTD_MatchState_t; + +#define ZSTD_ROW_HASH_CACHE_SIZE 8 /* Size of prefetching hash cache for row-based matchfinder */ + +struct ZSTD_MatchState_t { + ZSTD_window_t window; /* State for window round buffer management */ + U32 loadedDictEnd; /* index of end of dictionary, within context's referential. + * When loadedDictEnd != 0, a dictionary is in use, and still valid. + * This relies on a mechanism to set loadedDictEnd=0 when dictionary is no longer within distance. + * Such mechanism is provided within ZSTD_window_enforceMaxDist() and ZSTD_checkDictValidity(). + * When dict referential is copied into active context (i.e. not attached), + * loadedDictEnd == dictSize, since referential starts from zero. + */ + U32 nextToUpdate; /* index from which to continue table update */ + U32 hashLog3; /* dispatch table for matches of len==3 : larger == faster, more memory */ + + U32 rowHashLog; /* For row-based matchfinder: Hashlog based on nb of rows in the hashTable.*/ + BYTE* tagTable; /* For row-based matchFinder: A row-based table containing the hashes and head index. */ + U32 hashCache[ZSTD_ROW_HASH_CACHE_SIZE]; /* For row-based matchFinder: a cache of hashes to improve speed */ + U64 hashSalt; /* For row-based matchFinder: salts the hash for reuse of tag table */ + U32 hashSaltEntropy; /* For row-based matchFinder: collects entropy for salt generation */ + + U32* hashTable; + U32* hashTable3; + U32* chainTable; + + int forceNonContiguous; /* Non-zero if we should force non-contiguous load for the next window update. */ + + int dedicatedDictSearch; /* Indicates whether this matchState is using the + * dedicated dictionary search structure. + */ + optState_t opt; /* optimal parser state */ + const ZSTD_MatchState_t* dictMatchState; + ZSTD_compressionParameters cParams; + const RawSeqStore_t* ldmSeqStore; + + /* Controls prefetching in some dictMatchState matchfinders. + * This behavior is controlled from the cctx ms. + * This parameter has no effect in the cdict ms. */ + int prefetchCDictTables; + + /* When == 0, lazy match finders insert every position. + * When != 0, lazy match finders only insert positions they search. + * This allows them to skip much faster over incompressible data, + * at a small cost to compression ratio. + */ + int lazySkipping; +}; + +typedef struct { + ZSTD_compressedBlockState_t* prevCBlock; + ZSTD_compressedBlockState_t* nextCBlock; + ZSTD_MatchState_t matchState; +} ZSTD_blockState_t; + +typedef struct { + U32 offset; + U32 checksum; +} ldmEntry_t; + +typedef struct { + BYTE const* split; + U32 hash; + U32 checksum; + ldmEntry_t* bucket; +} ldmMatchCandidate_t; + +#define LDM_BATCH_SIZE 64 + +typedef struct { + ZSTD_window_t window; /* State for the window round buffer management */ + ldmEntry_t* hashTable; + U32 loadedDictEnd; + BYTE* bucketOffsets; /* Next position in bucket to insert entry */ + size_t splitIndices[LDM_BATCH_SIZE]; + ldmMatchCandidate_t matchCandidates[LDM_BATCH_SIZE]; +} ldmState_t; + +typedef struct { + ZSTD_ParamSwitch_e enableLdm; /* ZSTD_ps_enable to enable LDM. ZSTD_ps_auto by default */ + U32 hashLog; /* Log size of hashTable */ + U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */ + U32 minMatchLength; /* Minimum match length */ + U32 hashRateLog; /* Log number of entries to skip */ + U32 windowLog; /* Window log for the LDM */ +} ldmParams_t; + +typedef struct { + int collectSequences; + ZSTD_Sequence* seqStart; + size_t seqIndex; + size_t maxSequences; +} SeqCollector; + +struct ZSTD_CCtx_params_s { + ZSTD_format_e format; + ZSTD_compressionParameters cParams; + ZSTD_frameParameters fParams; + + int compressionLevel; + int forceWindow; /* force back-references to respect limit of + * 1< 63) ? ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength]; +} + +/* ZSTD_MLcode() : + * note : mlBase = matchLength - MINMATCH; + * because it's the format it's stored in seqStore->sequences */ +MEM_STATIC U32 ZSTD_MLcode(U32 mlBase) +{ + static const BYTE ML_Code[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37, + 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39, + 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, + 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, + 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, + 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 }; + static const U32 ML_deltaCode = 36; + return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase]; +} + +/* ZSTD_cParam_withinBounds: + * @return 1 if value is within cParam bounds, + * 0 otherwise */ +MEM_STATIC int ZSTD_cParam_withinBounds(ZSTD_cParameter cParam, int value) +{ + ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); + if (ZSTD_isError(bounds.error)) return 0; + if (value < bounds.lowerBound) return 0; + if (value > bounds.upperBound) return 0; + return 1; +} + +/* ZSTD_selectAddr: + * @return index >= lowLimit ? candidate : backup, + * tries to force branchless codegen. */ +MEM_STATIC const BYTE* +ZSTD_selectAddr(U32 index, U32 lowLimit, const BYTE* candidate, const BYTE* backup) +{ +#if defined(__GNUC__) && defined(__x86_64__) + __asm__ ( + "cmp %1, %2\n" + "cmova %3, %0\n" + : "+r"(candidate) + : "r"(index), "r"(lowLimit), "r"(backup) + ); + return candidate; +#else + return index >= lowLimit ? candidate : backup; +#endif +} + +/* ZSTD_noCompressBlock() : + * Writes uncompressed block to dst buffer from given src. + * Returns the size of the block */ +MEM_STATIC size_t +ZSTD_noCompressBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock) +{ + U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(srcSize << 3); + DEBUGLOG(5, "ZSTD_noCompressBlock (srcSize=%zu, dstCapacity=%zu)", srcSize, dstCapacity); + RETURN_ERROR_IF(srcSize + ZSTD_blockHeaderSize > dstCapacity, + dstSize_tooSmall, "dst buf too small for uncompressed block"); + MEM_writeLE24(dst, cBlockHeader24); + ZSTD_memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize); + return ZSTD_blockHeaderSize + srcSize; +} + +MEM_STATIC size_t +ZSTD_rleCompressBlock(void* dst, size_t dstCapacity, BYTE src, size_t srcSize, U32 lastBlock) +{ + BYTE* const op = (BYTE*)dst; + U32 const cBlockHeader = lastBlock + (((U32)bt_rle)<<1) + (U32)(srcSize << 3); + RETURN_ERROR_IF(dstCapacity < 4, dstSize_tooSmall, ""); + MEM_writeLE24(op, cBlockHeader); + op[3] = src; + return 4; +} + + +/* ZSTD_minGain() : + * minimum compression required + * to generate a compress block or a compressed literals section. + * note : use same formula for both situations */ +MEM_STATIC size_t ZSTD_minGain(size_t srcSize, ZSTD_strategy strat) +{ + U32 const minlog = (strat>=ZSTD_btultra) ? (U32)(strat) - 1 : 6; + ZSTD_STATIC_ASSERT(ZSTD_btultra == 8); + assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, (int)strat)); + return (srcSize >> minlog) + 2; +} + +MEM_STATIC int ZSTD_literalsCompressionIsDisabled(const ZSTD_CCtx_params* cctxParams) +{ + switch (cctxParams->literalCompressionMode) { + case ZSTD_ps_enable: + return 0; + case ZSTD_ps_disable: + return 1; + default: + assert(0 /* impossible: pre-validated */); + ZSTD_FALLTHROUGH; + case ZSTD_ps_auto: + return (cctxParams->cParams.strategy == ZSTD_fast) && (cctxParams->cParams.targetLength > 0); + } +} + +/*! ZSTD_safecopyLiterals() : + * memcpy() function that won't read beyond more than WILDCOPY_OVERLENGTH bytes past ilimit_w. + * Only called when the sequence ends past ilimit_w, so it only needs to be optimized for single + * large copies. + */ +static void +ZSTD_safecopyLiterals(BYTE* op, BYTE const* ip, BYTE const* const iend, BYTE const* ilimit_w) +{ + assert(iend > ilimit_w); + if (ip <= ilimit_w) { + ZSTD_wildcopy(op, ip, ilimit_w - ip, ZSTD_no_overlap); + op += ilimit_w - ip; + ip = ilimit_w; + } + while (ip < iend) *op++ = *ip++; +} + + +#define REPCODE1_TO_OFFBASE REPCODE_TO_OFFBASE(1) +#define REPCODE2_TO_OFFBASE REPCODE_TO_OFFBASE(2) +#define REPCODE3_TO_OFFBASE REPCODE_TO_OFFBASE(3) +#define REPCODE_TO_OFFBASE(r) (assert((r)>=1), assert((r)<=ZSTD_REP_NUM), (r)) /* accepts IDs 1,2,3 */ +#define OFFSET_TO_OFFBASE(o) (assert((o)>0), o + ZSTD_REP_NUM) +#define OFFBASE_IS_OFFSET(o) ((o) > ZSTD_REP_NUM) +#define OFFBASE_IS_REPCODE(o) ( 1 <= (o) && (o) <= ZSTD_REP_NUM) +#define OFFBASE_TO_OFFSET(o) (assert(OFFBASE_IS_OFFSET(o)), (o) - ZSTD_REP_NUM) +#define OFFBASE_TO_REPCODE(o) (assert(OFFBASE_IS_REPCODE(o)), (o)) /* returns ID 1,2,3 */ + +/*! ZSTD_storeSeqOnly() : + * Store a sequence (litlen, litPtr, offBase and matchLength) into SeqStore_t. + * Literals themselves are not copied, but @litPtr is updated. + * @offBase : Users should employ macros REPCODE_TO_OFFBASE() and OFFSET_TO_OFFBASE(). + * @matchLength : must be >= MINMATCH +*/ +HINT_INLINE UNUSED_ATTR void +ZSTD_storeSeqOnly(SeqStore_t* seqStorePtr, + size_t litLength, + U32 offBase, + size_t matchLength) +{ + assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq); + + /* literal Length */ + assert(litLength <= ZSTD_BLOCKSIZE_MAX); + if (UNLIKELY(litLength>0xFFFF)) { + assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */ + seqStorePtr->longLengthType = ZSTD_llt_literalLength; + seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); + } + seqStorePtr->sequences[0].litLength = (U16)litLength; + + /* match offset */ + seqStorePtr->sequences[0].offBase = offBase; + + /* match Length */ + assert(matchLength <= ZSTD_BLOCKSIZE_MAX); + assert(matchLength >= MINMATCH); + { size_t const mlBase = matchLength - MINMATCH; + if (UNLIKELY(mlBase>0xFFFF)) { + assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */ + seqStorePtr->longLengthType = ZSTD_llt_matchLength; + seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); + } + seqStorePtr->sequences[0].mlBase = (U16)mlBase; + } + + seqStorePtr->sequences++; +} + +/*! ZSTD_storeSeq() : + * Store a sequence (litlen, litPtr, offBase and matchLength) into SeqStore_t. + * @offBase : Users should employ macros REPCODE_TO_OFFBASE() and OFFSET_TO_OFFBASE(). + * @matchLength : must be >= MINMATCH + * Allowed to over-read literals up to litLimit. +*/ +HINT_INLINE UNUSED_ATTR void +ZSTD_storeSeq(SeqStore_t* seqStorePtr, + size_t litLength, const BYTE* literals, const BYTE* litLimit, + U32 offBase, + size_t matchLength) +{ + BYTE const* const litLimit_w = litLimit - WILDCOPY_OVERLENGTH; + BYTE const* const litEnd = literals + litLength; +#if defined(DEBUGLEVEL) && (DEBUGLEVEL >= 6) + static const BYTE* g_start = NULL; + if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */ + { U32 const pos = (U32)((const BYTE*)literals - g_start); + DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offBase%7u", + pos, (U32)litLength, (U32)matchLength, (U32)offBase); + } +#endif + assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq); + /* copy Literals */ + assert(seqStorePtr->maxNbLit <= 128 KB); + assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + seqStorePtr->maxNbLit); + assert(literals + litLength <= litLimit); + if (litEnd <= litLimit_w) { + /* Common case we can use wildcopy. + * First copy 16 bytes, because literals are likely short. + */ + ZSTD_STATIC_ASSERT(WILDCOPY_OVERLENGTH >= 16); + ZSTD_copy16(seqStorePtr->lit, literals); + if (litLength > 16) { + ZSTD_wildcopy(seqStorePtr->lit+16, literals+16, (ptrdiff_t)litLength-16, ZSTD_no_overlap); + } + } else { + ZSTD_safecopyLiterals(seqStorePtr->lit, literals, litEnd, litLimit_w); + } + seqStorePtr->lit += litLength; + + ZSTD_storeSeqOnly(seqStorePtr, litLength, offBase, matchLength); +} + +/* ZSTD_updateRep() : + * updates in-place @rep (array of repeat offsets) + * @offBase : sum-type, using numeric representation of ZSTD_storeSeq() + */ +MEM_STATIC void +ZSTD_updateRep(U32 rep[ZSTD_REP_NUM], U32 const offBase, U32 const ll0) +{ + if (OFFBASE_IS_OFFSET(offBase)) { /* full offset */ + rep[2] = rep[1]; + rep[1] = rep[0]; + rep[0] = OFFBASE_TO_OFFSET(offBase); + } else { /* repcode */ + U32 const repCode = OFFBASE_TO_REPCODE(offBase) - 1 + ll0; + if (repCode > 0) { /* note : if repCode==0, no change */ + U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode]; + rep[2] = (repCode >= 2) ? rep[1] : rep[2]; + rep[1] = rep[0]; + rep[0] = currentOffset; + } else { /* repCode == 0 */ + /* nothing to do */ + } + } +} + +typedef struct repcodes_s { + U32 rep[3]; +} Repcodes_t; + +MEM_STATIC Repcodes_t +ZSTD_newRep(U32 const rep[ZSTD_REP_NUM], U32 const offBase, U32 const ll0) +{ + Repcodes_t newReps; + ZSTD_memcpy(&newReps, rep, sizeof(newReps)); + ZSTD_updateRep(newReps.rep, offBase, ll0); + return newReps; +} + + +/*-************************************* +* Match length counter +***************************************/ +MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit) +{ + const BYTE* const pStart = pIn; + const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1); + + if (pIn < pInLoopLimit) { + { size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn); + if (diff) return ZSTD_NbCommonBytes(diff); } + pIn+=sizeof(size_t); pMatch+=sizeof(size_t); + while (pIn < pInLoopLimit) { + size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn); + if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; } + pIn += ZSTD_NbCommonBytes(diff); + return (size_t)(pIn - pStart); + } } + if (MEM_64bits() && (pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; } + if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; } + if ((pIn> (32-h) ; } +MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h, 0); } /* only in zstd_opt.h */ +MEM_STATIC size_t ZSTD_hash3PtrS(const void* ptr, U32 h, U32 s) { return ZSTD_hash3(MEM_readLE32(ptr), h, s); } + +static const U32 prime4bytes = 2654435761U; +static U32 ZSTD_hash4(U32 u, U32 h, U32 s) { assert(h <= 32); return ((u * prime4bytes) ^ s) >> (32-h) ; } +static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_readLE32(ptr), h, 0); } +static size_t ZSTD_hash4PtrS(const void* ptr, U32 h, U32 s) { return ZSTD_hash4(MEM_readLE32(ptr), h, s); } + +static const U64 prime5bytes = 889523592379ULL; +static size_t ZSTD_hash5(U64 u, U32 h, U64 s) { assert(h <= 64); return (size_t)((((u << (64-40)) * prime5bytes) ^ s) >> (64-h)) ; } +static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h, 0); } +static size_t ZSTD_hash5PtrS(const void* p, U32 h, U64 s) { return ZSTD_hash5(MEM_readLE64(p), h, s); } + +static const U64 prime6bytes = 227718039650203ULL; +static size_t ZSTD_hash6(U64 u, U32 h, U64 s) { assert(h <= 64); return (size_t)((((u << (64-48)) * prime6bytes) ^ s) >> (64-h)) ; } +static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h, 0); } +static size_t ZSTD_hash6PtrS(const void* p, U32 h, U64 s) { return ZSTD_hash6(MEM_readLE64(p), h, s); } + +static const U64 prime7bytes = 58295818150454627ULL; +static size_t ZSTD_hash7(U64 u, U32 h, U64 s) { assert(h <= 64); return (size_t)((((u << (64-56)) * prime7bytes) ^ s) >> (64-h)) ; } +static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h, 0); } +static size_t ZSTD_hash7PtrS(const void* p, U32 h, U64 s) { return ZSTD_hash7(MEM_readLE64(p), h, s); } + +static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL; +static size_t ZSTD_hash8(U64 u, U32 h, U64 s) { assert(h <= 64); return (size_t)((((u) * prime8bytes) ^ s) >> (64-h)) ; } +static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h, 0); } +static size_t ZSTD_hash8PtrS(const void* p, U32 h, U64 s) { return ZSTD_hash8(MEM_readLE64(p), h, s); } + + +MEM_STATIC FORCE_INLINE_ATTR +size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls) +{ + /* Although some of these hashes do support hBits up to 64, some do not. + * To be on the safe side, always avoid hBits > 32. */ + assert(hBits <= 32); + + switch(mls) + { + default: + case 4: return ZSTD_hash4Ptr(p, hBits); + case 5: return ZSTD_hash5Ptr(p, hBits); + case 6: return ZSTD_hash6Ptr(p, hBits); + case 7: return ZSTD_hash7Ptr(p, hBits); + case 8: return ZSTD_hash8Ptr(p, hBits); + } +} + +MEM_STATIC FORCE_INLINE_ATTR +size_t ZSTD_hashPtrSalted(const void* p, U32 hBits, U32 mls, const U64 hashSalt) { + /* Although some of these hashes do support hBits up to 64, some do not. + * To be on the safe side, always avoid hBits > 32. */ + assert(hBits <= 32); + + switch(mls) + { + default: + case 4: return ZSTD_hash4PtrS(p, hBits, (U32)hashSalt); + case 5: return ZSTD_hash5PtrS(p, hBits, hashSalt); + case 6: return ZSTD_hash6PtrS(p, hBits, hashSalt); + case 7: return ZSTD_hash7PtrS(p, hBits, hashSalt); + case 8: return ZSTD_hash8PtrS(p, hBits, hashSalt); + } +} + + +/** ZSTD_ipow() : + * Return base^exponent. + */ +static U64 ZSTD_ipow(U64 base, U64 exponent) +{ + U64 power = 1; + while (exponent) { + if (exponent & 1) power *= base; + exponent >>= 1; + base *= base; + } + return power; +} + +#define ZSTD_ROLL_HASH_CHAR_OFFSET 10 + +/** ZSTD_rollingHash_append() : + * Add the buffer to the hash value. + */ +static U64 ZSTD_rollingHash_append(U64 hash, void const* buf, size_t size) +{ + BYTE const* istart = (BYTE const*)buf; + size_t pos; + for (pos = 0; pos < size; ++pos) { + hash *= prime8bytes; + hash += istart[pos] + ZSTD_ROLL_HASH_CHAR_OFFSET; + } + return hash; +} + +/** ZSTD_rollingHash_compute() : + * Compute the rolling hash value of the buffer. + */ +MEM_STATIC U64 ZSTD_rollingHash_compute(void const* buf, size_t size) +{ + return ZSTD_rollingHash_append(0, buf, size); +} + +/** ZSTD_rollingHash_primePower() : + * Compute the primePower to be passed to ZSTD_rollingHash_rotate() for a hash + * over a window of length bytes. + */ +MEM_STATIC U64 ZSTD_rollingHash_primePower(U32 length) +{ + return ZSTD_ipow(prime8bytes, length - 1); +} + +/** ZSTD_rollingHash_rotate() : + * Rotate the rolling hash by one byte. + */ +MEM_STATIC U64 ZSTD_rollingHash_rotate(U64 hash, BYTE toRemove, BYTE toAdd, U64 primePower) +{ + hash -= (toRemove + ZSTD_ROLL_HASH_CHAR_OFFSET) * primePower; + hash *= prime8bytes; + hash += toAdd + ZSTD_ROLL_HASH_CHAR_OFFSET; + return hash; +} + +/*-************************************* +* Round buffer management +***************************************/ +/* Max @current value allowed: + * In 32-bit mode: we want to avoid crossing the 2 GB limit, + * reducing risks of side effects in case of signed operations on indexes. + * In 64-bit mode: we want to ensure that adding the maximum job size (512 MB) + * doesn't overflow U32 index capacity (4 GB) */ +#define ZSTD_CURRENT_MAX (MEM_64bits() ? 3500U MB : 2000U MB) +/* Maximum chunk size before overflow correction needs to be called again */ +#define ZSTD_CHUNKSIZE_MAX \ + ( ((U32)-1) /* Maximum ending current index */ \ + - ZSTD_CURRENT_MAX) /* Maximum beginning lowLimit */ + +/** + * ZSTD_window_clear(): + * Clears the window containing the history by simply setting it to empty. + */ +MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window) +{ + size_t const endT = (size_t)(window->nextSrc - window->base); + U32 const end = (U32)endT; + + window->lowLimit = end; + window->dictLimit = end; +} + +MEM_STATIC U32 ZSTD_window_isEmpty(ZSTD_window_t const window) +{ + return window.dictLimit == ZSTD_WINDOW_START_INDEX && + window.lowLimit == ZSTD_WINDOW_START_INDEX && + (window.nextSrc - window.base) == ZSTD_WINDOW_START_INDEX; +} + +/** + * ZSTD_window_hasExtDict(): + * Returns non-zero if the window has a non-empty extDict. + */ +MEM_STATIC U32 ZSTD_window_hasExtDict(ZSTD_window_t const window) +{ + return window.lowLimit < window.dictLimit; +} + +/** + * ZSTD_matchState_dictMode(): + * Inspects the provided matchState and figures out what dictMode should be + * passed to the compressor. + */ +MEM_STATIC ZSTD_dictMode_e ZSTD_matchState_dictMode(const ZSTD_MatchState_t *ms) +{ + return ZSTD_window_hasExtDict(ms->window) ? + ZSTD_extDict : + ms->dictMatchState != NULL ? + (ms->dictMatchState->dedicatedDictSearch ? ZSTD_dedicatedDictSearch : ZSTD_dictMatchState) : + ZSTD_noDict; +} + +/* Defining this macro to non-zero tells zstd to run the overflow correction + * code much more frequently. This is very inefficient, and should only be + * used for tests and fuzzers. + */ +#ifndef ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY +# ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION +# define ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY 1 +# else +# define ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY 0 +# endif +#endif + +/** + * ZSTD_window_canOverflowCorrect(): + * Returns non-zero if the indices are large enough for overflow correction + * to work correctly without impacting compression ratio. + */ +MEM_STATIC U32 ZSTD_window_canOverflowCorrect(ZSTD_window_t const window, + U32 cycleLog, + U32 maxDist, + U32 loadedDictEnd, + void const* src) +{ + U32 const cycleSize = 1u << cycleLog; + U32 const curr = (U32)((BYTE const*)src - window.base); + U32 const minIndexToOverflowCorrect = cycleSize + + MAX(maxDist, cycleSize) + + ZSTD_WINDOW_START_INDEX; + + /* Adjust the min index to backoff the overflow correction frequency, + * so we don't waste too much CPU in overflow correction. If this + * computation overflows we don't really care, we just need to make + * sure it is at least minIndexToOverflowCorrect. + */ + U32 const adjustment = window.nbOverflowCorrections + 1; + U32 const adjustedIndex = MAX(minIndexToOverflowCorrect * adjustment, + minIndexToOverflowCorrect); + U32 const indexLargeEnough = curr > adjustedIndex; + + /* Only overflow correct early if the dictionary is invalidated already, + * so we don't hurt compression ratio. + */ + U32 const dictionaryInvalidated = curr > maxDist + loadedDictEnd; + + return indexLargeEnough && dictionaryInvalidated; +} + +/** + * ZSTD_window_needOverflowCorrection(): + * Returns non-zero if the indices are getting too large and need overflow + * protection. + */ +MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window, + U32 cycleLog, + U32 maxDist, + U32 loadedDictEnd, + void const* src, + void const* srcEnd) +{ + U32 const curr = (U32)((BYTE const*)srcEnd - window.base); + if (ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY) { + if (ZSTD_window_canOverflowCorrect(window, cycleLog, maxDist, loadedDictEnd, src)) { + return 1; + } + } + return curr > ZSTD_CURRENT_MAX; +} + +/** + * ZSTD_window_correctOverflow(): + * Reduces the indices to protect from index overflow. + * Returns the correction made to the indices, which must be applied to every + * stored index. + * + * The least significant cycleLog bits of the indices must remain the same, + * which may be 0. Every index up to maxDist in the past must be valid. + */ +MEM_STATIC +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog, + U32 maxDist, void const* src) +{ + /* preemptive overflow correction: + * 1. correction is large enough: + * lowLimit > (3<<29) ==> current > 3<<29 + 1< (3<<29 + 1< (3<<29) - (1< (3<<29) - (1<<30) (NOTE: chainLog <= 30) + * > 1<<29 + * + * 2. (ip+ZSTD_CHUNKSIZE_MAX - cctx->base) doesn't overflow: + * After correction, current is less than (1<base < 1<<32. + * 3. (cctx->lowLimit + 1< 3<<29 + 1<base); + U32 const currentCycle = curr & cycleMask; + /* Ensure newCurrent - maxDist >= ZSTD_WINDOW_START_INDEX. */ + U32 const currentCycleCorrection = currentCycle < ZSTD_WINDOW_START_INDEX + ? MAX(cycleSize, ZSTD_WINDOW_START_INDEX) + : 0; + U32 const newCurrent = currentCycle + + currentCycleCorrection + + MAX(maxDist, cycleSize); + U32 const correction = curr - newCurrent; + /* maxDist must be a power of two so that: + * (newCurrent & cycleMask) == (curr & cycleMask) + * This is required to not corrupt the chains / binary tree. + */ + assert((maxDist & (maxDist - 1)) == 0); + assert((curr & cycleMask) == (newCurrent & cycleMask)); + assert(curr > newCurrent); + if (!ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY) { + /* Loose bound, should be around 1<<29 (see above) */ + assert(correction > 1<<28); + } + + window->base += correction; + window->dictBase += correction; + if (window->lowLimit < correction + ZSTD_WINDOW_START_INDEX) { + window->lowLimit = ZSTD_WINDOW_START_INDEX; + } else { + window->lowLimit -= correction; + } + if (window->dictLimit < correction + ZSTD_WINDOW_START_INDEX) { + window->dictLimit = ZSTD_WINDOW_START_INDEX; + } else { + window->dictLimit -= correction; + } + + /* Ensure we can still reference the full window. */ + assert(newCurrent >= maxDist); + assert(newCurrent - maxDist >= ZSTD_WINDOW_START_INDEX); + /* Ensure that lowLimit and dictLimit didn't underflow. */ + assert(window->lowLimit <= newCurrent); + assert(window->dictLimit <= newCurrent); + + ++window->nbOverflowCorrections; + + DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x", correction, + window->lowLimit); + return correction; +} + +/** + * ZSTD_window_enforceMaxDist(): + * Updates lowLimit so that: + * (srcEnd - base) - lowLimit == maxDist + loadedDictEnd + * + * It ensures index is valid as long as index >= lowLimit. + * This must be called before a block compression call. + * + * loadedDictEnd is only defined if a dictionary is in use for current compression. + * As the name implies, loadedDictEnd represents the index at end of dictionary. + * The value lies within context's referential, it can be directly compared to blockEndIdx. + * + * If loadedDictEndPtr is NULL, no dictionary is in use, and we use loadedDictEnd == 0. + * If loadedDictEndPtr is not NULL, we set it to zero after updating lowLimit. + * This is because dictionaries are allowed to be referenced fully + * as long as the last byte of the dictionary is in the window. + * Once input has progressed beyond window size, dictionary cannot be referenced anymore. + * + * In normal dict mode, the dictionary lies between lowLimit and dictLimit. + * In dictMatchState mode, lowLimit and dictLimit are the same, + * and the dictionary is below them. + * forceWindow and dictMatchState are therefore incompatible. + */ +MEM_STATIC void +ZSTD_window_enforceMaxDist(ZSTD_window_t* window, + const void* blockEnd, + U32 maxDist, + U32* loadedDictEndPtr, + const ZSTD_MatchState_t** dictMatchStatePtr) +{ + U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base); + U32 const loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0; + DEBUGLOG(5, "ZSTD_window_enforceMaxDist: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u", + (unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd); + + /* - When there is no dictionary : loadedDictEnd == 0. + In which case, the test (blockEndIdx > maxDist) is merely to avoid + overflowing next operation `newLowLimit = blockEndIdx - maxDist`. + - When there is a standard dictionary : + Index referential is copied from the dictionary, + which means it starts from 0. + In which case, loadedDictEnd == dictSize, + and it makes sense to compare `blockEndIdx > maxDist + dictSize` + since `blockEndIdx` also starts from zero. + - When there is an attached dictionary : + loadedDictEnd is expressed within the referential of the context, + so it can be directly compared against blockEndIdx. + */ + if (blockEndIdx > maxDist + loadedDictEnd) { + U32 const newLowLimit = blockEndIdx - maxDist; + if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit; + if (window->dictLimit < window->lowLimit) { + DEBUGLOG(5, "Update dictLimit to match lowLimit, from %u to %u", + (unsigned)window->dictLimit, (unsigned)window->lowLimit); + window->dictLimit = window->lowLimit; + } + /* On reaching window size, dictionaries are invalidated */ + if (loadedDictEndPtr) *loadedDictEndPtr = 0; + if (dictMatchStatePtr) *dictMatchStatePtr = NULL; + } +} + +/* Similar to ZSTD_window_enforceMaxDist(), + * but only invalidates dictionary + * when input progresses beyond window size. + * assumption : loadedDictEndPtr and dictMatchStatePtr are valid (non NULL) + * loadedDictEnd uses same referential as window->base + * maxDist is the window size */ +MEM_STATIC void +ZSTD_checkDictValidity(const ZSTD_window_t* window, + const void* blockEnd, + U32 maxDist, + U32* loadedDictEndPtr, + const ZSTD_MatchState_t** dictMatchStatePtr) +{ + assert(loadedDictEndPtr != NULL); + assert(dictMatchStatePtr != NULL); + { U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base); + U32 const loadedDictEnd = *loadedDictEndPtr; + DEBUGLOG(5, "ZSTD_checkDictValidity: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u", + (unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd); + assert(blockEndIdx >= loadedDictEnd); + + if (blockEndIdx > loadedDictEnd + maxDist || loadedDictEnd != window->dictLimit) { + /* On reaching window size, dictionaries are invalidated. + * For simplification, if window size is reached anywhere within next block, + * the dictionary is invalidated for the full block. + * + * We also have to invalidate the dictionary if ZSTD_window_update() has detected + * non-contiguous segments, which means that loadedDictEnd != window->dictLimit. + * loadedDictEnd may be 0, if forceWindow is true, but in that case we never use + * dictMatchState, so setting it to NULL is not a problem. + */ + DEBUGLOG(6, "invalidating dictionary for current block (distance > windowSize)"); + *loadedDictEndPtr = 0; + *dictMatchStatePtr = NULL; + } else { + if (*loadedDictEndPtr != 0) { + DEBUGLOG(6, "dictionary considered valid for current block"); + } } } +} + +MEM_STATIC void ZSTD_window_init(ZSTD_window_t* window) { + ZSTD_memset(window, 0, sizeof(*window)); + window->base = (BYTE const*)" "; + window->dictBase = (BYTE const*)" "; + ZSTD_STATIC_ASSERT(ZSTD_DUBT_UNSORTED_MARK < ZSTD_WINDOW_START_INDEX); /* Start above ZSTD_DUBT_UNSORTED_MARK */ + window->dictLimit = ZSTD_WINDOW_START_INDEX; /* start from >0, so that 1st position is valid */ + window->lowLimit = ZSTD_WINDOW_START_INDEX; /* it ensures first and later CCtx usages compress the same */ + window->nextSrc = window->base + ZSTD_WINDOW_START_INDEX; /* see issue #1241 */ + window->nbOverflowCorrections = 0; +} + +/** + * ZSTD_window_update(): + * Updates the window by appending [src, src + srcSize) to the window. + * If it is not contiguous, the current prefix becomes the extDict, and we + * forget about the extDict. Handles overlap of the prefix and extDict. + * Returns non-zero if the segment is contiguous. + */ +MEM_STATIC +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +U32 ZSTD_window_update(ZSTD_window_t* window, + const void* src, size_t srcSize, + int forceNonContiguous) +{ + BYTE const* const ip = (BYTE const*)src; + U32 contiguous = 1; + DEBUGLOG(5, "ZSTD_window_update"); + if (srcSize == 0) + return contiguous; + assert(window->base != NULL); + assert(window->dictBase != NULL); + /* Check if blocks follow each other */ + if (src != window->nextSrc || forceNonContiguous) { + /* not contiguous */ + size_t const distanceFromBase = (size_t)(window->nextSrc - window->base); + DEBUGLOG(5, "Non contiguous blocks, new segment starts at %u", window->dictLimit); + window->lowLimit = window->dictLimit; + assert(distanceFromBase == (size_t)(U32)distanceFromBase); /* should never overflow */ + window->dictLimit = (U32)distanceFromBase; + window->dictBase = window->base; + window->base = ip - distanceFromBase; + /* ms->nextToUpdate = window->dictLimit; */ + if (window->dictLimit - window->lowLimit < HASH_READ_SIZE) window->lowLimit = window->dictLimit; /* too small extDict */ + contiguous = 0; + } + window->nextSrc = ip + srcSize; + /* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */ + if ( (ip+srcSize > window->dictBase + window->lowLimit) + & (ip < window->dictBase + window->dictLimit)) { + size_t const highInputIdx = (size_t)((ip + srcSize) - window->dictBase); + U32 const lowLimitMax = (highInputIdx > (size_t)window->dictLimit) ? window->dictLimit : (U32)highInputIdx; + assert(highInputIdx < UINT_MAX); + window->lowLimit = lowLimitMax; + DEBUGLOG(5, "Overlapping extDict and input : new lowLimit = %u", window->lowLimit); + } + return contiguous; +} + +/** + * Returns the lowest allowed match index. It may either be in the ext-dict or the prefix. + */ +MEM_STATIC U32 ZSTD_getLowestMatchIndex(const ZSTD_MatchState_t* ms, U32 curr, unsigned windowLog) +{ + U32 const maxDistance = 1U << windowLog; + U32 const lowestValid = ms->window.lowLimit; + U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid; + U32 const isDictionary = (ms->loadedDictEnd != 0); + /* When using a dictionary the entire dictionary is valid if a single byte of the dictionary + * is within the window. We invalidate the dictionary (and set loadedDictEnd to 0) when it isn't + * valid for the entire block. So this check is sufficient to find the lowest valid match index. + */ + U32 const matchLowest = isDictionary ? lowestValid : withinWindow; + return matchLowest; +} + +/** + * Returns the lowest allowed match index in the prefix. + */ +MEM_STATIC U32 ZSTD_getLowestPrefixIndex(const ZSTD_MatchState_t* ms, U32 curr, unsigned windowLog) +{ + U32 const maxDistance = 1U << windowLog; + U32 const lowestValid = ms->window.dictLimit; + U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid; + U32 const isDictionary = (ms->loadedDictEnd != 0); + /* When computing the lowest prefix index we need to take the dictionary into account to handle + * the edge case where the dictionary and the source are contiguous in memory. + */ + U32 const matchLowest = isDictionary ? lowestValid : withinWindow; + return matchLowest; +} + +/* index_safety_check: + * intentional underflow : ensure repIndex isn't overlapping dict + prefix + * @return 1 if values are not overlapping, + * 0 otherwise */ +MEM_STATIC int ZSTD_index_overlap_check(const U32 prefixLowestIndex, const U32 repIndex) { + return ((U32)((prefixLowestIndex-1) - repIndex) >= 3); +} + + +/* debug functions */ +#if (DEBUGLEVEL>=2) + +MEM_STATIC double ZSTD_fWeight(U32 rawStat) +{ + U32 const fp_accuracy = 8; + U32 const fp_multiplier = (1 << fp_accuracy); + U32 const newStat = rawStat + 1; + U32 const hb = ZSTD_highbit32(newStat); + U32 const BWeight = hb * fp_multiplier; + U32 const FWeight = (newStat << fp_accuracy) >> hb; + U32 const weight = BWeight + FWeight; + assert(hb + fp_accuracy < 31); + return (double)weight / fp_multiplier; +} + +/* display a table content, + * listing each element, its frequency, and its predicted bit cost */ +MEM_STATIC void ZSTD_debugTable(const U32* table, U32 max) +{ + unsigned u, sum; + for (u=0, sum=0; u<=max; u++) sum += table[u]; + DEBUGLOG(2, "total nb elts: %u", sum); + for (u=0; u<=max; u++) { + DEBUGLOG(2, "%2u: %5u (%.2f)", + u, table[u], ZSTD_fWeight(sum) - ZSTD_fWeight(table[u]) ); + } +} + +#endif + +/* Short Cache */ + +/* Normally, zstd matchfinders follow this flow: + * 1. Compute hash at ip + * 2. Load index from hashTable[hash] + * 3. Check if *ip == *(base + index) + * In dictionary compression, loading *(base + index) is often an L2 or even L3 miss. + * + * Short cache is an optimization which allows us to avoid step 3 most of the time + * when the data doesn't actually match. With short cache, the flow becomes: + * 1. Compute (hash, currentTag) at ip. currentTag is an 8-bit independent hash at ip. + * 2. Load (index, matchTag) from hashTable[hash]. See ZSTD_writeTaggedIndex to understand how this works. + * 3. Only if currentTag == matchTag, check *ip == *(base + index). Otherwise, continue. + * + * Currently, short cache is only implemented in CDict hashtables. Thus, its use is limited to + * dictMatchState matchfinders. + */ +#define ZSTD_SHORT_CACHE_TAG_BITS 8 +#define ZSTD_SHORT_CACHE_TAG_MASK ((1u << ZSTD_SHORT_CACHE_TAG_BITS) - 1) + +/* Helper function for ZSTD_fillHashTable and ZSTD_fillDoubleHashTable. + * Unpacks hashAndTag into (hash, tag), then packs (index, tag) into hashTable[hash]. */ +MEM_STATIC void ZSTD_writeTaggedIndex(U32* const hashTable, size_t hashAndTag, U32 index) { + size_t const hash = hashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS; + U32 const tag = (U32)(hashAndTag & ZSTD_SHORT_CACHE_TAG_MASK); + assert(index >> (32 - ZSTD_SHORT_CACHE_TAG_BITS) == 0); + hashTable[hash] = (index << ZSTD_SHORT_CACHE_TAG_BITS) | tag; +} + +/* Helper function for short cache matchfinders. + * Unpacks tag1 and tag2 from lower bits of packedTag1 and packedTag2, then checks if the tags match. */ +MEM_STATIC int ZSTD_comparePackedTags(size_t packedTag1, size_t packedTag2) { + U32 const tag1 = packedTag1 & ZSTD_SHORT_CACHE_TAG_MASK; + U32 const tag2 = packedTag2 & ZSTD_SHORT_CACHE_TAG_MASK; + return tag1 == tag2; +} + +/* =============================================================== + * Shared internal declarations + * These prototypes may be called from sources not in lib/compress + * =============================================================== */ + +/* ZSTD_loadCEntropy() : + * dict : must point at beginning of a valid zstd dictionary. + * return : size of dictionary header (size of magic number + dict ID + entropy tables) + * assumptions : magic number supposed already checked + * and dictSize >= 8 */ +size_t ZSTD_loadCEntropy(ZSTD_compressedBlockState_t* bs, void* workspace, + const void* const dict, size_t dictSize); + +void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs); + +typedef struct { + U32 idx; /* Index in array of ZSTD_Sequence */ + U32 posInSequence; /* Position within sequence at idx */ + size_t posInSrc; /* Number of bytes given by sequences provided so far */ +} ZSTD_SequencePosition; + +/* for benchmark */ +size_t ZSTD_convertBlockSequences(ZSTD_CCtx* cctx, + const ZSTD_Sequence* const inSeqs, size_t nbSequences, + int const repcodeResolution); + +typedef struct { + size_t nbSequences; + size_t blockSize; + size_t litSize; +} BlockSummary; + +BlockSummary ZSTD_get1BlockSummary(const ZSTD_Sequence* seqs, size_t nbSeqs); + +/* ============================================================== + * Private declarations + * These prototypes shall only be called from within lib/compress + * ============================================================== */ + +/* ZSTD_getCParamsFromCCtxParams() : + * cParams are built depending on compressionLevel, src size hints, + * LDM and manually set compression parameters. + * Note: srcSizeHint == 0 means 0! + */ +ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams( + const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize, ZSTD_CParamMode_e mode); + +/*! ZSTD_initCStream_internal() : + * Private use only. Init streaming operation. + * expects params to be valid. + * must receive dict, or cdict, or none, but not both. + * @return : 0, or an error code */ +size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs, + const void* dict, size_t dictSize, + const ZSTD_CDict* cdict, + const ZSTD_CCtx_params* params, unsigned long long pledgedSrcSize); + +void ZSTD_resetSeqStore(SeqStore_t* ssPtr); + +/*! ZSTD_getCParamsFromCDict() : + * as the name implies */ +ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict); + +/* ZSTD_compressBegin_advanced_internal() : + * Private use only. To be called from zstdmt_compress.c. */ +size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx, + const void* dict, size_t dictSize, + ZSTD_dictContentType_e dictContentType, + ZSTD_dictTableLoadMethod_e dtlm, + const ZSTD_CDict* cdict, + const ZSTD_CCtx_params* params, + unsigned long long pledgedSrcSize); + +/* ZSTD_compress_advanced_internal() : + * Private use only. To be called from zstdmt_compress.c. */ +size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict,size_t dictSize, + const ZSTD_CCtx_params* params); + + +/* ZSTD_writeLastEmptyBlock() : + * output an empty Block with end-of-frame mark to complete a frame + * @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h)) + * or an error code if `dstCapacity` is too small ( 1 */ +U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat); + +/** ZSTD_CCtx_trace() : + * Trace the end of a compression call. + */ +void ZSTD_CCtx_trace(ZSTD_CCtx* cctx, size_t extraCSize); + +/* Returns 1 if an external sequence producer is registered, otherwise returns 0. */ +MEM_STATIC int ZSTD_hasExtSeqProd(const ZSTD_CCtx_params* params) { + return params->extSeqProdFunc != NULL; +} + +/* =============================================================== + * Deprecated definitions that are still used internally to avoid + * deprecation warnings. These functions are exactly equivalent to + * their public variants, but avoid the deprecation warnings. + * =============================================================== */ + +size_t ZSTD_compressBegin_usingCDict_deprecated(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict); + +size_t ZSTD_compressContinue_public(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize); + +size_t ZSTD_compressEnd_public(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize); + +size_t ZSTD_compressBlock_deprecated(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); + + +#endif /* ZSTD_COMPRESS_H */ diff --git a/src/third-party/zstd/compress/zstd_compress_literals.c b/src/third-party/zstd/compress/zstd_compress_literals.c new file mode 100644 index 0000000000000..06036de5da59a --- /dev/null +++ b/src/third-party/zstd/compress/zstd_compress_literals.c @@ -0,0 +1,235 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + /*-************************************* + * Dependencies + ***************************************/ +#include "zstd_compress_literals.h" + + +/* ************************************************************** +* Debug Traces +****************************************************************/ +#if DEBUGLEVEL >= 2 + +static size_t showHexa(const void* src, size_t srcSize) +{ + const BYTE* const ip = (const BYTE*)src; + size_t u; + for (u=0; u31) + (srcSize>4095); + + DEBUGLOG(5, "ZSTD_noCompressLiterals: srcSize=%zu, dstCapacity=%zu", srcSize, dstCapacity); + + RETURN_ERROR_IF(srcSize + flSize > dstCapacity, dstSize_tooSmall, ""); + + switch(flSize) + { + case 1: /* 2 - 1 - 5 */ + ostart[0] = (BYTE)((U32)set_basic + (srcSize<<3)); + break; + case 2: /* 2 - 2 - 12 */ + MEM_writeLE16(ostart, (U16)((U32)set_basic + (1<<2) + (srcSize<<4))); + break; + case 3: /* 2 - 2 - 20 */ + MEM_writeLE32(ostart, (U32)((U32)set_basic + (3<<2) + (srcSize<<4))); + break; + default: /* not necessary : flSize is {1,2,3} */ + assert(0); + } + + ZSTD_memcpy(ostart + flSize, src, srcSize); + DEBUGLOG(5, "Raw (uncompressed) literals: %u -> %u", (U32)srcSize, (U32)(srcSize + flSize)); + return srcSize + flSize; +} + +static int allBytesIdentical(const void* src, size_t srcSize) +{ + assert(srcSize >= 1); + assert(src != NULL); + { const BYTE b = ((const BYTE*)src)[0]; + size_t p; + for (p=1; p31) + (srcSize>4095); + + assert(dstCapacity >= 4); (void)dstCapacity; + assert(allBytesIdentical(src, srcSize)); + + switch(flSize) + { + case 1: /* 2 - 1 - 5 */ + ostart[0] = (BYTE)((U32)set_rle + (srcSize<<3)); + break; + case 2: /* 2 - 2 - 12 */ + MEM_writeLE16(ostart, (U16)((U32)set_rle + (1<<2) + (srcSize<<4))); + break; + case 3: /* 2 - 2 - 20 */ + MEM_writeLE32(ostart, (U32)((U32)set_rle + (3<<2) + (srcSize<<4))); + break; + default: /* not necessary : flSize is {1,2,3} */ + assert(0); + } + + ostart[flSize] = *(const BYTE*)src; + DEBUGLOG(5, "RLE : Repeated Literal (%02X: %u times) -> %u bytes encoded", ((const BYTE*)src)[0], (U32)srcSize, (U32)flSize + 1); + return flSize+1; +} + +/* ZSTD_minLiteralsToCompress() : + * returns minimal amount of literals + * for literal compression to even be attempted. + * Minimum is made tighter as compression strategy increases. + */ +static size_t +ZSTD_minLiteralsToCompress(ZSTD_strategy strategy, HUF_repeat huf_repeat) +{ + assert((int)strategy >= 0); + assert((int)strategy <= 9); + /* btultra2 : min 8 bytes; + * then 2x larger for each successive compression strategy + * max threshold 64 bytes */ + { int const shift = MIN(9-(int)strategy, 3); + size_t const mintc = (huf_repeat == HUF_repeat_valid) ? 6 : (size_t)8 << shift; + DEBUGLOG(7, "minLiteralsToCompress = %zu", mintc); + return mintc; + } +} + +size_t ZSTD_compressLiterals ( + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + void* entropyWorkspace, size_t entropyWorkspaceSize, + const ZSTD_hufCTables_t* prevHuf, + ZSTD_hufCTables_t* nextHuf, + ZSTD_strategy strategy, + int disableLiteralCompression, + int suspectUncompressible, + int bmi2) +{ + size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB); + BYTE* const ostart = (BYTE*)dst; + U32 singleStream = srcSize < 256; + SymbolEncodingType_e hType = set_compressed; + size_t cLitSize; + + DEBUGLOG(5,"ZSTD_compressLiterals (disableLiteralCompression=%i, srcSize=%u, dstCapacity=%zu)", + disableLiteralCompression, (U32)srcSize, dstCapacity); + + DEBUGLOG(6, "Completed literals listing (%zu bytes)", showHexa(src, srcSize)); + + /* Prepare nextEntropy assuming reusing the existing table */ + ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf)); + + if (disableLiteralCompression) + return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize); + + /* if too small, don't even attempt compression (speed opt) */ + if (srcSize < ZSTD_minLiteralsToCompress(strategy, prevHuf->repeatMode)) + return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize); + + RETURN_ERROR_IF(dstCapacity < lhSize+1, dstSize_tooSmall, "not enough space for compression"); + { HUF_repeat repeat = prevHuf->repeatMode; + int const flags = 0 + | (bmi2 ? HUF_flags_bmi2 : 0) + | (strategy < ZSTD_lazy && srcSize <= 1024 ? HUF_flags_preferRepeat : 0) + | (strategy >= HUF_OPTIMAL_DEPTH_THRESHOLD ? HUF_flags_optimalDepth : 0) + | (suspectUncompressible ? HUF_flags_suspectUncompressible : 0); + + typedef size_t (*huf_compress_f)(void*, size_t, const void*, size_t, unsigned, unsigned, void*, size_t, HUF_CElt*, HUF_repeat*, int); + huf_compress_f huf_compress; + if (repeat == HUF_repeat_valid && lhSize == 3) singleStream = 1; + huf_compress = singleStream ? HUF_compress1X_repeat : HUF_compress4X_repeat; + cLitSize = huf_compress(ostart+lhSize, dstCapacity-lhSize, + src, srcSize, + HUF_SYMBOLVALUE_MAX, LitHufLog, + entropyWorkspace, entropyWorkspaceSize, + (HUF_CElt*)nextHuf->CTable, + &repeat, flags); + DEBUGLOG(5, "%zu literals compressed into %zu bytes (before header)", srcSize, cLitSize); + if (repeat != HUF_repeat_none) { + /* reused the existing table */ + DEBUGLOG(5, "reusing statistics from previous huffman block"); + hType = set_repeat; + } + } + + { size_t const minGain = ZSTD_minGain(srcSize, strategy); + if ((cLitSize==0) || (cLitSize >= srcSize - minGain) || ERR_isError(cLitSize)) { + ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf)); + return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize); + } } + if (cLitSize==1) { + /* A return value of 1 signals that the alphabet consists of a single symbol. + * However, in some rare circumstances, it could be the compressed size (a single byte). + * For that outcome to have a chance to happen, it's necessary that `srcSize < 8`. + * (it's also necessary to not generate statistics). + * Therefore, in such a case, actively check that all bytes are identical. */ + if ((srcSize >= 8) || allBytesIdentical(src, srcSize)) { + ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf)); + return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize); + } } + + if (hType == set_compressed) { + /* using a newly constructed table */ + nextHuf->repeatMode = HUF_repeat_check; + } + + /* Build header */ + switch(lhSize) + { + case 3: /* 2 - 2 - 10 - 10 */ + if (!singleStream) assert(srcSize >= MIN_LITERALS_FOR_4_STREAMS); + { U32 const lhc = hType + ((U32)(!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14); + MEM_writeLE24(ostart, lhc); + break; + } + case 4: /* 2 - 2 - 14 - 14 */ + assert(srcSize >= MIN_LITERALS_FOR_4_STREAMS); + { U32 const lhc = hType + (2 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<18); + MEM_writeLE32(ostart, lhc); + break; + } + case 5: /* 2 - 2 - 18 - 18 */ + assert(srcSize >= MIN_LITERALS_FOR_4_STREAMS); + { U32 const lhc = hType + (3 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<22); + MEM_writeLE32(ostart, lhc); + ostart[4] = (BYTE)(cLitSize >> 10); + break; + } + default: /* not possible : lhSize is {3,4,5} */ + assert(0); + } + DEBUGLOG(5, "Compressed literals: %u -> %u", (U32)srcSize, (U32)(lhSize+cLitSize)); + return lhSize+cLitSize; +} diff --git a/src/third-party/zstd/compress/zstd_compress_literals.h b/src/third-party/zstd/compress/zstd_compress_literals.h new file mode 100644 index 0000000000000..b060c8ad21875 --- /dev/null +++ b/src/third-party/zstd/compress/zstd_compress_literals.h @@ -0,0 +1,39 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_COMPRESS_LITERALS_H +#define ZSTD_COMPRESS_LITERALS_H + +#include "zstd_compress_internal.h" /* ZSTD_hufCTables_t, ZSTD_minGain() */ + + +size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize); + +/* ZSTD_compressRleLiteralsBlock() : + * Conditions : + * - All bytes in @src are identical + * - dstCapacity >= 4 */ +size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize); + +/* ZSTD_compressLiterals(): + * @entropyWorkspace: must be aligned on 4-bytes boundaries + * @entropyWorkspaceSize : must be >= HUF_WORKSPACE_SIZE + * @suspectUncompressible: sampling checks, to potentially skip huffman coding + */ +size_t ZSTD_compressLiterals (void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + void* entropyWorkspace, size_t entropyWorkspaceSize, + const ZSTD_hufCTables_t* prevHuf, + ZSTD_hufCTables_t* nextHuf, + ZSTD_strategy strategy, int disableLiteralCompression, + int suspectUncompressible, + int bmi2); + +#endif /* ZSTD_COMPRESS_LITERALS_H */ diff --git a/src/third-party/zstd/compress/zstd_compress_sequences.c b/src/third-party/zstd/compress/zstd_compress_sequences.c new file mode 100644 index 0000000000000..7beb9daa60399 --- /dev/null +++ b/src/third-party/zstd/compress/zstd_compress_sequences.c @@ -0,0 +1,442 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + /*-************************************* + * Dependencies + ***************************************/ +#include "zstd_compress_sequences.h" + +/** + * -log2(x / 256) lookup table for x in [0, 256). + * If x == 0: Return 0 + * Else: Return floor(-log2(x / 256) * 256) + */ +static unsigned const kInverseProbabilityLog256[256] = { + 0, 2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162, + 1130, 1100, 1073, 1047, 1024, 1001, 980, 960, 941, 923, 906, 889, + 874, 859, 844, 830, 817, 804, 791, 779, 768, 756, 745, 734, + 724, 714, 704, 694, 685, 676, 667, 658, 650, 642, 633, 626, + 618, 610, 603, 595, 588, 581, 574, 567, 561, 554, 548, 542, + 535, 529, 523, 517, 512, 506, 500, 495, 489, 484, 478, 473, + 468, 463, 458, 453, 448, 443, 438, 434, 429, 424, 420, 415, + 411, 407, 402, 398, 394, 390, 386, 382, 377, 373, 370, 366, + 362, 358, 354, 350, 347, 343, 339, 336, 332, 329, 325, 322, + 318, 315, 311, 308, 305, 302, 298, 295, 292, 289, 286, 282, + 279, 276, 273, 270, 267, 264, 261, 258, 256, 253, 250, 247, + 244, 241, 239, 236, 233, 230, 228, 225, 222, 220, 217, 215, + 212, 209, 207, 204, 202, 199, 197, 194, 192, 190, 187, 185, + 182, 180, 178, 175, 173, 171, 168, 166, 164, 162, 159, 157, + 155, 153, 151, 149, 146, 144, 142, 140, 138, 136, 134, 132, + 130, 128, 126, 123, 121, 119, 117, 115, 114, 112, 110, 108, + 106, 104, 102, 100, 98, 96, 94, 93, 91, 89, 87, 85, + 83, 82, 80, 78, 76, 74, 73, 71, 69, 67, 66, 64, + 62, 61, 59, 57, 55, 54, 52, 50, 49, 47, 46, 44, + 42, 41, 39, 37, 36, 34, 33, 31, 30, 28, 26, 25, + 23, 22, 20, 19, 17, 16, 14, 13, 11, 10, 8, 7, + 5, 4, 2, 1, +}; + +static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) { + void const* ptr = ctable; + U16 const* u16ptr = (U16 const*)ptr; + U32 const maxSymbolValue = MEM_read16(u16ptr + 1); + return maxSymbolValue; +} + +/** + * Returns true if we should use ncount=-1 else we should + * use ncount=1 for low probability symbols instead. + */ +static unsigned ZSTD_useLowProbCount(size_t const nbSeq) +{ + /* Heuristic: This should cover most blocks <= 16K and + * start to fade out after 16K to about 32K depending on + * compressibility. + */ + return nbSeq >= 2048; +} + +/** + * Returns the cost in bytes of encoding the normalized count header. + * Returns an error if any of the helper functions return an error. + */ +static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max, + size_t const nbSeq, unsigned const FSELog) +{ + BYTE wksp[FSE_NCOUNTBOUND]; + S16 norm[MaxSeq + 1]; + const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max); + FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max, ZSTD_useLowProbCount(nbSeq)), ""); + return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog); +} + +/** + * Returns the cost in bits of encoding the distribution described by count + * using the entropy bound. + */ +static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total) +{ + unsigned cost = 0; + unsigned s; + + assert(total > 0); + for (s = 0; s <= max; ++s) { + unsigned norm = (unsigned)((256 * count[s]) / total); + if (count[s] != 0 && norm == 0) + norm = 1; + assert(count[s] < total); + cost += count[s] * kInverseProbabilityLog256[norm]; + } + return cost >> 8; +} + +/** + * Returns the cost in bits of encoding the distribution in count using ctable. + * Returns an error if ctable cannot represent all the symbols in count. + */ +size_t ZSTD_fseBitCost( + FSE_CTable const* ctable, + unsigned const* count, + unsigned const max) +{ + unsigned const kAccuracyLog = 8; + size_t cost = 0; + unsigned s; + FSE_CState_t cstate; + FSE_initCState(&cstate, ctable); + if (ZSTD_getFSEMaxSymbolValue(ctable) < max) { + DEBUGLOG(5, "Repeat FSE_CTable has maxSymbolValue %u < %u", + ZSTD_getFSEMaxSymbolValue(ctable), max); + return ERROR(GENERIC); + } + for (s = 0; s <= max; ++s) { + unsigned const tableLog = cstate.stateLog; + unsigned const badCost = (tableLog + 1) << kAccuracyLog; + unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog); + if (count[s] == 0) + continue; + if (bitCost >= badCost) { + DEBUGLOG(5, "Repeat FSE_CTable has Prob[%u] == 0", s); + return ERROR(GENERIC); + } + cost += (size_t)count[s] * bitCost; + } + return cost >> kAccuracyLog; +} + +/** + * Returns the cost in bits of encoding the distribution in count using the + * table described by norm. The max symbol support by norm is assumed >= max. + * norm must be valid for every symbol with non-zero probability in count. + */ +size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog, + unsigned const* count, unsigned const max) +{ + unsigned const shift = 8 - accuracyLog; + size_t cost = 0; + unsigned s; + assert(accuracyLog <= 8); + for (s = 0; s <= max; ++s) { + unsigned const normAcc = (norm[s] != -1) ? (unsigned)norm[s] : 1; + unsigned const norm256 = normAcc << shift; + assert(norm256 > 0); + assert(norm256 < 256); + cost += count[s] * kInverseProbabilityLog256[norm256]; + } + return cost >> 8; +} + +SymbolEncodingType_e +ZSTD_selectEncodingType( + FSE_repeat* repeatMode, unsigned const* count, unsigned const max, + size_t const mostFrequent, size_t nbSeq, unsigned const FSELog, + FSE_CTable const* prevCTable, + short const* defaultNorm, U32 defaultNormLog, + ZSTD_DefaultPolicy_e const isDefaultAllowed, + ZSTD_strategy const strategy) +{ + ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0); + if (mostFrequent == nbSeq) { + *repeatMode = FSE_repeat_none; + if (isDefaultAllowed && nbSeq <= 2) { + /* Prefer set_basic over set_rle when there are 2 or fewer symbols, + * since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol. + * If basic encoding isn't possible, always choose RLE. + */ + DEBUGLOG(5, "Selected set_basic"); + return set_basic; + } + DEBUGLOG(5, "Selected set_rle"); + return set_rle; + } + if (strategy < ZSTD_lazy) { + if (isDefaultAllowed) { + size_t const staticFse_nbSeq_max = 1000; + size_t const mult = 10 - strategy; + size_t const baseLog = 3; + size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog; /* 28-36 for offset, 56-72 for lengths */ + assert(defaultNormLog >= 5 && defaultNormLog <= 6); /* xx_DEFAULTNORMLOG */ + assert(mult <= 9 && mult >= 7); + if ( (*repeatMode == FSE_repeat_valid) + && (nbSeq < staticFse_nbSeq_max) ) { + DEBUGLOG(5, "Selected set_repeat"); + return set_repeat; + } + if ( (nbSeq < dynamicFse_nbSeq_min) + || (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) { + DEBUGLOG(5, "Selected set_basic"); + /* The format allows default tables to be repeated, but it isn't useful. + * When using simple heuristics to select encoding type, we don't want + * to confuse these tables with dictionaries. When running more careful + * analysis, we don't need to waste time checking both repeating tables + * and default tables. + */ + *repeatMode = FSE_repeat_none; + return set_basic; + } + } + } else { + size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC); + size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC); + size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog); + size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq); + + if (isDefaultAllowed) { + assert(!ZSTD_isError(basicCost)); + assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost))); + } + assert(!ZSTD_isError(NCountCost)); + assert(compressedCost < ERROR(maxCode)); + DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u", + (unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost); + if (basicCost <= repeatCost && basicCost <= compressedCost) { + DEBUGLOG(5, "Selected set_basic"); + assert(isDefaultAllowed); + *repeatMode = FSE_repeat_none; + return set_basic; + } + if (repeatCost <= compressedCost) { + DEBUGLOG(5, "Selected set_repeat"); + assert(!ZSTD_isError(repeatCost)); + return set_repeat; + } + assert(compressedCost < basicCost && compressedCost < repeatCost); + } + DEBUGLOG(5, "Selected set_compressed"); + *repeatMode = FSE_repeat_check; + return set_compressed; +} + +typedef struct { + S16 norm[MaxSeq + 1]; + U32 wksp[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(MaxSeq, MaxFSELog)]; +} ZSTD_BuildCTableWksp; + +size_t +ZSTD_buildCTable(void* dst, size_t dstCapacity, + FSE_CTable* nextCTable, U32 FSELog, SymbolEncodingType_e type, + unsigned* count, U32 max, + const BYTE* codeTable, size_t nbSeq, + const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax, + const FSE_CTable* prevCTable, size_t prevCTableSize, + void* entropyWorkspace, size_t entropyWorkspaceSize) +{ + BYTE* op = (BYTE*)dst; + const BYTE* const oend = op + dstCapacity; + DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity); + + switch (type) { + case set_rle: + FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max), ""); + RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall, "not enough space"); + *op = codeTable[0]; + return 1; + case set_repeat: + ZSTD_memcpy(nextCTable, prevCTable, prevCTableSize); + return 0; + case set_basic: + FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize), ""); /* note : could be pre-calculated */ + return 0; + case set_compressed: { + ZSTD_BuildCTableWksp* wksp = (ZSTD_BuildCTableWksp*)entropyWorkspace; + size_t nbSeq_1 = nbSeq; + const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max); + if (count[codeTable[nbSeq-1]] > 1) { + count[codeTable[nbSeq-1]]--; + nbSeq_1--; + } + assert(nbSeq_1 > 1); + assert(entropyWorkspaceSize >= sizeof(ZSTD_BuildCTableWksp)); + (void)entropyWorkspaceSize; + FORWARD_IF_ERROR(FSE_normalizeCount(wksp->norm, tableLog, count, nbSeq_1, max, ZSTD_useLowProbCount(nbSeq_1)), "FSE_normalizeCount failed"); + assert(oend >= op); + { size_t const NCountSize = FSE_writeNCount(op, (size_t)(oend - op), wksp->norm, max, tableLog); /* overflow protected */ + FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed"); + FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, wksp->norm, max, tableLog, wksp->wksp, sizeof(wksp->wksp)), "FSE_buildCTable_wksp failed"); + return NCountSize; + } + } + default: assert(0); RETURN_ERROR(GENERIC, "impossible to reach"); + } +} + +FORCE_INLINE_TEMPLATE size_t +ZSTD_encodeSequences_body( + void* dst, size_t dstCapacity, + FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, + FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, + FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, + SeqDef const* sequences, size_t nbSeq, int longOffsets) +{ + BIT_CStream_t blockStream; + FSE_CState_t stateMatchLength; + FSE_CState_t stateOffsetBits; + FSE_CState_t stateLitLength; + + RETURN_ERROR_IF( + ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)), + dstSize_tooSmall, "not enough space remaining"); + DEBUGLOG(6, "available space for bitstream : %i (dstCapacity=%u)", + (int)(blockStream.endPtr - blockStream.startPtr), + (unsigned)dstCapacity); + + /* first symbols */ + FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]); + FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]); + FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]); + BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]); + if (MEM_32bits()) BIT_flushBits(&blockStream); + BIT_addBits(&blockStream, sequences[nbSeq-1].mlBase, ML_bits[mlCodeTable[nbSeq-1]]); + if (MEM_32bits()) BIT_flushBits(&blockStream); + if (longOffsets) { + U32 const ofBits = ofCodeTable[nbSeq-1]; + unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1); + if (extraBits) { + BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, extraBits); + BIT_flushBits(&blockStream); + } + BIT_addBits(&blockStream, sequences[nbSeq-1].offBase >> extraBits, + ofBits - extraBits); + } else { + BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, ofCodeTable[nbSeq-1]); + } + BIT_flushBits(&blockStream); + + { size_t n; + for (n=nbSeq-2 ; n= 64-7-(LLFSELog+MLFSELog+OffFSELog))) + BIT_flushBits(&blockStream); /* (7)*/ + BIT_addBits(&blockStream, sequences[n].litLength, llBits); + if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream); + BIT_addBits(&blockStream, sequences[n].mlBase, mlBits); + if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream); + if (longOffsets) { + unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1); + if (extraBits) { + BIT_addBits(&blockStream, sequences[n].offBase, extraBits); + BIT_flushBits(&blockStream); /* (7)*/ + } + BIT_addBits(&blockStream, sequences[n].offBase >> extraBits, + ofBits - extraBits); /* 31 */ + } else { + BIT_addBits(&blockStream, sequences[n].offBase, ofBits); /* 31 */ + } + BIT_flushBits(&blockStream); /* (7)*/ + DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr)); + } } + + DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog); + FSE_flushCState(&blockStream, &stateMatchLength); + DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog); + FSE_flushCState(&blockStream, &stateOffsetBits); + DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog); + FSE_flushCState(&blockStream, &stateLitLength); + + { size_t const streamSize = BIT_closeCStream(&blockStream); + RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space"); + return streamSize; + } +} + +static size_t +ZSTD_encodeSequences_default( + void* dst, size_t dstCapacity, + FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, + FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, + FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, + SeqDef const* sequences, size_t nbSeq, int longOffsets) +{ + return ZSTD_encodeSequences_body(dst, dstCapacity, + CTable_MatchLength, mlCodeTable, + CTable_OffsetBits, ofCodeTable, + CTable_LitLength, llCodeTable, + sequences, nbSeq, longOffsets); +} + + +#if DYNAMIC_BMI2 + +static BMI2_TARGET_ATTRIBUTE size_t +ZSTD_encodeSequences_bmi2( + void* dst, size_t dstCapacity, + FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, + FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, + FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, + SeqDef const* sequences, size_t nbSeq, int longOffsets) +{ + return ZSTD_encodeSequences_body(dst, dstCapacity, + CTable_MatchLength, mlCodeTable, + CTable_OffsetBits, ofCodeTable, + CTable_LitLength, llCodeTable, + sequences, nbSeq, longOffsets); +} + +#endif + +size_t ZSTD_encodeSequences( + void* dst, size_t dstCapacity, + FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, + FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, + FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, + SeqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2) +{ + DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity); +#if DYNAMIC_BMI2 + if (bmi2) { + return ZSTD_encodeSequences_bmi2(dst, dstCapacity, + CTable_MatchLength, mlCodeTable, + CTable_OffsetBits, ofCodeTable, + CTable_LitLength, llCodeTable, + sequences, nbSeq, longOffsets); + } +#endif + (void)bmi2; + return ZSTD_encodeSequences_default(dst, dstCapacity, + CTable_MatchLength, mlCodeTable, + CTable_OffsetBits, ofCodeTable, + CTable_LitLength, llCodeTable, + sequences, nbSeq, longOffsets); +} diff --git a/src/third-party/zstd/compress/zstd_compress_sequences.h b/src/third-party/zstd/compress/zstd_compress_sequences.h new file mode 100644 index 0000000000000..4be8e91f24845 --- /dev/null +++ b/src/third-party/zstd/compress/zstd_compress_sequences.h @@ -0,0 +1,55 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_COMPRESS_SEQUENCES_H +#define ZSTD_COMPRESS_SEQUENCES_H + +#include "zstd_compress_internal.h" /* SeqDef */ +#include "../common/fse.h" /* FSE_repeat, FSE_CTable */ +#include "../common/zstd_internal.h" /* SymbolEncodingType_e, ZSTD_strategy */ + +typedef enum { + ZSTD_defaultDisallowed = 0, + ZSTD_defaultAllowed = 1 +} ZSTD_DefaultPolicy_e; + +SymbolEncodingType_e +ZSTD_selectEncodingType( + FSE_repeat* repeatMode, unsigned const* count, unsigned const max, + size_t const mostFrequent, size_t nbSeq, unsigned const FSELog, + FSE_CTable const* prevCTable, + short const* defaultNorm, U32 defaultNormLog, + ZSTD_DefaultPolicy_e const isDefaultAllowed, + ZSTD_strategy const strategy); + +size_t +ZSTD_buildCTable(void* dst, size_t dstCapacity, + FSE_CTable* nextCTable, U32 FSELog, SymbolEncodingType_e type, + unsigned* count, U32 max, + const BYTE* codeTable, size_t nbSeq, + const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax, + const FSE_CTable* prevCTable, size_t prevCTableSize, + void* entropyWorkspace, size_t entropyWorkspaceSize); + +size_t ZSTD_encodeSequences( + void* dst, size_t dstCapacity, + FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, + FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, + FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, + SeqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2); + +size_t ZSTD_fseBitCost( + FSE_CTable const* ctable, + unsigned const* count, + unsigned const max); + +size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog, + unsigned const* count, unsigned const max); +#endif /* ZSTD_COMPRESS_SEQUENCES_H */ diff --git a/src/third-party/zstd/compress/zstd_compress_superblock.c b/src/third-party/zstd/compress/zstd_compress_superblock.c new file mode 100644 index 0000000000000..6f57345be62c3 --- /dev/null +++ b/src/third-party/zstd/compress/zstd_compress_superblock.c @@ -0,0 +1,688 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + /*-************************************* + * Dependencies + ***************************************/ +#include "zstd_compress_superblock.h" + +#include "../common/zstd_internal.h" /* ZSTD_getSequenceLength */ +#include "hist.h" /* HIST_countFast_wksp */ +#include "zstd_compress_internal.h" /* ZSTD_[huf|fse|entropy]CTablesMetadata_t */ +#include "zstd_compress_sequences.h" +#include "zstd_compress_literals.h" + +/** ZSTD_compressSubBlock_literal() : + * Compresses literals section for a sub-block. + * When we have to write the Huffman table we will sometimes choose a header + * size larger than necessary. This is because we have to pick the header size + * before we know the table size + compressed size, so we have a bound on the + * table size. If we guessed incorrectly, we fall back to uncompressed literals. + * + * We write the header when writeEntropy=1 and set entropyWritten=1 when we succeeded + * in writing the header, otherwise it is set to 0. + * + * hufMetadata->hType has literals block type info. + * If it is set_basic, all sub-blocks literals section will be Raw_Literals_Block. + * If it is set_rle, all sub-blocks literals section will be RLE_Literals_Block. + * If it is set_compressed, first sub-block's literals section will be Compressed_Literals_Block + * If it is set_compressed, first sub-block's literals section will be Treeless_Literals_Block + * and the following sub-blocks' literals sections will be Treeless_Literals_Block. + * @return : compressed size of literals section of a sub-block + * Or 0 if unable to compress. + * Or error code */ +static size_t +ZSTD_compressSubBlock_literal(const HUF_CElt* hufTable, + const ZSTD_hufCTablesMetadata_t* hufMetadata, + const BYTE* literals, size_t litSize, + void* dst, size_t dstSize, + const int bmi2, int writeEntropy, int* entropyWritten) +{ + size_t const header = writeEntropy ? 200 : 0; + size_t const lhSize = 3 + (litSize >= (1 KB - header)) + (litSize >= (16 KB - header)); + BYTE* const ostart = (BYTE*)dst; + BYTE* const oend = ostart + dstSize; + BYTE* op = ostart + lhSize; + U32 const singleStream = lhSize == 3; + SymbolEncodingType_e hType = writeEntropy ? hufMetadata->hType : set_repeat; + size_t cLitSize = 0; + + DEBUGLOG(5, "ZSTD_compressSubBlock_literal (litSize=%zu, lhSize=%zu, writeEntropy=%d)", litSize, lhSize, writeEntropy); + + *entropyWritten = 0; + if (litSize == 0 || hufMetadata->hType == set_basic) { + DEBUGLOG(5, "ZSTD_compressSubBlock_literal using raw literal"); + return ZSTD_noCompressLiterals(dst, dstSize, literals, litSize); + } else if (hufMetadata->hType == set_rle) { + DEBUGLOG(5, "ZSTD_compressSubBlock_literal using rle literal"); + return ZSTD_compressRleLiteralsBlock(dst, dstSize, literals, litSize); + } + + assert(litSize > 0); + assert(hufMetadata->hType == set_compressed || hufMetadata->hType == set_repeat); + + if (writeEntropy && hufMetadata->hType == set_compressed) { + ZSTD_memcpy(op, hufMetadata->hufDesBuffer, hufMetadata->hufDesSize); + op += hufMetadata->hufDesSize; + cLitSize += hufMetadata->hufDesSize; + DEBUGLOG(5, "ZSTD_compressSubBlock_literal (hSize=%zu)", hufMetadata->hufDesSize); + } + + { int const flags = bmi2 ? HUF_flags_bmi2 : 0; + const size_t cSize = singleStream ? HUF_compress1X_usingCTable(op, (size_t)(oend-op), literals, litSize, hufTable, flags) + : HUF_compress4X_usingCTable(op, (size_t)(oend-op), literals, litSize, hufTable, flags); + op += cSize; + cLitSize += cSize; + if (cSize == 0 || ERR_isError(cSize)) { + DEBUGLOG(5, "Failed to write entropy tables %s", ZSTD_getErrorName(cSize)); + return 0; + } + /* If we expand and we aren't writing a header then emit uncompressed */ + if (!writeEntropy && cLitSize >= litSize) { + DEBUGLOG(5, "ZSTD_compressSubBlock_literal using raw literal because uncompressible"); + return ZSTD_noCompressLiterals(dst, dstSize, literals, litSize); + } + /* If we are writing headers then allow expansion that doesn't change our header size. */ + if (lhSize < (size_t)(3 + (cLitSize >= 1 KB) + (cLitSize >= 16 KB))) { + assert(cLitSize > litSize); + DEBUGLOG(5, "Literals expanded beyond allowed header size"); + return ZSTD_noCompressLiterals(dst, dstSize, literals, litSize); + } + DEBUGLOG(5, "ZSTD_compressSubBlock_literal (cSize=%zu)", cSize); + } + + /* Build header */ + switch(lhSize) + { + case 3: /* 2 - 2 - 10 - 10 */ + { U32 const lhc = hType + ((U32)(!singleStream) << 2) + ((U32)litSize<<4) + ((U32)cLitSize<<14); + MEM_writeLE24(ostart, lhc); + break; + } + case 4: /* 2 - 2 - 14 - 14 */ + { U32 const lhc = hType + (2 << 2) + ((U32)litSize<<4) + ((U32)cLitSize<<18); + MEM_writeLE32(ostart, lhc); + break; + } + case 5: /* 2 - 2 - 18 - 18 */ + { U32 const lhc = hType + (3 << 2) + ((U32)litSize<<4) + ((U32)cLitSize<<22); + MEM_writeLE32(ostart, lhc); + ostart[4] = (BYTE)(cLitSize >> 10); + break; + } + default: /* not possible : lhSize is {3,4,5} */ + assert(0); + } + *entropyWritten = 1; + DEBUGLOG(5, "Compressed literals: %u -> %u", (U32)litSize, (U32)(op-ostart)); + return (size_t)(op-ostart); +} + +static size_t +ZSTD_seqDecompressedSize(SeqStore_t const* seqStore, + const SeqDef* sequences, size_t nbSeqs, + size_t litSize, int lastSubBlock) +{ + size_t matchLengthSum = 0; + size_t litLengthSum = 0; + size_t n; + for (n=0; nllType, fseMetadata->ofType, and fseMetadata->mlType have + * symbol compression modes for the super-block. + * The first successfully compressed block will have these in its header. + * We set entropyWritten=1 when we succeed in compressing the sequences. + * The following sub-blocks will always have repeat mode. + * @return : compressed size of sequences section of a sub-block + * Or 0 if it is unable to compress + * Or error code. */ +static size_t +ZSTD_compressSubBlock_sequences(const ZSTD_fseCTables_t* fseTables, + const ZSTD_fseCTablesMetadata_t* fseMetadata, + const SeqDef* sequences, size_t nbSeq, + const BYTE* llCode, const BYTE* mlCode, const BYTE* ofCode, + const ZSTD_CCtx_params* cctxParams, + void* dst, size_t dstCapacity, + const int bmi2, int writeEntropy, int* entropyWritten) +{ + const int longOffsets = cctxParams->cParams.windowLog > STREAM_ACCUMULATOR_MIN; + BYTE* const ostart = (BYTE*)dst; + BYTE* const oend = ostart + dstCapacity; + BYTE* op = ostart; + BYTE* seqHead; + + DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (nbSeq=%zu, writeEntropy=%d, longOffsets=%d)", nbSeq, writeEntropy, longOffsets); + + *entropyWritten = 0; + /* Sequences Header */ + RETURN_ERROR_IF((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead*/, + dstSize_tooSmall, ""); + if (nbSeq < 128) + *op++ = (BYTE)nbSeq; + else if (nbSeq < LONGNBSEQ) + op[0] = (BYTE)((nbSeq>>8) + 0x80), op[1] = (BYTE)nbSeq, op+=2; + else + op[0]=0xFF, MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)), op+=3; + if (nbSeq==0) { + return (size_t)(op - ostart); + } + + /* seqHead : flags for FSE encoding type */ + seqHead = op++; + + DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (seqHeadSize=%u)", (unsigned)(op-ostart)); + + if (writeEntropy) { + const U32 LLtype = fseMetadata->llType; + const U32 Offtype = fseMetadata->ofType; + const U32 MLtype = fseMetadata->mlType; + DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (fseTablesSize=%zu)", fseMetadata->fseTablesSize); + *seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2)); + ZSTD_memcpy(op, fseMetadata->fseTablesBuffer, fseMetadata->fseTablesSize); + op += fseMetadata->fseTablesSize; + } else { + const U32 repeat = set_repeat; + *seqHead = (BYTE)((repeat<<6) + (repeat<<4) + (repeat<<2)); + } + + { size_t const bitstreamSize = ZSTD_encodeSequences( + op, (size_t)(oend - op), + fseTables->matchlengthCTable, mlCode, + fseTables->offcodeCTable, ofCode, + fseTables->litlengthCTable, llCode, + sequences, nbSeq, + longOffsets, bmi2); + FORWARD_IF_ERROR(bitstreamSize, "ZSTD_encodeSequences failed"); + op += bitstreamSize; + /* zstd versions <= 1.3.4 mistakenly report corruption when + * FSE_readNCount() receives a buffer < 4 bytes. + * Fixed by https://github.com/facebook/zstd/pull/1146. + * This can happen when the last set_compressed table present is 2 + * bytes and the bitstream is only one byte. + * In this exceedingly rare case, we will simply emit an uncompressed + * block, since it isn't worth optimizing. + */ +#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION + if (writeEntropy && fseMetadata->lastCountSize && fseMetadata->lastCountSize + bitstreamSize < 4) { + /* NCountSize >= 2 && bitstreamSize > 0 ==> lastCountSize == 3 */ + assert(fseMetadata->lastCountSize + bitstreamSize == 3); + DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.3.4 by " + "emitting an uncompressed block."); + return 0; + } +#endif + DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (bitstreamSize=%zu)", bitstreamSize); + } + + /* zstd versions <= 1.4.0 mistakenly report error when + * sequences section body size is less than 3 bytes. + * Fixed by https://github.com/facebook/zstd/pull/1664. + * This can happen when the previous sequences section block is compressed + * with rle mode and the current block's sequences section is compressed + * with repeat mode where sequences section body size can be 1 byte. + */ +#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION + if (op-seqHead < 4) { + DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.4.0 by emitting " + "an uncompressed block when sequences are < 4 bytes"); + return 0; + } +#endif + + *entropyWritten = 1; + return (size_t)(op - ostart); +} + +/** ZSTD_compressSubBlock() : + * Compresses a single sub-block. + * @return : compressed size of the sub-block + * Or 0 if it failed to compress. */ +static size_t ZSTD_compressSubBlock(const ZSTD_entropyCTables_t* entropy, + const ZSTD_entropyCTablesMetadata_t* entropyMetadata, + const SeqDef* sequences, size_t nbSeq, + const BYTE* literals, size_t litSize, + const BYTE* llCode, const BYTE* mlCode, const BYTE* ofCode, + const ZSTD_CCtx_params* cctxParams, + void* dst, size_t dstCapacity, + const int bmi2, + int writeLitEntropy, int writeSeqEntropy, + int* litEntropyWritten, int* seqEntropyWritten, + U32 lastBlock) +{ + BYTE* const ostart = (BYTE*)dst; + BYTE* const oend = ostart + dstCapacity; + BYTE* op = ostart + ZSTD_blockHeaderSize; + DEBUGLOG(5, "ZSTD_compressSubBlock (litSize=%zu, nbSeq=%zu, writeLitEntropy=%d, writeSeqEntropy=%d, lastBlock=%d)", + litSize, nbSeq, writeLitEntropy, writeSeqEntropy, lastBlock); + { size_t cLitSize = ZSTD_compressSubBlock_literal((const HUF_CElt*)entropy->huf.CTable, + &entropyMetadata->hufMetadata, literals, litSize, + op, (size_t)(oend-op), + bmi2, writeLitEntropy, litEntropyWritten); + FORWARD_IF_ERROR(cLitSize, "ZSTD_compressSubBlock_literal failed"); + if (cLitSize == 0) return 0; + op += cLitSize; + } + { size_t cSeqSize = ZSTD_compressSubBlock_sequences(&entropy->fse, + &entropyMetadata->fseMetadata, + sequences, nbSeq, + llCode, mlCode, ofCode, + cctxParams, + op, (size_t)(oend-op), + bmi2, writeSeqEntropy, seqEntropyWritten); + FORWARD_IF_ERROR(cSeqSize, "ZSTD_compressSubBlock_sequences failed"); + if (cSeqSize == 0) return 0; + op += cSeqSize; + } + /* Write block header */ + { size_t cSize = (size_t)(op-ostart) - ZSTD_blockHeaderSize; + U32 const cBlockHeader24 = lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3); + MEM_writeLE24(ostart, cBlockHeader24); + } + return (size_t)(op-ostart); +} + +static size_t ZSTD_estimateSubBlockSize_literal(const BYTE* literals, size_t litSize, + const ZSTD_hufCTables_t* huf, + const ZSTD_hufCTablesMetadata_t* hufMetadata, + void* workspace, size_t wkspSize, + int writeEntropy) +{ + unsigned* const countWksp = (unsigned*)workspace; + unsigned maxSymbolValue = 255; + size_t literalSectionHeaderSize = 3; /* Use hard coded size of 3 bytes */ + + if (hufMetadata->hType == set_basic) return litSize; + else if (hufMetadata->hType == set_rle) return 1; + else if (hufMetadata->hType == set_compressed || hufMetadata->hType == set_repeat) { + size_t const largest = HIST_count_wksp (countWksp, &maxSymbolValue, (const BYTE*)literals, litSize, workspace, wkspSize); + if (ZSTD_isError(largest)) return litSize; + { size_t cLitSizeEstimate = HUF_estimateCompressedSize((const HUF_CElt*)huf->CTable, countWksp, maxSymbolValue); + if (writeEntropy) cLitSizeEstimate += hufMetadata->hufDesSize; + return cLitSizeEstimate + literalSectionHeaderSize; + } } + assert(0); /* impossible */ + return 0; +} + +static size_t ZSTD_estimateSubBlockSize_symbolType(SymbolEncodingType_e type, + const BYTE* codeTable, unsigned maxCode, + size_t nbSeq, const FSE_CTable* fseCTable, + const U8* additionalBits, + short const* defaultNorm, U32 defaultNormLog, U32 defaultMax, + void* workspace, size_t wkspSize) +{ + unsigned* const countWksp = (unsigned*)workspace; + const BYTE* ctp = codeTable; + const BYTE* const ctStart = ctp; + const BYTE* const ctEnd = ctStart + nbSeq; + size_t cSymbolTypeSizeEstimateInBits = 0; + unsigned max = maxCode; + + HIST_countFast_wksp(countWksp, &max, codeTable, nbSeq, workspace, wkspSize); /* can't fail */ + if (type == set_basic) { + /* We selected this encoding type, so it must be valid. */ + assert(max <= defaultMax); + cSymbolTypeSizeEstimateInBits = max <= defaultMax + ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, countWksp, max) + : ERROR(GENERIC); + } else if (type == set_rle) { + cSymbolTypeSizeEstimateInBits = 0; + } else if (type == set_compressed || type == set_repeat) { + cSymbolTypeSizeEstimateInBits = ZSTD_fseBitCost(fseCTable, countWksp, max); + } + if (ZSTD_isError(cSymbolTypeSizeEstimateInBits)) return nbSeq * 10; + while (ctp < ctEnd) { + if (additionalBits) cSymbolTypeSizeEstimateInBits += additionalBits[*ctp]; + else cSymbolTypeSizeEstimateInBits += *ctp; /* for offset, offset code is also the number of additional bits */ + ctp++; + } + return cSymbolTypeSizeEstimateInBits / 8; +} + +static size_t ZSTD_estimateSubBlockSize_sequences(const BYTE* ofCodeTable, + const BYTE* llCodeTable, + const BYTE* mlCodeTable, + size_t nbSeq, + const ZSTD_fseCTables_t* fseTables, + const ZSTD_fseCTablesMetadata_t* fseMetadata, + void* workspace, size_t wkspSize, + int writeEntropy) +{ + size_t const sequencesSectionHeaderSize = 3; /* Use hard coded size of 3 bytes */ + size_t cSeqSizeEstimate = 0; + if (nbSeq == 0) return sequencesSectionHeaderSize; + cSeqSizeEstimate += ZSTD_estimateSubBlockSize_symbolType(fseMetadata->ofType, ofCodeTable, MaxOff, + nbSeq, fseTables->offcodeCTable, NULL, + OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff, + workspace, wkspSize); + cSeqSizeEstimate += ZSTD_estimateSubBlockSize_symbolType(fseMetadata->llType, llCodeTable, MaxLL, + nbSeq, fseTables->litlengthCTable, LL_bits, + LL_defaultNorm, LL_defaultNormLog, MaxLL, + workspace, wkspSize); + cSeqSizeEstimate += ZSTD_estimateSubBlockSize_symbolType(fseMetadata->mlType, mlCodeTable, MaxML, + nbSeq, fseTables->matchlengthCTable, ML_bits, + ML_defaultNorm, ML_defaultNormLog, MaxML, + workspace, wkspSize); + if (writeEntropy) cSeqSizeEstimate += fseMetadata->fseTablesSize; + return cSeqSizeEstimate + sequencesSectionHeaderSize; +} + +typedef struct { + size_t estLitSize; + size_t estBlockSize; +} EstimatedBlockSize; +static EstimatedBlockSize ZSTD_estimateSubBlockSize(const BYTE* literals, size_t litSize, + const BYTE* ofCodeTable, + const BYTE* llCodeTable, + const BYTE* mlCodeTable, + size_t nbSeq, + const ZSTD_entropyCTables_t* entropy, + const ZSTD_entropyCTablesMetadata_t* entropyMetadata, + void* workspace, size_t wkspSize, + int writeLitEntropy, int writeSeqEntropy) +{ + EstimatedBlockSize ebs; + ebs.estLitSize = ZSTD_estimateSubBlockSize_literal(literals, litSize, + &entropy->huf, &entropyMetadata->hufMetadata, + workspace, wkspSize, writeLitEntropy); + ebs.estBlockSize = ZSTD_estimateSubBlockSize_sequences(ofCodeTable, llCodeTable, mlCodeTable, + nbSeq, &entropy->fse, &entropyMetadata->fseMetadata, + workspace, wkspSize, writeSeqEntropy); + ebs.estBlockSize += ebs.estLitSize + ZSTD_blockHeaderSize; + return ebs; +} + +static int ZSTD_needSequenceEntropyTables(ZSTD_fseCTablesMetadata_t const* fseMetadata) +{ + if (fseMetadata->llType == set_compressed || fseMetadata->llType == set_rle) + return 1; + if (fseMetadata->mlType == set_compressed || fseMetadata->mlType == set_rle) + return 1; + if (fseMetadata->ofType == set_compressed || fseMetadata->ofType == set_rle) + return 1; + return 0; +} + +static size_t countLiterals(SeqStore_t const* seqStore, const SeqDef* sp, size_t seqCount) +{ + size_t n, total = 0; + assert(sp != NULL); + for (n=0; n %zu bytes", seqCount, (const void*)sp, total); + return total; +} + +#define BYTESCALE 256 + +static size_t sizeBlockSequences(const SeqDef* sp, size_t nbSeqs, + size_t targetBudget, size_t avgLitCost, size_t avgSeqCost, + int firstSubBlock) +{ + size_t n, budget = 0, inSize=0; + /* entropy headers */ + size_t const headerSize = (size_t)firstSubBlock * 120 * BYTESCALE; /* generous estimate */ + assert(firstSubBlock==0 || firstSubBlock==1); + budget += headerSize; + + /* first sequence => at least one sequence*/ + budget += sp[0].litLength * avgLitCost + avgSeqCost; + if (budget > targetBudget) return 1; + inSize = sp[0].litLength + (sp[0].mlBase+MINMATCH); + + /* loop over sequences */ + for (n=1; n targetBudget) + /* though continue to expand until the sub-block is deemed compressible */ + && (budget < inSize * BYTESCALE) ) + break; + } + + return n; +} + +/** ZSTD_compressSubBlock_multi() : + * Breaks super-block into multiple sub-blocks and compresses them. + * Entropy will be written into the first block. + * The following blocks use repeat_mode to compress. + * Sub-blocks are all compressed, except the last one when beneficial. + * @return : compressed size of the super block (which features multiple ZSTD blocks) + * or 0 if it failed to compress. */ +static size_t ZSTD_compressSubBlock_multi(const SeqStore_t* seqStorePtr, + const ZSTD_compressedBlockState_t* prevCBlock, + ZSTD_compressedBlockState_t* nextCBlock, + const ZSTD_entropyCTablesMetadata_t* entropyMetadata, + const ZSTD_CCtx_params* cctxParams, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const int bmi2, U32 lastBlock, + void* workspace, size_t wkspSize) +{ + const SeqDef* const sstart = seqStorePtr->sequencesStart; + const SeqDef* const send = seqStorePtr->sequences; + const SeqDef* sp = sstart; /* tracks progresses within seqStorePtr->sequences */ + size_t const nbSeqs = (size_t)(send - sstart); + const BYTE* const lstart = seqStorePtr->litStart; + const BYTE* const lend = seqStorePtr->lit; + const BYTE* lp = lstart; + size_t const nbLiterals = (size_t)(lend - lstart); + BYTE const* ip = (BYTE const*)src; + BYTE const* const iend = ip + srcSize; + BYTE* const ostart = (BYTE*)dst; + BYTE* const oend = ostart + dstCapacity; + BYTE* op = ostart; + const BYTE* llCodePtr = seqStorePtr->llCode; + const BYTE* mlCodePtr = seqStorePtr->mlCode; + const BYTE* ofCodePtr = seqStorePtr->ofCode; + size_t const minTarget = ZSTD_TARGETCBLOCKSIZE_MIN; /* enforce minimum size, to reduce undesirable side effects */ + size_t const targetCBlockSize = MAX(minTarget, cctxParams->targetCBlockSize); + int writeLitEntropy = (entropyMetadata->hufMetadata.hType == set_compressed); + int writeSeqEntropy = 1; + + DEBUGLOG(5, "ZSTD_compressSubBlock_multi (srcSize=%u, litSize=%u, nbSeq=%u)", + (unsigned)srcSize, (unsigned)(lend-lstart), (unsigned)(send-sstart)); + + /* let's start by a general estimation for the full block */ + if (nbSeqs > 0) { + EstimatedBlockSize const ebs = + ZSTD_estimateSubBlockSize(lp, nbLiterals, + ofCodePtr, llCodePtr, mlCodePtr, nbSeqs, + &nextCBlock->entropy, entropyMetadata, + workspace, wkspSize, + writeLitEntropy, writeSeqEntropy); + /* quick estimation */ + size_t const avgLitCost = nbLiterals ? (ebs.estLitSize * BYTESCALE) / nbLiterals : BYTESCALE; + size_t const avgSeqCost = ((ebs.estBlockSize - ebs.estLitSize) * BYTESCALE) / nbSeqs; + const size_t nbSubBlocks = MAX((ebs.estBlockSize + (targetCBlockSize/2)) / targetCBlockSize, 1); + size_t n, avgBlockBudget, blockBudgetSupp=0; + avgBlockBudget = (ebs.estBlockSize * BYTESCALE) / nbSubBlocks; + DEBUGLOG(5, "estimated fullblock size=%u bytes ; avgLitCost=%.2f ; avgSeqCost=%.2f ; targetCBlockSize=%u, nbSubBlocks=%u ; avgBlockBudget=%.0f bytes", + (unsigned)ebs.estBlockSize, (double)avgLitCost/BYTESCALE, (double)avgSeqCost/BYTESCALE, + (unsigned)targetCBlockSize, (unsigned)nbSubBlocks, (double)avgBlockBudget/BYTESCALE); + /* simplification: if estimates states that the full superblock doesn't compress, just bail out immediately + * this will result in the production of a single uncompressed block covering @srcSize.*/ + if (ebs.estBlockSize > srcSize) return 0; + + /* compress and write sub-blocks */ + assert(nbSubBlocks>0); + for (n=0; n < nbSubBlocks-1; n++) { + /* determine nb of sequences for current sub-block + nbLiterals from next sequence */ + size_t const seqCount = sizeBlockSequences(sp, (size_t)(send-sp), + avgBlockBudget + blockBudgetSupp, avgLitCost, avgSeqCost, n==0); + /* if reached last sequence : break to last sub-block (simplification) */ + assert(seqCount <= (size_t)(send-sp)); + if (sp + seqCount == send) break; + assert(seqCount > 0); + /* compress sub-block */ + { int litEntropyWritten = 0; + int seqEntropyWritten = 0; + size_t litSize = countLiterals(seqStorePtr, sp, seqCount); + const size_t decompressedSize = + ZSTD_seqDecompressedSize(seqStorePtr, sp, seqCount, litSize, 0); + size_t const cSize = ZSTD_compressSubBlock(&nextCBlock->entropy, entropyMetadata, + sp, seqCount, + lp, litSize, + llCodePtr, mlCodePtr, ofCodePtr, + cctxParams, + op, (size_t)(oend-op), + bmi2, writeLitEntropy, writeSeqEntropy, + &litEntropyWritten, &seqEntropyWritten, + 0); + FORWARD_IF_ERROR(cSize, "ZSTD_compressSubBlock failed"); + + /* check compressibility, update state components */ + if (cSize > 0 && cSize < decompressedSize) { + DEBUGLOG(5, "Committed sub-block compressing %u bytes => %u bytes", + (unsigned)decompressedSize, (unsigned)cSize); + assert(ip + decompressedSize <= iend); + ip += decompressedSize; + lp += litSize; + op += cSize; + llCodePtr += seqCount; + mlCodePtr += seqCount; + ofCodePtr += seqCount; + /* Entropy only needs to be written once */ + if (litEntropyWritten) { + writeLitEntropy = 0; + } + if (seqEntropyWritten) { + writeSeqEntropy = 0; + } + sp += seqCount; + blockBudgetSupp = 0; + } } + /* otherwise : do not compress yet, coalesce current sub-block with following one */ + } + } /* if (nbSeqs > 0) */ + + /* write last block */ + DEBUGLOG(5, "Generate last sub-block: %u sequences remaining", (unsigned)(send - sp)); + { int litEntropyWritten = 0; + int seqEntropyWritten = 0; + size_t litSize = (size_t)(lend - lp); + size_t seqCount = (size_t)(send - sp); + const size_t decompressedSize = + ZSTD_seqDecompressedSize(seqStorePtr, sp, seqCount, litSize, 1); + size_t const cSize = ZSTD_compressSubBlock(&nextCBlock->entropy, entropyMetadata, + sp, seqCount, + lp, litSize, + llCodePtr, mlCodePtr, ofCodePtr, + cctxParams, + op, (size_t)(oend-op), + bmi2, writeLitEntropy, writeSeqEntropy, + &litEntropyWritten, &seqEntropyWritten, + lastBlock); + FORWARD_IF_ERROR(cSize, "ZSTD_compressSubBlock failed"); + + /* update pointers, the nb of literals borrowed from next sequence must be preserved */ + if (cSize > 0 && cSize < decompressedSize) { + DEBUGLOG(5, "Last sub-block compressed %u bytes => %u bytes", + (unsigned)decompressedSize, (unsigned)cSize); + assert(ip + decompressedSize <= iend); + ip += decompressedSize; + lp += litSize; + op += cSize; + llCodePtr += seqCount; + mlCodePtr += seqCount; + ofCodePtr += seqCount; + /* Entropy only needs to be written once */ + if (litEntropyWritten) { + writeLitEntropy = 0; + } + if (seqEntropyWritten) { + writeSeqEntropy = 0; + } + sp += seqCount; + } + } + + + if (writeLitEntropy) { + DEBUGLOG(5, "Literal entropy tables were never written"); + ZSTD_memcpy(&nextCBlock->entropy.huf, &prevCBlock->entropy.huf, sizeof(prevCBlock->entropy.huf)); + } + if (writeSeqEntropy && ZSTD_needSequenceEntropyTables(&entropyMetadata->fseMetadata)) { + /* If we haven't written our entropy tables, then we've violated our contract and + * must emit an uncompressed block. + */ + DEBUGLOG(5, "Sequence entropy tables were never written => cancel, emit an uncompressed block"); + return 0; + } + + if (ip < iend) { + /* some data left : last part of the block sent uncompressed */ + size_t const rSize = (size_t)((iend - ip)); + size_t const cSize = ZSTD_noCompressBlock(op, (size_t)(oend - op), ip, rSize, lastBlock); + DEBUGLOG(5, "Generate last uncompressed sub-block of %u bytes", (unsigned)(rSize)); + FORWARD_IF_ERROR(cSize, "ZSTD_noCompressBlock failed"); + assert(cSize != 0); + op += cSize; + /* We have to regenerate the repcodes because we've skipped some sequences */ + if (sp < send) { + const SeqDef* seq; + Repcodes_t rep; + ZSTD_memcpy(&rep, prevCBlock->rep, sizeof(rep)); + for (seq = sstart; seq < sp; ++seq) { + ZSTD_updateRep(rep.rep, seq->offBase, ZSTD_getSequenceLength(seqStorePtr, seq).litLength == 0); + } + ZSTD_memcpy(nextCBlock->rep, &rep, sizeof(rep)); + } + } + + DEBUGLOG(5, "ZSTD_compressSubBlock_multi compressed all subBlocks: total compressed size = %u", + (unsigned)(op-ostart)); + return (size_t)(op-ostart); +} + +size_t ZSTD_compressSuperBlock(ZSTD_CCtx* zc, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + unsigned lastBlock) +{ + ZSTD_entropyCTablesMetadata_t entropyMetadata; + + FORWARD_IF_ERROR(ZSTD_buildBlockEntropyStats(&zc->seqStore, + &zc->blockState.prevCBlock->entropy, + &zc->blockState.nextCBlock->entropy, + &zc->appliedParams, + &entropyMetadata, + zc->tmpWorkspace, zc->tmpWkspSize /* statically allocated in resetCCtx */), ""); + + return ZSTD_compressSubBlock_multi(&zc->seqStore, + zc->blockState.prevCBlock, + zc->blockState.nextCBlock, + &entropyMetadata, + &zc->appliedParams, + dst, dstCapacity, + src, srcSize, + zc->bmi2, lastBlock, + zc->tmpWorkspace, zc->tmpWkspSize /* statically allocated in resetCCtx */); +} diff --git a/src/third-party/zstd/compress/zstd_compress_superblock.h b/src/third-party/zstd/compress/zstd_compress_superblock.h new file mode 100644 index 0000000000000..8e494f0d5e647 --- /dev/null +++ b/src/third-party/zstd/compress/zstd_compress_superblock.h @@ -0,0 +1,32 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_COMPRESS_ADVANCED_H +#define ZSTD_COMPRESS_ADVANCED_H + +/*-************************************* +* Dependencies +***************************************/ + +#include "../zstd.h" /* ZSTD_CCtx */ + +/*-************************************* +* Target Compressed Block Size +***************************************/ + +/* ZSTD_compressSuperBlock() : + * Used to compress a super block when targetCBlockSize is being used. + * The given block will be compressed into multiple sub blocks that are around targetCBlockSize. */ +size_t ZSTD_compressSuperBlock(ZSTD_CCtx* zc, + void* dst, size_t dstCapacity, + void const* src, size_t srcSize, + unsigned lastBlock); + +#endif /* ZSTD_COMPRESS_ADVANCED_H */ diff --git a/src/third-party/zstd/compress/zstd_cwksp.h b/src/third-party/zstd/compress/zstd_cwksp.h new file mode 100644 index 0000000000000..77518002d006b --- /dev/null +++ b/src/third-party/zstd/compress/zstd_cwksp.h @@ -0,0 +1,765 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_CWKSP_H +#define ZSTD_CWKSP_H + +/*-************************************* +* Dependencies +***************************************/ +#include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customFree */ +#include "../common/zstd_internal.h" +#include "../common/portability_macros.h" +#include "../common/compiler.h" /* ZS2_isPower2 */ + +/*-************************************* +* Constants +***************************************/ + +/* Since the workspace is effectively its own little malloc implementation / + * arena, when we run under ASAN, we should similarly insert redzones between + * each internal element of the workspace, so ASAN will catch overruns that + * reach outside an object but that stay inside the workspace. + * + * This defines the size of that redzone. + */ +#ifndef ZSTD_CWKSP_ASAN_REDZONE_SIZE +#define ZSTD_CWKSP_ASAN_REDZONE_SIZE 128 +#endif + + +/* Set our tables and aligneds to align by 64 bytes */ +#define ZSTD_CWKSP_ALIGNMENT_BYTES 64 + +/*-************************************* +* Structures +***************************************/ +typedef enum { + ZSTD_cwksp_alloc_objects, + ZSTD_cwksp_alloc_aligned_init_once, + ZSTD_cwksp_alloc_aligned, + ZSTD_cwksp_alloc_buffers +} ZSTD_cwksp_alloc_phase_e; + +/** + * Used to describe whether the workspace is statically allocated (and will not + * necessarily ever be freed), or if it's dynamically allocated and we can + * expect a well-formed caller to free this. + */ +typedef enum { + ZSTD_cwksp_dynamic_alloc, + ZSTD_cwksp_static_alloc +} ZSTD_cwksp_static_alloc_e; + +/** + * Zstd fits all its internal datastructures into a single continuous buffer, + * so that it only needs to perform a single OS allocation (or so that a buffer + * can be provided to it and it can perform no allocations at all). This buffer + * is called the workspace. + * + * Several optimizations complicate that process of allocating memory ranges + * from this workspace for each internal datastructure: + * + * - These different internal datastructures have different setup requirements: + * + * - The static objects need to be cleared once and can then be trivially + * reused for each compression. + * + * - Various buffers don't need to be initialized at all--they are always + * written into before they're read. + * + * - The matchstate tables have a unique requirement that they don't need + * their memory to be totally cleared, but they do need the memory to have + * some bound, i.e., a guarantee that all values in the memory they've been + * allocated is less than some maximum value (which is the starting value + * for the indices that they will then use for compression). When this + * guarantee is provided to them, they can use the memory without any setup + * work. When it can't, they have to clear the area. + * + * - These buffers also have different alignment requirements. + * + * - We would like to reuse the objects in the workspace for multiple + * compressions without having to perform any expensive reallocation or + * reinitialization work. + * + * - We would like to be able to efficiently reuse the workspace across + * multiple compressions **even when the compression parameters change** and + * we need to resize some of the objects (where possible). + * + * To attempt to manage this buffer, given these constraints, the ZSTD_cwksp + * abstraction was created. It works as follows: + * + * Workspace Layout: + * + * [ ... workspace ... ] + * [objects][tables ->] free space [<- buffers][<- aligned][<- init once] + * + * The various objects that live in the workspace are divided into the + * following categories, and are allocated separately: + * + * - Static objects: this is optionally the enclosing ZSTD_CCtx or ZSTD_CDict, + * so that literally everything fits in a single buffer. Note: if present, + * this must be the first object in the workspace, since ZSTD_customFree{CCtx, + * CDict}() rely on a pointer comparison to see whether one or two frees are + * required. + * + * - Fixed size objects: these are fixed-size, fixed-count objects that are + * nonetheless "dynamically" allocated in the workspace so that we can + * control how they're initialized separately from the broader ZSTD_CCtx. + * Examples: + * - Entropy Workspace + * - 2 x ZSTD_compressedBlockState_t + * - CDict dictionary contents + * + * - Tables: these are any of several different datastructures (hash tables, + * chain tables, binary trees) that all respect a common format: they are + * uint32_t arrays, all of whose values are between 0 and (nextSrc - base). + * Their sizes depend on the cparams. These tables are 64-byte aligned. + * + * - Init once: these buffers require to be initialized at least once before + * use. They should be used when we want to skip memory initialization + * while not triggering memory checkers (like Valgrind) when reading from + * from this memory without writing to it first. + * These buffers should be used carefully as they might contain data + * from previous compressions. + * Buffers are aligned to 64 bytes. + * + * - Aligned: these buffers don't require any initialization before they're + * used. The user of the buffer should make sure they write into a buffer + * location before reading from it. + * Buffers are aligned to 64 bytes. + * + * - Buffers: these buffers are used for various purposes that don't require + * any alignment or initialization before they're used. This means they can + * be moved around at no cost for a new compression. + * + * Allocating Memory: + * + * The various types of objects must be allocated in order, so they can be + * correctly packed into the workspace buffer. That order is: + * + * 1. Objects + * 2. Init once / Tables + * 3. Aligned / Tables + * 4. Buffers / Tables + * + * Attempts to reserve objects of different types out of order will fail. + */ +typedef struct { + void* workspace; + void* workspaceEnd; + + void* objectEnd; + void* tableEnd; + void* tableValidEnd; + void* allocStart; + void* initOnceStart; + + BYTE allocFailed; + int workspaceOversizedDuration; + ZSTD_cwksp_alloc_phase_e phase; + ZSTD_cwksp_static_alloc_e isStatic; +} ZSTD_cwksp; + +/*-************************************* +* Functions +***************************************/ + +MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws); +MEM_STATIC void* ZSTD_cwksp_initialAllocStart(ZSTD_cwksp* ws); + +MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) { + (void)ws; + assert(ws->workspace <= ws->objectEnd); + assert(ws->objectEnd <= ws->tableEnd); + assert(ws->objectEnd <= ws->tableValidEnd); + assert(ws->tableEnd <= ws->allocStart); + assert(ws->tableValidEnd <= ws->allocStart); + assert(ws->allocStart <= ws->workspaceEnd); + assert(ws->initOnceStart <= ZSTD_cwksp_initialAllocStart(ws)); + assert(ws->workspace <= ws->initOnceStart); +#if ZSTD_MEMORY_SANITIZER + { + intptr_t const offset = __msan_test_shadow(ws->initOnceStart, + (U8*)ZSTD_cwksp_initialAllocStart(ws) - (U8*)ws->initOnceStart); + (void)offset; +#if defined(ZSTD_MSAN_PRINT) + if(offset!=-1) { + __msan_print_shadow((U8*)ws->initOnceStart + offset - 8, 32); + } +#endif + assert(offset==-1); + }; +#endif +} + +/** + * Align must be a power of 2. + */ +MEM_STATIC size_t ZSTD_cwksp_align(size_t size, size_t align) { + size_t const mask = align - 1; + assert(ZSTD_isPower2(align)); + return (size + mask) & ~mask; +} + +/** + * Use this to determine how much space in the workspace we will consume to + * allocate this object. (Normally it should be exactly the size of the object, + * but under special conditions, like ASAN, where we pad each object, it might + * be larger.) + * + * Since tables aren't currently redzoned, you don't need to call through this + * to figure out how much space you need for the matchState tables. Everything + * else is though. + * + * Do not use for sizing aligned buffers. Instead, use ZSTD_cwksp_aligned64_alloc_size(). + */ +MEM_STATIC size_t ZSTD_cwksp_alloc_size(size_t size) { + if (size == 0) + return 0; +#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) + return size + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE; +#else + return size; +#endif +} + +MEM_STATIC size_t ZSTD_cwksp_aligned_alloc_size(size_t size, size_t alignment) { + return ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(size, alignment)); +} + +/** + * Returns an adjusted alloc size that is the nearest larger multiple of 64 bytes. + * Used to determine the number of bytes required for a given "aligned". + */ +MEM_STATIC size_t ZSTD_cwksp_aligned64_alloc_size(size_t size) { + return ZSTD_cwksp_aligned_alloc_size(size, ZSTD_CWKSP_ALIGNMENT_BYTES); +} + +/** + * Returns the amount of additional space the cwksp must allocate + * for internal purposes (currently only alignment). + */ +MEM_STATIC size_t ZSTD_cwksp_slack_space_required(void) { + /* For alignment, the wksp will always allocate an additional 2*ZSTD_CWKSP_ALIGNMENT_BYTES + * bytes to align the beginning of tables section and end of buffers; + */ + size_t const slackSpace = ZSTD_CWKSP_ALIGNMENT_BYTES * 2; + return slackSpace; +} + + +/** + * Return the number of additional bytes required to align a pointer to the given number of bytes. + * alignBytes must be a power of two. + */ +MEM_STATIC size_t ZSTD_cwksp_bytes_to_align_ptr(void* ptr, const size_t alignBytes) { + size_t const alignBytesMask = alignBytes - 1; + size_t const bytes = (alignBytes - ((size_t)ptr & (alignBytesMask))) & alignBytesMask; + assert(ZSTD_isPower2(alignBytes)); + assert(bytes < alignBytes); + return bytes; +} + +/** + * Returns the initial value for allocStart which is used to determine the position from + * which we can allocate from the end of the workspace. + */ +MEM_STATIC void* ZSTD_cwksp_initialAllocStart(ZSTD_cwksp* ws) +{ + char* endPtr = (char*)ws->workspaceEnd; + assert(ZSTD_isPower2(ZSTD_CWKSP_ALIGNMENT_BYTES)); + endPtr = endPtr - ((size_t)endPtr % ZSTD_CWKSP_ALIGNMENT_BYTES); + return (void*)endPtr; +} + +/** + * Internal function. Do not use directly. + * Reserves the given number of bytes within the aligned/buffer segment of the wksp, + * which counts from the end of the wksp (as opposed to the object/table segment). + * + * Returns a pointer to the beginning of that space. + */ +MEM_STATIC void* +ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp* ws, size_t const bytes) +{ + void* const alloc = (BYTE*)ws->allocStart - bytes; + void* const bottom = ws->tableEnd; + DEBUGLOG(5, "cwksp: reserving [0x%p]:%zd bytes; %zd bytes remaining", + alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes); + ZSTD_cwksp_assert_internal_consistency(ws); + assert(alloc >= bottom); + if (alloc < bottom) { + DEBUGLOG(4, "cwksp: alloc failed!"); + ws->allocFailed = 1; + return NULL; + } + /* the area is reserved from the end of wksp. + * If it overlaps with tableValidEnd, it voids guarantees on values' range */ + if (alloc < ws->tableValidEnd) { + ws->tableValidEnd = alloc; + } + ws->allocStart = alloc; + return alloc; +} + +/** + * Moves the cwksp to the next phase, and does any necessary allocations. + * cwksp initialization must necessarily go through each phase in order. + * Returns a 0 on success, or zstd error + */ +MEM_STATIC size_t +ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase) +{ + assert(phase >= ws->phase); + if (phase > ws->phase) { + /* Going from allocating objects to allocating initOnce / tables */ + if (ws->phase < ZSTD_cwksp_alloc_aligned_init_once && + phase >= ZSTD_cwksp_alloc_aligned_init_once) { + ws->tableValidEnd = ws->objectEnd; + ws->initOnceStart = ZSTD_cwksp_initialAllocStart(ws); + + { /* Align the start of the tables to 64 bytes. Use [0, 63] bytes */ + void *const alloc = ws->objectEnd; + size_t const bytesToAlign = ZSTD_cwksp_bytes_to_align_ptr(alloc, ZSTD_CWKSP_ALIGNMENT_BYTES); + void *const objectEnd = (BYTE *) alloc + bytesToAlign; + DEBUGLOG(5, "reserving table alignment addtl space: %zu", bytesToAlign); + RETURN_ERROR_IF(objectEnd > ws->workspaceEnd, memory_allocation, + "table phase - alignment initial allocation failed!"); + ws->objectEnd = objectEnd; + ws->tableEnd = objectEnd; /* table area starts being empty */ + if (ws->tableValidEnd < ws->tableEnd) { + ws->tableValidEnd = ws->tableEnd; + } + } + } + ws->phase = phase; + ZSTD_cwksp_assert_internal_consistency(ws); + } + return 0; +} + +/** + * Returns whether this object/buffer/etc was allocated in this workspace. + */ +MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr) +{ + return (ptr != NULL) && (ws->workspace <= ptr) && (ptr < ws->workspaceEnd); +} + +/** + * Internal function. Do not use directly. + */ +MEM_STATIC void* +ZSTD_cwksp_reserve_internal(ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase) +{ + void* alloc; + if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase)) || bytes == 0) { + return NULL; + } + +#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) + /* over-reserve space */ + bytes += 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE; +#endif + + alloc = ZSTD_cwksp_reserve_internal_buffer_space(ws, bytes); + +#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) + /* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on + * either size. */ + if (alloc) { + alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE; + if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) { + /* We need to keep the redzone poisoned while unpoisoning the bytes that + * are actually allocated. */ + __asan_unpoison_memory_region(alloc, bytes - 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE); + } + } +#endif + + return alloc; +} + +/** + * Reserves and returns unaligned memory. + */ +MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes) +{ + return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers); +} + +/** + * Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes). + * This memory has been initialized at least once in the past. + * This doesn't mean it has been initialized this time, and it might contain data from previous + * operations. + * The main usage is for algorithms that might need read access into uninitialized memory. + * The algorithm must maintain safety under these conditions and must make sure it doesn't + * leak any of the past data (directly or in side channels). + */ +MEM_STATIC void* ZSTD_cwksp_reserve_aligned_init_once(ZSTD_cwksp* ws, size_t bytes) +{ + size_t const alignedBytes = ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES); + void* ptr = ZSTD_cwksp_reserve_internal(ws, alignedBytes, ZSTD_cwksp_alloc_aligned_init_once); + assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0); + if(ptr && ptr < ws->initOnceStart) { + /* We assume the memory following the current allocation is either: + * 1. Not usable as initOnce memory (end of workspace) + * 2. Another initOnce buffer that has been allocated before (and so was previously memset) + * 3. An ASAN redzone, in which case we don't want to write on it + * For these reasons it should be fine to not explicitly zero every byte up to ws->initOnceStart. + * Note that we assume here that MSAN and ASAN cannot run in the same time. */ + ZSTD_memset(ptr, 0, MIN((size_t)((U8*)ws->initOnceStart - (U8*)ptr), alignedBytes)); + ws->initOnceStart = ptr; + } +#if ZSTD_MEMORY_SANITIZER + assert(__msan_test_shadow(ptr, bytes) == -1); +#endif + return ptr; +} + +/** + * Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes). + */ +MEM_STATIC void* ZSTD_cwksp_reserve_aligned64(ZSTD_cwksp* ws, size_t bytes) +{ + void* const ptr = ZSTD_cwksp_reserve_internal(ws, + ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES), + ZSTD_cwksp_alloc_aligned); + assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0); + return ptr; +} + +/** + * Aligned on 64 bytes. These buffers have the special property that + * their values remain constrained, allowing us to reuse them without + * memset()-ing them. + */ +MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes) +{ + const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned_init_once; + void* alloc; + void* end; + void* top; + + /* We can only start allocating tables after we are done reserving space for objects at the + * start of the workspace */ + if(ws->phase < phase) { + if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase))) { + return NULL; + } + } + alloc = ws->tableEnd; + end = (BYTE *)alloc + bytes; + top = ws->allocStart; + + DEBUGLOG(5, "cwksp: reserving %p table %zd bytes, %zd bytes remaining", + alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes); + assert((bytes & (sizeof(U32)-1)) == 0); + ZSTD_cwksp_assert_internal_consistency(ws); + assert(end <= top); + if (end > top) { + DEBUGLOG(4, "cwksp: table alloc failed!"); + ws->allocFailed = 1; + return NULL; + } + ws->tableEnd = end; + +#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) + if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) { + __asan_unpoison_memory_region(alloc, bytes); + } +#endif + + assert((bytes & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0); + assert(((size_t)alloc & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0); + return alloc; +} + +/** + * Aligned on sizeof(void*). + * Note : should happen only once, at workspace first initialization + */ +MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes) +{ + size_t const roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*)); + void* alloc = ws->objectEnd; + void* end = (BYTE*)alloc + roundedBytes; + +#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) + /* over-reserve space */ + end = (BYTE *)end + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE; +#endif + + DEBUGLOG(4, + "cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining", + alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes); + assert((size_t)alloc % ZSTD_ALIGNOF(void*) == 0); + assert(bytes % ZSTD_ALIGNOF(void*) == 0); + ZSTD_cwksp_assert_internal_consistency(ws); + /* we must be in the first phase, no advance is possible */ + if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) { + DEBUGLOG(3, "cwksp: object alloc failed!"); + ws->allocFailed = 1; + return NULL; + } + ws->objectEnd = end; + ws->tableEnd = end; + ws->tableValidEnd = end; + +#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) + /* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on + * either size. */ + alloc = (BYTE*)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE; + if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) { + __asan_unpoison_memory_region(alloc, bytes); + } +#endif + + return alloc; +} +/** + * with alignment control + * Note : should happen only once, at workspace first initialization + */ +MEM_STATIC void* ZSTD_cwksp_reserve_object_aligned(ZSTD_cwksp* ws, size_t byteSize, size_t alignment) +{ + size_t const mask = alignment - 1; + size_t const surplus = (alignment > sizeof(void*)) ? alignment - sizeof(void*) : 0; + void* const start = ZSTD_cwksp_reserve_object(ws, byteSize + surplus); + if (start == NULL) return NULL; + if (surplus == 0) return start; + assert(ZSTD_isPower2(alignment)); + return (void*)(((size_t)start + surplus) & ~mask); +} + +MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws) +{ + DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty"); + +#if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE) + /* To validate that the table reuse logic is sound, and that we don't + * access table space that we haven't cleaned, we re-"poison" the table + * space every time we mark it dirty. + * Since tableValidEnd space and initOnce space may overlap we don't poison + * the initOnce portion as it break its promise. This means that this poisoning + * check isn't always applied fully. */ + { + size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd; + assert(__msan_test_shadow(ws->objectEnd, size) == -1); + if((BYTE*)ws->tableValidEnd < (BYTE*)ws->initOnceStart) { + __msan_poison(ws->objectEnd, size); + } else { + assert(ws->initOnceStart >= ws->objectEnd); + __msan_poison(ws->objectEnd, (BYTE*)ws->initOnceStart - (BYTE*)ws->objectEnd); + } + } +#endif + + assert(ws->tableValidEnd >= ws->objectEnd); + assert(ws->tableValidEnd <= ws->allocStart); + ws->tableValidEnd = ws->objectEnd; + ZSTD_cwksp_assert_internal_consistency(ws); +} + +MEM_STATIC void ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp* ws) { + DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_clean"); + assert(ws->tableValidEnd >= ws->objectEnd); + assert(ws->tableValidEnd <= ws->allocStart); + if (ws->tableValidEnd < ws->tableEnd) { + ws->tableValidEnd = ws->tableEnd; + } + ZSTD_cwksp_assert_internal_consistency(ws); +} + +/** + * Zero the part of the allocated tables not already marked clean. + */ +MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) { + DEBUGLOG(4, "cwksp: ZSTD_cwksp_clean_tables"); + assert(ws->tableValidEnd >= ws->objectEnd); + assert(ws->tableValidEnd <= ws->allocStart); + if (ws->tableValidEnd < ws->tableEnd) { + ZSTD_memset(ws->tableValidEnd, 0, (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd)); + } + ZSTD_cwksp_mark_tables_clean(ws); +} + +/** + * Invalidates table allocations. + * All other allocations remain valid. + */ +MEM_STATIC void ZSTD_cwksp_clear_tables(ZSTD_cwksp* ws) +{ + DEBUGLOG(4, "cwksp: clearing tables!"); + +#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) + /* We don't do this when the workspace is statically allocated, because + * when that is the case, we have no capability to hook into the end of the + * workspace's lifecycle to unpoison the memory. + */ + if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) { + size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd; + __asan_poison_memory_region(ws->objectEnd, size); + } +#endif + + ws->tableEnd = ws->objectEnd; + ZSTD_cwksp_assert_internal_consistency(ws); +} + +/** + * Invalidates all buffer, aligned, and table allocations. + * Object allocations remain valid. + */ +MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) { + DEBUGLOG(4, "cwksp: clearing!"); + +#if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE) + /* To validate that the context reuse logic is sound, and that we don't + * access stuff that this compression hasn't initialized, we re-"poison" + * the workspace except for the areas in which we expect memory reuse + * without initialization (objects, valid tables area and init once + * memory). */ + { + if((BYTE*)ws->tableValidEnd < (BYTE*)ws->initOnceStart) { + size_t size = (BYTE*)ws->initOnceStart - (BYTE*)ws->tableValidEnd; + __msan_poison(ws->tableValidEnd, size); + } + } +#endif + +#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) + /* We don't do this when the workspace is statically allocated, because + * when that is the case, we have no capability to hook into the end of the + * workspace's lifecycle to unpoison the memory. + */ + if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) { + size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->objectEnd; + __asan_poison_memory_region(ws->objectEnd, size); + } +#endif + + ws->tableEnd = ws->objectEnd; + ws->allocStart = ZSTD_cwksp_initialAllocStart(ws); + ws->allocFailed = 0; + if (ws->phase > ZSTD_cwksp_alloc_aligned_init_once) { + ws->phase = ZSTD_cwksp_alloc_aligned_init_once; + } + ZSTD_cwksp_assert_internal_consistency(ws); +} + +MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) { + return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace); +} + +MEM_STATIC size_t ZSTD_cwksp_used(const ZSTD_cwksp* ws) { + return (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->workspace) + + (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->allocStart); +} + +/** + * The provided workspace takes ownership of the buffer [start, start+size). + * Any existing values in the workspace are ignored (the previously managed + * buffer, if present, must be separately freed). + */ +MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size, ZSTD_cwksp_static_alloc_e isStatic) { + DEBUGLOG(4, "cwksp: init'ing workspace with %zd bytes", size); + assert(((size_t)start & (sizeof(void*)-1)) == 0); /* ensure correct alignment */ + ws->workspace = start; + ws->workspaceEnd = (BYTE*)start + size; + ws->objectEnd = ws->workspace; + ws->tableValidEnd = ws->objectEnd; + ws->initOnceStart = ZSTD_cwksp_initialAllocStart(ws); + ws->phase = ZSTD_cwksp_alloc_objects; + ws->isStatic = isStatic; + ZSTD_cwksp_clear(ws); + ws->workspaceOversizedDuration = 0; + ZSTD_cwksp_assert_internal_consistency(ws); +} + +MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem customMem) { + void* workspace = ZSTD_customMalloc(size, customMem); + DEBUGLOG(4, "cwksp: creating new workspace with %zd bytes", size); + RETURN_ERROR_IF(workspace == NULL, memory_allocation, "NULL pointer!"); + ZSTD_cwksp_init(ws, workspace, size, ZSTD_cwksp_dynamic_alloc); + return 0; +} + +MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) { + void *ptr = ws->workspace; + DEBUGLOG(4, "cwksp: freeing workspace"); +#if ZSTD_MEMORY_SANITIZER && !defined(ZSTD_MSAN_DONT_POISON_WORKSPACE) + if (ptr != NULL && customMem.customFree != NULL) { + __msan_unpoison(ptr, ZSTD_cwksp_sizeof(ws)); + } +#endif + ZSTD_memset(ws, 0, sizeof(ZSTD_cwksp)); + ZSTD_customFree(ptr, customMem); +} + +/** + * Moves the management of a workspace from one cwksp to another. The src cwksp + * is left in an invalid state (src must be re-init()'ed before it's used again). + */ +MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) { + *dst = *src; + ZSTD_memset(src, 0, sizeof(ZSTD_cwksp)); +} + +MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) { + return ws->allocFailed; +} + +/*-************************************* +* Functions Checking Free Space +***************************************/ + +/* ZSTD_alignmentSpaceWithinBounds() : + * Returns if the estimated space needed for a wksp is within an acceptable limit of the + * actual amount of space used. + */ +MEM_STATIC int ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp *const ws, size_t const estimatedSpace) { + /* We have an alignment space between objects and tables between tables and buffers, so we can have up to twice + * the alignment bytes difference between estimation and actual usage */ + return (estimatedSpace - ZSTD_cwksp_slack_space_required()) <= ZSTD_cwksp_used(ws) && + ZSTD_cwksp_used(ws) <= estimatedSpace; +} + + +MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws) { + return (size_t)((BYTE*)ws->allocStart - (BYTE*)ws->tableEnd); +} + +MEM_STATIC int ZSTD_cwksp_check_available(ZSTD_cwksp* ws, size_t additionalNeededSpace) { + return ZSTD_cwksp_available_space(ws) >= additionalNeededSpace; +} + +MEM_STATIC int ZSTD_cwksp_check_too_large(ZSTD_cwksp* ws, size_t additionalNeededSpace) { + return ZSTD_cwksp_check_available( + ws, additionalNeededSpace * ZSTD_WORKSPACETOOLARGE_FACTOR); +} + +MEM_STATIC int ZSTD_cwksp_check_wasteful(ZSTD_cwksp* ws, size_t additionalNeededSpace) { + return ZSTD_cwksp_check_too_large(ws, additionalNeededSpace) + && ws->workspaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION; +} + +MEM_STATIC void ZSTD_cwksp_bump_oversized_duration( + ZSTD_cwksp* ws, size_t additionalNeededSpace) { + if (ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)) { + ws->workspaceOversizedDuration++; + } else { + ws->workspaceOversizedDuration = 0; + } +} + +#endif /* ZSTD_CWKSP_H */ diff --git a/src/third-party/zstd/compress/zstd_double_fast.c b/src/third-party/zstd/compress/zstd_double_fast.c new file mode 100644 index 0000000000000..1a266e7d955f7 --- /dev/null +++ b/src/third-party/zstd/compress/zstd_double_fast.c @@ -0,0 +1,778 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#include "zstd_compress_internal.h" +#include "zstd_double_fast.h" + +#ifndef ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR + +static +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +void ZSTD_fillDoubleHashTableForCDict(ZSTD_MatchState_t* ms, + void const* end, ZSTD_dictTableLoadMethod_e dtlm) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashLarge = ms->hashTable; + U32 const hBitsL = cParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS; + U32 const mls = cParams->minMatch; + U32* const hashSmall = ms->chainTable; + U32 const hBitsS = cParams->chainLog + ZSTD_SHORT_CACHE_TAG_BITS; + const BYTE* const base = ms->window.base; + const BYTE* ip = base + ms->nextToUpdate; + const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE; + const U32 fastHashFillStep = 3; + + /* Always insert every fastHashFillStep position into the hash tables. + * Insert the other positions into the large hash table if their entry + * is empty. + */ + for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) { + U32 const curr = (U32)(ip - base); + U32 i; + for (i = 0; i < fastHashFillStep; ++i) { + size_t const smHashAndTag = ZSTD_hashPtr(ip + i, hBitsS, mls); + size_t const lgHashAndTag = ZSTD_hashPtr(ip + i, hBitsL, 8); + if (i == 0) { + ZSTD_writeTaggedIndex(hashSmall, smHashAndTag, curr + i); + } + if (i == 0 || hashLarge[lgHashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS] == 0) { + ZSTD_writeTaggedIndex(hashLarge, lgHashAndTag, curr + i); + } + /* Only load extra positions for ZSTD_dtlm_full */ + if (dtlm == ZSTD_dtlm_fast) + break; + } } +} + +static +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +void ZSTD_fillDoubleHashTableForCCtx(ZSTD_MatchState_t* ms, + void const* end, ZSTD_dictTableLoadMethod_e dtlm) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashLarge = ms->hashTable; + U32 const hBitsL = cParams->hashLog; + U32 const mls = cParams->minMatch; + U32* const hashSmall = ms->chainTable; + U32 const hBitsS = cParams->chainLog; + const BYTE* const base = ms->window.base; + const BYTE* ip = base + ms->nextToUpdate; + const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE; + const U32 fastHashFillStep = 3; + + /* Always insert every fastHashFillStep position into the hash tables. + * Insert the other positions into the large hash table if their entry + * is empty. + */ + for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) { + U32 const curr = (U32)(ip - base); + U32 i; + for (i = 0; i < fastHashFillStep; ++i) { + size_t const smHash = ZSTD_hashPtr(ip + i, hBitsS, mls); + size_t const lgHash = ZSTD_hashPtr(ip + i, hBitsL, 8); + if (i == 0) + hashSmall[smHash] = curr + i; + if (i == 0 || hashLarge[lgHash] == 0) + hashLarge[lgHash] = curr + i; + /* Only load extra positions for ZSTD_dtlm_full */ + if (dtlm == ZSTD_dtlm_fast) + break; + } } +} + +void ZSTD_fillDoubleHashTable(ZSTD_MatchState_t* ms, + const void* const end, + ZSTD_dictTableLoadMethod_e dtlm, + ZSTD_tableFillPurpose_e tfp) +{ + if (tfp == ZSTD_tfp_forCDict) { + ZSTD_fillDoubleHashTableForCDict(ms, end, dtlm); + } else { + ZSTD_fillDoubleHashTableForCCtx(ms, end, dtlm); + } +} + + +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_compressBlock_doubleFast_noDict_generic( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize, U32 const mls /* template */) +{ + ZSTD_compressionParameters const* cParams = &ms->cParams; + U32* const hashLong = ms->hashTable; + const U32 hBitsL = cParams->hashLog; + U32* const hashSmall = ms->chainTable; + const U32 hBitsS = cParams->chainLog; + const BYTE* const base = ms->window.base; + const BYTE* const istart = (const BYTE*)src; + const BYTE* anchor = istart; + const U32 endIndex = (U32)((size_t)(istart - base) + srcSize); + /* presumes that, if there is a dictionary, it must be using Attach mode */ + const U32 prefixLowestIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog); + const BYTE* const prefixLowest = base + prefixLowestIndex; + const BYTE* const iend = istart + srcSize; + const BYTE* const ilimit = iend - HASH_READ_SIZE; + U32 offset_1=rep[0], offset_2=rep[1]; + U32 offsetSaved1 = 0, offsetSaved2 = 0; + + size_t mLength; + U32 offset; + U32 curr; + + /* how many positions to search before increasing step size */ + const size_t kStepIncr = 1 << kSearchStrength; + /* the position at which to increment the step size if no match is found */ + const BYTE* nextStep; + size_t step; /* the current step size */ + + size_t hl0; /* the long hash at ip */ + size_t hl1; /* the long hash at ip1 */ + + U32 idxl0; /* the long match index for ip */ + U32 idxl1; /* the long match index for ip1 */ + + const BYTE* matchl0; /* the long match for ip */ + const BYTE* matchs0; /* the short match for ip */ + const BYTE* matchl1; /* the long match for ip1 */ + const BYTE* matchs0_safe; /* matchs0 or safe address */ + + const BYTE* ip = istart; /* the current position */ + const BYTE* ip1; /* the next position */ + /* Array of ~random data, should have low probability of matching data + * we load from here instead of from tables, if matchl0/matchl1 are + * invalid indices. Used to avoid unpredictable branches. */ + const BYTE dummy[] = {0x12,0x34,0x56,0x78,0x9a,0xbc,0xde,0xf0,0xe2,0xb4}; + + DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_noDict_generic"); + + /* init */ + ip += ((ip - prefixLowest) == 0); + { + U32 const current = (U32)(ip - base); + U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, current, cParams->windowLog); + U32 const maxRep = current - windowLow; + if (offset_2 > maxRep) offsetSaved2 = offset_2, offset_2 = 0; + if (offset_1 > maxRep) offsetSaved1 = offset_1, offset_1 = 0; + } + + /* Outer Loop: one iteration per match found and stored */ + while (1) { + step = 1; + nextStep = ip + kStepIncr; + ip1 = ip + step; + + if (ip1 > ilimit) { + goto _cleanup; + } + + hl0 = ZSTD_hashPtr(ip, hBitsL, 8); + idxl0 = hashLong[hl0]; + matchl0 = base + idxl0; + + /* Inner Loop: one iteration per search / position */ + do { + const size_t hs0 = ZSTD_hashPtr(ip, hBitsS, mls); + const U32 idxs0 = hashSmall[hs0]; + curr = (U32)(ip-base); + matchs0 = base + idxs0; + + hashLong[hl0] = hashSmall[hs0] = curr; /* update hash tables */ + + /* check noDict repcode */ + if ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1))) { + mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4; + ip++; + ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength); + goto _match_stored; + } + + hl1 = ZSTD_hashPtr(ip1, hBitsL, 8); + + /* idxl0 > prefixLowestIndex is a (somewhat) unpredictable branch. + * However expression below complies into conditional move. Since + * match is unlikely and we only *branch* on idxl0 > prefixLowestIndex + * if there is a match, all branches become predictable. */ + { const BYTE* const matchl0_safe = ZSTD_selectAddr(idxl0, prefixLowestIndex, matchl0, &dummy[0]); + + /* check prefix long match */ + if (MEM_read64(matchl0_safe) == MEM_read64(ip) && matchl0_safe == matchl0) { + mLength = ZSTD_count(ip+8, matchl0+8, iend) + 8; + offset = (U32)(ip-matchl0); + while (((ip>anchor) & (matchl0>prefixLowest)) && (ip[-1] == matchl0[-1])) { ip--; matchl0--; mLength++; } /* catch up */ + goto _match_found; + } } + + idxl1 = hashLong[hl1]; + matchl1 = base + idxl1; + + /* Same optimization as matchl0 above */ + matchs0_safe = ZSTD_selectAddr(idxs0, prefixLowestIndex, matchs0, &dummy[0]); + + /* check prefix short match */ + if(MEM_read32(matchs0_safe) == MEM_read32(ip) && matchs0_safe == matchs0) { + goto _search_next_long; + } + + if (ip1 >= nextStep) { + PREFETCH_L1(ip1 + 64); + PREFETCH_L1(ip1 + 128); + step++; + nextStep += kStepIncr; + } + ip = ip1; + ip1 += step; + + hl0 = hl1; + idxl0 = idxl1; + matchl0 = matchl1; + #if defined(__aarch64__) + PREFETCH_L1(ip+256); + #endif + } while (ip1 <= ilimit); + +_cleanup: + /* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0), + * rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */ + offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2; + + /* save reps for next block */ + rep[0] = offset_1 ? offset_1 : offsetSaved1; + rep[1] = offset_2 ? offset_2 : offsetSaved2; + + /* Return the last literals size */ + return (size_t)(iend - anchor); + +_search_next_long: + + /* short match found: let's check for a longer one */ + mLength = ZSTD_count(ip+4, matchs0+4, iend) + 4; + offset = (U32)(ip - matchs0); + + /* check long match at +1 position */ + if ((idxl1 > prefixLowestIndex) && (MEM_read64(matchl1) == MEM_read64(ip1))) { + size_t const l1len = ZSTD_count(ip1+8, matchl1+8, iend) + 8; + if (l1len > mLength) { + /* use the long match instead */ + ip = ip1; + mLength = l1len; + offset = (U32)(ip-matchl1); + matchs0 = matchl1; + } + } + + while (((ip>anchor) & (matchs0>prefixLowest)) && (ip[-1] == matchs0[-1])) { ip--; matchs0--; mLength++; } /* complete backward */ + + /* fall-through */ + +_match_found: /* requires ip, offset, mLength */ + offset_2 = offset_1; + offset_1 = offset; + + if (step < 4) { + /* It is unsafe to write this value back to the hashtable when ip1 is + * greater than or equal to the new ip we will have after we're done + * processing this match. Rather than perform that test directly + * (ip1 >= ip + mLength), which costs speed in practice, we do a simpler + * more predictable test. The minmatch even if we take a short match is + * 4 bytes, so as long as step, the distance between ip and ip1 + * (initially) is less than 4, we know ip1 < new ip. */ + hashLong[hl1] = (U32)(ip1 - base); + } + + ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength); + +_match_stored: + /* match found */ + ip += mLength; + anchor = ip; + + if (ip <= ilimit) { + /* Complementary insertion */ + /* done after iLimit test, as candidates could be > iend-8 */ + { U32 const indexToInsert = curr+2; + hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert; + hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base); + hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert; + hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base); + } + + /* check immediate repcode */ + while ( (ip <= ilimit) + && ( (offset_2>0) + & (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) { + /* store sequence */ + size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4; + U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */ + hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base); + hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base); + ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, rLength); + ip += rLength; + anchor = ip; + continue; /* faster when present ... (?) */ + } + } + } +} + + +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_compressBlock_doubleFast_dictMatchState_generic( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize, + U32 const mls /* template */) +{ + ZSTD_compressionParameters const* cParams = &ms->cParams; + U32* const hashLong = ms->hashTable; + const U32 hBitsL = cParams->hashLog; + U32* const hashSmall = ms->chainTable; + const U32 hBitsS = cParams->chainLog; + const BYTE* const base = ms->window.base; + const BYTE* const istart = (const BYTE*)src; + const BYTE* ip = istart; + const BYTE* anchor = istart; + const U32 endIndex = (U32)((size_t)(istart - base) + srcSize); + /* presumes that, if there is a dictionary, it must be using Attach mode */ + const U32 prefixLowestIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog); + const BYTE* const prefixLowest = base + prefixLowestIndex; + const BYTE* const iend = istart + srcSize; + const BYTE* const ilimit = iend - HASH_READ_SIZE; + U32 offset_1=rep[0], offset_2=rep[1]; + + const ZSTD_MatchState_t* const dms = ms->dictMatchState; + const ZSTD_compressionParameters* const dictCParams = &dms->cParams; + const U32* const dictHashLong = dms->hashTable; + const U32* const dictHashSmall = dms->chainTable; + const U32 dictStartIndex = dms->window.dictLimit; + const BYTE* const dictBase = dms->window.base; + const BYTE* const dictStart = dictBase + dictStartIndex; + const BYTE* const dictEnd = dms->window.nextSrc; + const U32 dictIndexDelta = prefixLowestIndex - (U32)(dictEnd - dictBase); + const U32 dictHBitsL = dictCParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS; + const U32 dictHBitsS = dictCParams->chainLog + ZSTD_SHORT_CACHE_TAG_BITS; + const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictStart)); + + DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_dictMatchState_generic"); + + /* if a dictionary is attached, it must be within window range */ + assert(ms->window.dictLimit + (1U << cParams->windowLog) >= endIndex); + + if (ms->prefetchCDictTables) { + size_t const hashTableBytes = (((size_t)1) << dictCParams->hashLog) * sizeof(U32); + size_t const chainTableBytes = (((size_t)1) << dictCParams->chainLog) * sizeof(U32); + PREFETCH_AREA(dictHashLong, hashTableBytes); + PREFETCH_AREA(dictHashSmall, chainTableBytes); + } + + /* init */ + ip += (dictAndPrefixLength == 0); + + /* dictMatchState repCode checks don't currently handle repCode == 0 + * disabling. */ + assert(offset_1 <= dictAndPrefixLength); + assert(offset_2 <= dictAndPrefixLength); + + /* Main Search Loop */ + while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */ + size_t mLength; + U32 offset; + size_t const h2 = ZSTD_hashPtr(ip, hBitsL, 8); + size_t const h = ZSTD_hashPtr(ip, hBitsS, mls); + size_t const dictHashAndTagL = ZSTD_hashPtr(ip, dictHBitsL, 8); + size_t const dictHashAndTagS = ZSTD_hashPtr(ip, dictHBitsS, mls); + U32 const dictMatchIndexAndTagL = dictHashLong[dictHashAndTagL >> ZSTD_SHORT_CACHE_TAG_BITS]; + U32 const dictMatchIndexAndTagS = dictHashSmall[dictHashAndTagS >> ZSTD_SHORT_CACHE_TAG_BITS]; + int const dictTagsMatchL = ZSTD_comparePackedTags(dictMatchIndexAndTagL, dictHashAndTagL); + int const dictTagsMatchS = ZSTD_comparePackedTags(dictMatchIndexAndTagS, dictHashAndTagS); + U32 const curr = (U32)(ip-base); + U32 const matchIndexL = hashLong[h2]; + U32 matchIndexS = hashSmall[h]; + const BYTE* matchLong = base + matchIndexL; + const BYTE* match = base + matchIndexS; + const U32 repIndex = curr + 1 - offset_1; + const BYTE* repMatch = (repIndex < prefixLowestIndex) ? + dictBase + (repIndex - dictIndexDelta) : + base + repIndex; + hashLong[h2] = hashSmall[h] = curr; /* update hash tables */ + + /* check repcode */ + if ((ZSTD_index_overlap_check(prefixLowestIndex, repIndex)) + && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) { + const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; + mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; + ip++; + ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength); + goto _match_stored; + } + + if ((matchIndexL >= prefixLowestIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) { + /* check prefix long match */ + mLength = ZSTD_count(ip+8, matchLong+8, iend) + 8; + offset = (U32)(ip-matchLong); + while (((ip>anchor) & (matchLong>prefixLowest)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */ + goto _match_found; + } else if (dictTagsMatchL) { + /* check dictMatchState long match */ + U32 const dictMatchIndexL = dictMatchIndexAndTagL >> ZSTD_SHORT_CACHE_TAG_BITS; + const BYTE* dictMatchL = dictBase + dictMatchIndexL; + assert(dictMatchL < dictEnd); + + if (dictMatchL > dictStart && MEM_read64(dictMatchL) == MEM_read64(ip)) { + mLength = ZSTD_count_2segments(ip+8, dictMatchL+8, iend, dictEnd, prefixLowest) + 8; + offset = (U32)(curr - dictMatchIndexL - dictIndexDelta); + while (((ip>anchor) & (dictMatchL>dictStart)) && (ip[-1] == dictMatchL[-1])) { ip--; dictMatchL--; mLength++; } /* catch up */ + goto _match_found; + } } + + if (matchIndexS > prefixLowestIndex) { + /* short match candidate */ + if (MEM_read32(match) == MEM_read32(ip)) { + goto _search_next_long; + } + } else if (dictTagsMatchS) { + /* check dictMatchState short match */ + U32 const dictMatchIndexS = dictMatchIndexAndTagS >> ZSTD_SHORT_CACHE_TAG_BITS; + match = dictBase + dictMatchIndexS; + matchIndexS = dictMatchIndexS + dictIndexDelta; + + if (match > dictStart && MEM_read32(match) == MEM_read32(ip)) { + goto _search_next_long; + } } + + ip += ((ip-anchor) >> kSearchStrength) + 1; +#if defined(__aarch64__) + PREFETCH_L1(ip+256); +#endif + continue; + +_search_next_long: + { size_t const hl3 = ZSTD_hashPtr(ip+1, hBitsL, 8); + size_t const dictHashAndTagL3 = ZSTD_hashPtr(ip+1, dictHBitsL, 8); + U32 const matchIndexL3 = hashLong[hl3]; + U32 const dictMatchIndexAndTagL3 = dictHashLong[dictHashAndTagL3 >> ZSTD_SHORT_CACHE_TAG_BITS]; + int const dictTagsMatchL3 = ZSTD_comparePackedTags(dictMatchIndexAndTagL3, dictHashAndTagL3); + const BYTE* matchL3 = base + matchIndexL3; + hashLong[hl3] = curr + 1; + + /* check prefix long +1 match */ + if ((matchIndexL3 >= prefixLowestIndex) && (MEM_read64(matchL3) == MEM_read64(ip+1))) { + mLength = ZSTD_count(ip+9, matchL3+8, iend) + 8; + ip++; + offset = (U32)(ip-matchL3); + while (((ip>anchor) & (matchL3>prefixLowest)) && (ip[-1] == matchL3[-1])) { ip--; matchL3--; mLength++; } /* catch up */ + goto _match_found; + } else if (dictTagsMatchL3) { + /* check dict long +1 match */ + U32 const dictMatchIndexL3 = dictMatchIndexAndTagL3 >> ZSTD_SHORT_CACHE_TAG_BITS; + const BYTE* dictMatchL3 = dictBase + dictMatchIndexL3; + assert(dictMatchL3 < dictEnd); + if (dictMatchL3 > dictStart && MEM_read64(dictMatchL3) == MEM_read64(ip+1)) { + mLength = ZSTD_count_2segments(ip+1+8, dictMatchL3+8, iend, dictEnd, prefixLowest) + 8; + ip++; + offset = (U32)(curr + 1 - dictMatchIndexL3 - dictIndexDelta); + while (((ip>anchor) & (dictMatchL3>dictStart)) && (ip[-1] == dictMatchL3[-1])) { ip--; dictMatchL3--; mLength++; } /* catch up */ + goto _match_found; + } } } + + /* if no long +1 match, explore the short match we found */ + if (matchIndexS < prefixLowestIndex) { + mLength = ZSTD_count_2segments(ip+4, match+4, iend, dictEnd, prefixLowest) + 4; + offset = (U32)(curr - matchIndexS); + while (((ip>anchor) & (match>dictStart)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */ + } else { + mLength = ZSTD_count(ip+4, match+4, iend) + 4; + offset = (U32)(ip - match); + while (((ip>anchor) & (match>prefixLowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */ + } + +_match_found: + offset_2 = offset_1; + offset_1 = offset; + + ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength); + +_match_stored: + /* match found */ + ip += mLength; + anchor = ip; + + if (ip <= ilimit) { + /* Complementary insertion */ + /* done after iLimit test, as candidates could be > iend-8 */ + { U32 const indexToInsert = curr+2; + hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert; + hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base); + hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert; + hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base); + } + + /* check immediate repcode */ + while (ip <= ilimit) { + U32 const current2 = (U32)(ip-base); + U32 const repIndex2 = current2 - offset_2; + const BYTE* repMatch2 = repIndex2 < prefixLowestIndex ? + dictBase + repIndex2 - dictIndexDelta : + base + repIndex2; + if ( (ZSTD_index_overlap_check(prefixLowestIndex, repIndex2)) + && (MEM_read32(repMatch2) == MEM_read32(ip)) ) { + const BYTE* const repEnd2 = repIndex2 < prefixLowestIndex ? dictEnd : iend; + size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixLowest) + 4; + U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */ + ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2); + hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2; + hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2; + ip += repLength2; + anchor = ip; + continue; + } + break; + } + } + } /* while (ip < ilimit) */ + + /* save reps for next block */ + rep[0] = offset_1; + rep[1] = offset_2; + + /* Return the last literals size */ + return (size_t)(iend - anchor); +} + +#define ZSTD_GEN_DFAST_FN(dictMode, mls) \ + static size_t ZSTD_compressBlock_doubleFast_##dictMode##_##mls( \ + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], \ + void const* src, size_t srcSize) \ + { \ + return ZSTD_compressBlock_doubleFast_##dictMode##_generic(ms, seqStore, rep, src, srcSize, mls); \ + } + +ZSTD_GEN_DFAST_FN(noDict, 4) +ZSTD_GEN_DFAST_FN(noDict, 5) +ZSTD_GEN_DFAST_FN(noDict, 6) +ZSTD_GEN_DFAST_FN(noDict, 7) + +ZSTD_GEN_DFAST_FN(dictMatchState, 4) +ZSTD_GEN_DFAST_FN(dictMatchState, 5) +ZSTD_GEN_DFAST_FN(dictMatchState, 6) +ZSTD_GEN_DFAST_FN(dictMatchState, 7) + + +size_t ZSTD_compressBlock_doubleFast( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + const U32 mls = ms->cParams.minMatch; + switch(mls) + { + default: /* includes case 3 */ + case 4 : + return ZSTD_compressBlock_doubleFast_noDict_4(ms, seqStore, rep, src, srcSize); + case 5 : + return ZSTD_compressBlock_doubleFast_noDict_5(ms, seqStore, rep, src, srcSize); + case 6 : + return ZSTD_compressBlock_doubleFast_noDict_6(ms, seqStore, rep, src, srcSize); + case 7 : + return ZSTD_compressBlock_doubleFast_noDict_7(ms, seqStore, rep, src, srcSize); + } +} + + +size_t ZSTD_compressBlock_doubleFast_dictMatchState( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + const U32 mls = ms->cParams.minMatch; + switch(mls) + { + default: /* includes case 3 */ + case 4 : + return ZSTD_compressBlock_doubleFast_dictMatchState_4(ms, seqStore, rep, src, srcSize); + case 5 : + return ZSTD_compressBlock_doubleFast_dictMatchState_5(ms, seqStore, rep, src, srcSize); + case 6 : + return ZSTD_compressBlock_doubleFast_dictMatchState_6(ms, seqStore, rep, src, srcSize); + case 7 : + return ZSTD_compressBlock_doubleFast_dictMatchState_7(ms, seqStore, rep, src, srcSize); + } +} + + +static +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_compressBlock_doubleFast_extDict_generic( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize, + U32 const mls /* template */) +{ + ZSTD_compressionParameters const* cParams = &ms->cParams; + U32* const hashLong = ms->hashTable; + U32 const hBitsL = cParams->hashLog; + U32* const hashSmall = ms->chainTable; + U32 const hBitsS = cParams->chainLog; + const BYTE* const istart = (const BYTE*)src; + const BYTE* ip = istart; + const BYTE* anchor = istart; + const BYTE* const iend = istart + srcSize; + const BYTE* const ilimit = iend - 8; + const BYTE* const base = ms->window.base; + const U32 endIndex = (U32)((size_t)(istart - base) + srcSize); + const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog); + const U32 dictStartIndex = lowLimit; + const U32 dictLimit = ms->window.dictLimit; + const U32 prefixStartIndex = (dictLimit > lowLimit) ? dictLimit : lowLimit; + const BYTE* const prefixStart = base + prefixStartIndex; + const BYTE* const dictBase = ms->window.dictBase; + const BYTE* const dictStart = dictBase + dictStartIndex; + const BYTE* const dictEnd = dictBase + prefixStartIndex; + U32 offset_1=rep[0], offset_2=rep[1]; + + DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_extDict_generic (srcSize=%zu)", srcSize); + + /* if extDict is invalidated due to maxDistance, switch to "regular" variant */ + if (prefixStartIndex == dictStartIndex) + return ZSTD_compressBlock_doubleFast(ms, seqStore, rep, src, srcSize); + + /* Search Loop */ + while (ip < ilimit) { /* < instead of <=, because (ip+1) */ + const size_t hSmall = ZSTD_hashPtr(ip, hBitsS, mls); + const U32 matchIndex = hashSmall[hSmall]; + const BYTE* const matchBase = matchIndex < prefixStartIndex ? dictBase : base; + const BYTE* match = matchBase + matchIndex; + + const size_t hLong = ZSTD_hashPtr(ip, hBitsL, 8); + const U32 matchLongIndex = hashLong[hLong]; + const BYTE* const matchLongBase = matchLongIndex < prefixStartIndex ? dictBase : base; + const BYTE* matchLong = matchLongBase + matchLongIndex; + + const U32 curr = (U32)(ip-base); + const U32 repIndex = curr + 1 - offset_1; /* offset_1 expected <= curr +1 */ + const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base; + const BYTE* const repMatch = repBase + repIndex; + size_t mLength; + hashSmall[hSmall] = hashLong[hLong] = curr; /* update hash table */ + + if (((ZSTD_index_overlap_check(prefixStartIndex, repIndex)) + & (offset_1 <= curr+1 - dictStartIndex)) /* note: we are searching at curr+1 */ + && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) { + const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend; + mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4; + ip++; + ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength); + } else { + if ((matchLongIndex > dictStartIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) { + const BYTE* const matchEnd = matchLongIndex < prefixStartIndex ? dictEnd : iend; + const BYTE* const lowMatchPtr = matchLongIndex < prefixStartIndex ? dictStart : prefixStart; + U32 offset; + mLength = ZSTD_count_2segments(ip+8, matchLong+8, iend, matchEnd, prefixStart) + 8; + offset = curr - matchLongIndex; + while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */ + offset_2 = offset_1; + offset_1 = offset; + ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength); + + } else if ((matchIndex > dictStartIndex) && (MEM_read32(match) == MEM_read32(ip))) { + size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8); + U32 const matchIndex3 = hashLong[h3]; + const BYTE* const match3Base = matchIndex3 < prefixStartIndex ? dictBase : base; + const BYTE* match3 = match3Base + matchIndex3; + U32 offset; + hashLong[h3] = curr + 1; + if ( (matchIndex3 > dictStartIndex) && (MEM_read64(match3) == MEM_read64(ip+1)) ) { + const BYTE* const matchEnd = matchIndex3 < prefixStartIndex ? dictEnd : iend; + const BYTE* const lowMatchPtr = matchIndex3 < prefixStartIndex ? dictStart : prefixStart; + mLength = ZSTD_count_2segments(ip+9, match3+8, iend, matchEnd, prefixStart) + 8; + ip++; + offset = curr+1 - matchIndex3; + while (((ip>anchor) & (match3>lowMatchPtr)) && (ip[-1] == match3[-1])) { ip--; match3--; mLength++; } /* catch up */ + } else { + const BYTE* const matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend; + const BYTE* const lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart; + mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4; + offset = curr - matchIndex; + while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */ + } + offset_2 = offset_1; + offset_1 = offset; + ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength); + + } else { + ip += ((ip-anchor) >> kSearchStrength) + 1; + continue; + } } + + /* move to next sequence start */ + ip += mLength; + anchor = ip; + + if (ip <= ilimit) { + /* Complementary insertion */ + /* done after iLimit test, as candidates could be > iend-8 */ + { U32 const indexToInsert = curr+2; + hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert; + hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base); + hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert; + hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base); + } + + /* check immediate repcode */ + while (ip <= ilimit) { + U32 const current2 = (U32)(ip-base); + U32 const repIndex2 = current2 - offset_2; + const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2; + if ( ((ZSTD_index_overlap_check(prefixStartIndex, repIndex2)) + & (offset_2 <= current2 - dictStartIndex)) + && (MEM_read32(repMatch2) == MEM_read32(ip)) ) { + const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend; + size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4; + U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */ + ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2); + hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2; + hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2; + ip += repLength2; + anchor = ip; + continue; + } + break; + } } } + + /* save reps for next block */ + rep[0] = offset_1; + rep[1] = offset_2; + + /* Return the last literals size */ + return (size_t)(iend - anchor); +} + +ZSTD_GEN_DFAST_FN(extDict, 4) +ZSTD_GEN_DFAST_FN(extDict, 5) +ZSTD_GEN_DFAST_FN(extDict, 6) +ZSTD_GEN_DFAST_FN(extDict, 7) + +size_t ZSTD_compressBlock_doubleFast_extDict( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + U32 const mls = ms->cParams.minMatch; + switch(mls) + { + default: /* includes case 3 */ + case 4 : + return ZSTD_compressBlock_doubleFast_extDict_4(ms, seqStore, rep, src, srcSize); + case 5 : + return ZSTD_compressBlock_doubleFast_extDict_5(ms, seqStore, rep, src, srcSize); + case 6 : + return ZSTD_compressBlock_doubleFast_extDict_6(ms, seqStore, rep, src, srcSize); + case 7 : + return ZSTD_compressBlock_doubleFast_extDict_7(ms, seqStore, rep, src, srcSize); + } +} + +#endif /* ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR */ diff --git a/src/third-party/zstd/compress/zstd_double_fast.h b/src/third-party/zstd/compress/zstd_double_fast.h new file mode 100644 index 0000000000000..cd562fea8ef6b --- /dev/null +++ b/src/third-party/zstd/compress/zstd_double_fast.h @@ -0,0 +1,42 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_DOUBLE_FAST_H +#define ZSTD_DOUBLE_FAST_H + +#include "../common/mem.h" /* U32 */ +#include "zstd_compress_internal.h" /* ZSTD_CCtx, size_t */ + +#ifndef ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR + +void ZSTD_fillDoubleHashTable(ZSTD_MatchState_t* ms, + void const* end, ZSTD_dictTableLoadMethod_e dtlm, + ZSTD_tableFillPurpose_e tfp); + +size_t ZSTD_compressBlock_doubleFast( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_doubleFast_dictMatchState( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_doubleFast_extDict( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + +#define ZSTD_COMPRESSBLOCK_DOUBLEFAST ZSTD_compressBlock_doubleFast +#define ZSTD_COMPRESSBLOCK_DOUBLEFAST_DICTMATCHSTATE ZSTD_compressBlock_doubleFast_dictMatchState +#define ZSTD_COMPRESSBLOCK_DOUBLEFAST_EXTDICT ZSTD_compressBlock_doubleFast_extDict +#else +#define ZSTD_COMPRESSBLOCK_DOUBLEFAST NULL +#define ZSTD_COMPRESSBLOCK_DOUBLEFAST_DICTMATCHSTATE NULL +#define ZSTD_COMPRESSBLOCK_DOUBLEFAST_EXTDICT NULL +#endif /* ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR */ + +#endif /* ZSTD_DOUBLE_FAST_H */ diff --git a/src/third-party/zstd/compress/zstd_fast.c b/src/third-party/zstd/compress/zstd_fast.c new file mode 100644 index 0000000000000..ee25bcbac8d8e --- /dev/null +++ b/src/third-party/zstd/compress/zstd_fast.c @@ -0,0 +1,985 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#include "zstd_compress_internal.h" /* ZSTD_hashPtr, ZSTD_count, ZSTD_storeSeq */ +#include "zstd_fast.h" + +static +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +void ZSTD_fillHashTableForCDict(ZSTD_MatchState_t* ms, + const void* const end, + ZSTD_dictTableLoadMethod_e dtlm) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashTable = ms->hashTable; + U32 const hBits = cParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS; + U32 const mls = cParams->minMatch; + const BYTE* const base = ms->window.base; + const BYTE* ip = base + ms->nextToUpdate; + const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE; + const U32 fastHashFillStep = 3; + + /* Currently, we always use ZSTD_dtlm_full for filling CDict tables. + * Feel free to remove this assert if there's a good reason! */ + assert(dtlm == ZSTD_dtlm_full); + + /* Always insert every fastHashFillStep position into the hash table. + * Insert the other positions if their hash entry is empty. + */ + for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) { + U32 const curr = (U32)(ip - base); + { size_t const hashAndTag = ZSTD_hashPtr(ip, hBits, mls); + ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr); } + + if (dtlm == ZSTD_dtlm_fast) continue; + /* Only load extra positions for ZSTD_dtlm_full */ + { U32 p; + for (p = 1; p < fastHashFillStep; ++p) { + size_t const hashAndTag = ZSTD_hashPtr(ip + p, hBits, mls); + if (hashTable[hashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS] == 0) { /* not yet filled */ + ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr + p); + } } } } +} + +static +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +void ZSTD_fillHashTableForCCtx(ZSTD_MatchState_t* ms, + const void* const end, + ZSTD_dictTableLoadMethod_e dtlm) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashTable = ms->hashTable; + U32 const hBits = cParams->hashLog; + U32 const mls = cParams->minMatch; + const BYTE* const base = ms->window.base; + const BYTE* ip = base + ms->nextToUpdate; + const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE; + const U32 fastHashFillStep = 3; + + /* Currently, we always use ZSTD_dtlm_fast for filling CCtx tables. + * Feel free to remove this assert if there's a good reason! */ + assert(dtlm == ZSTD_dtlm_fast); + + /* Always insert every fastHashFillStep position into the hash table. + * Insert the other positions if their hash entry is empty. + */ + for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) { + U32 const curr = (U32)(ip - base); + size_t const hash0 = ZSTD_hashPtr(ip, hBits, mls); + hashTable[hash0] = curr; + if (dtlm == ZSTD_dtlm_fast) continue; + /* Only load extra positions for ZSTD_dtlm_full */ + { U32 p; + for (p = 1; p < fastHashFillStep; ++p) { + size_t const hash = ZSTD_hashPtr(ip + p, hBits, mls); + if (hashTable[hash] == 0) { /* not yet filled */ + hashTable[hash] = curr + p; + } } } } +} + +void ZSTD_fillHashTable(ZSTD_MatchState_t* ms, + const void* const end, + ZSTD_dictTableLoadMethod_e dtlm, + ZSTD_tableFillPurpose_e tfp) +{ + if (tfp == ZSTD_tfp_forCDict) { + ZSTD_fillHashTableForCDict(ms, end, dtlm); + } else { + ZSTD_fillHashTableForCCtx(ms, end, dtlm); + } +} + + +typedef int (*ZSTD_match4Found) (const BYTE* currentPtr, const BYTE* matchAddress, U32 matchIdx, U32 idxLowLimit); + +static int +ZSTD_match4Found_cmov(const BYTE* currentPtr, const BYTE* matchAddress, U32 matchIdx, U32 idxLowLimit) +{ + /* Array of ~random data, should have low probability of matching data. + * Load from here if the index is invalid. + * Used to avoid unpredictable branches. */ + static const BYTE dummy[] = {0x12,0x34,0x56,0x78}; + + /* currentIdx >= lowLimit is a (somewhat) unpredictable branch. + * However expression below compiles into conditional move. + */ + const BYTE* mvalAddr = ZSTD_selectAddr(matchIdx, idxLowLimit, matchAddress, dummy); + /* Note: this used to be written as : return test1 && test2; + * Unfortunately, once inlined, these tests become branches, + * in which case it becomes critical that they are executed in the right order (test1 then test2). + * So we have to write these tests in a specific manner to ensure their ordering. + */ + if (MEM_read32(currentPtr) != MEM_read32(mvalAddr)) return 0; + /* force ordering of these tests, which matters once the function is inlined, as they become branches */ +#if defined(__GNUC__) + __asm__(""); +#endif + return matchIdx >= idxLowLimit; +} + +static int +ZSTD_match4Found_branch(const BYTE* currentPtr, const BYTE* matchAddress, U32 matchIdx, U32 idxLowLimit) +{ + /* using a branch instead of a cmov, + * because it's faster in scenarios where matchIdx >= idxLowLimit is generally true, + * aka almost all candidates are within range */ + U32 mval; + if (matchIdx >= idxLowLimit) { + mval = MEM_read32(matchAddress); + } else { + mval = MEM_read32(currentPtr) ^ 1; /* guaranteed to not match. */ + } + + return (MEM_read32(currentPtr) == mval); +} + + +/** + * If you squint hard enough (and ignore repcodes), the search operation at any + * given position is broken into 4 stages: + * + * 1. Hash (map position to hash value via input read) + * 2. Lookup (map hash val to index via hashtable read) + * 3. Load (map index to value at that position via input read) + * 4. Compare + * + * Each of these steps involves a memory read at an address which is computed + * from the previous step. This means these steps must be sequenced and their + * latencies are cumulative. + * + * Rather than do 1->2->3->4 sequentially for a single position before moving + * onto the next, this implementation interleaves these operations across the + * next few positions: + * + * R = Repcode Read & Compare + * H = Hash + * T = Table Lookup + * M = Match Read & Compare + * + * Pos | Time --> + * ----+------------------- + * N | ... M + * N+1 | ... TM + * N+2 | R H T M + * N+3 | H TM + * N+4 | R H T M + * N+5 | H ... + * N+6 | R ... + * + * This is very much analogous to the pipelining of execution in a CPU. And just + * like a CPU, we have to dump the pipeline when we find a match (i.e., take a + * branch). + * + * When this happens, we throw away our current state, and do the following prep + * to re-enter the loop: + * + * Pos | Time --> + * ----+------------------- + * N | H T + * N+1 | H + * + * This is also the work we do at the beginning to enter the loop initially. + */ +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_compressBlock_fast_noDict_generic( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize, + U32 const mls, int useCmov) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashTable = ms->hashTable; + U32 const hlog = cParams->hashLog; + size_t const stepSize = cParams->targetLength + !(cParams->targetLength) + 1; /* min 2 */ + const BYTE* const base = ms->window.base; + const BYTE* const istart = (const BYTE*)src; + const U32 endIndex = (U32)((size_t)(istart - base) + srcSize); + const U32 prefixStartIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog); + const BYTE* const prefixStart = base + prefixStartIndex; + const BYTE* const iend = istart + srcSize; + const BYTE* const ilimit = iend - HASH_READ_SIZE; + + const BYTE* anchor = istart; + const BYTE* ip0 = istart; + const BYTE* ip1; + const BYTE* ip2; + const BYTE* ip3; + U32 current0; + + U32 rep_offset1 = rep[0]; + U32 rep_offset2 = rep[1]; + U32 offsetSaved1 = 0, offsetSaved2 = 0; + + size_t hash0; /* hash for ip0 */ + size_t hash1; /* hash for ip1 */ + U32 matchIdx; /* match idx for ip0 */ + + U32 offcode; + const BYTE* match0; + size_t mLength; + + /* ip0 and ip1 are always adjacent. The targetLength skipping and + * uncompressibility acceleration is applied to every other position, + * matching the behavior of #1562. step therefore represents the gap + * between pairs of positions, from ip0 to ip2 or ip1 to ip3. */ + size_t step; + const BYTE* nextStep; + const size_t kStepIncr = (1 << (kSearchStrength - 1)); + const ZSTD_match4Found matchFound = useCmov ? ZSTD_match4Found_cmov : ZSTD_match4Found_branch; + + DEBUGLOG(5, "ZSTD_compressBlock_fast_generic"); + ip0 += (ip0 == prefixStart); + { U32 const curr = (U32)(ip0 - base); + U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, cParams->windowLog); + U32 const maxRep = curr - windowLow; + if (rep_offset2 > maxRep) offsetSaved2 = rep_offset2, rep_offset2 = 0; + if (rep_offset1 > maxRep) offsetSaved1 = rep_offset1, rep_offset1 = 0; + } + + /* start each op */ +_start: /* Requires: ip0 */ + + step = stepSize; + nextStep = ip0 + kStepIncr; + + /* calculate positions, ip0 - anchor == 0, so we skip step calc */ + ip1 = ip0 + 1; + ip2 = ip0 + step; + ip3 = ip2 + 1; + + if (ip3 >= ilimit) { + goto _cleanup; + } + + hash0 = ZSTD_hashPtr(ip0, hlog, mls); + hash1 = ZSTD_hashPtr(ip1, hlog, mls); + + matchIdx = hashTable[hash0]; + + do { + /* load repcode match for ip[2]*/ + const U32 rval = MEM_read32(ip2 - rep_offset1); + + /* write back hash table entry */ + current0 = (U32)(ip0 - base); + hashTable[hash0] = current0; + + /* check repcode at ip[2] */ + if ((MEM_read32(ip2) == rval) & (rep_offset1 > 0)) { + ip0 = ip2; + match0 = ip0 - rep_offset1; + mLength = ip0[-1] == match0[-1]; + ip0 -= mLength; + match0 -= mLength; + offcode = REPCODE1_TO_OFFBASE; + mLength += 4; + + /* Write next hash table entry: it's already calculated. + * This write is known to be safe because ip1 is before the + * repcode (ip2). */ + hashTable[hash1] = (U32)(ip1 - base); + + goto _match; + } + + if (matchFound(ip0, base + matchIdx, matchIdx, prefixStartIndex)) { + /* Write next hash table entry (it's already calculated). + * This write is known to be safe because the ip1 == ip0 + 1, + * so searching will resume after ip1 */ + hashTable[hash1] = (U32)(ip1 - base); + + goto _offset; + } + + /* lookup ip[1] */ + matchIdx = hashTable[hash1]; + + /* hash ip[2] */ + hash0 = hash1; + hash1 = ZSTD_hashPtr(ip2, hlog, mls); + + /* advance to next positions */ + ip0 = ip1; + ip1 = ip2; + ip2 = ip3; + + /* write back hash table entry */ + current0 = (U32)(ip0 - base); + hashTable[hash0] = current0; + + if (matchFound(ip0, base + matchIdx, matchIdx, prefixStartIndex)) { + /* Write next hash table entry, since it's already calculated */ + if (step <= 4) { + /* Avoid writing an index if it's >= position where search will resume. + * The minimum possible match has length 4, so search can resume at ip0 + 4. + */ + hashTable[hash1] = (U32)(ip1 - base); + } + goto _offset; + } + + /* lookup ip[1] */ + matchIdx = hashTable[hash1]; + + /* hash ip[2] */ + hash0 = hash1; + hash1 = ZSTD_hashPtr(ip2, hlog, mls); + + /* advance to next positions */ + ip0 = ip1; + ip1 = ip2; + ip2 = ip0 + step; + ip3 = ip1 + step; + + /* calculate step */ + if (ip2 >= nextStep) { + step++; + PREFETCH_L1(ip1 + 64); + PREFETCH_L1(ip1 + 128); + nextStep += kStepIncr; + } + } while (ip3 < ilimit); + +_cleanup: + /* Note that there are probably still a couple positions one could search. + * However, it seems to be a meaningful performance hit to try to search + * them. So let's not. */ + + /* When the repcodes are outside of the prefix, we set them to zero before the loop. + * When the offsets are still zero, we need to restore them after the block to have a correct + * repcode history. If only one offset was invalid, it is easy. The tricky case is when both + * offsets were invalid. We need to figure out which offset to refill with. + * - If both offsets are zero they are in the same order. + * - If both offsets are non-zero, we won't restore the offsets from `offsetSaved[12]`. + * - If only one is zero, we need to decide which offset to restore. + * - If rep_offset1 is non-zero, then rep_offset2 must be offsetSaved1. + * - It is impossible for rep_offset2 to be non-zero. + * + * So if rep_offset1 started invalid (offsetSaved1 != 0) and became valid (rep_offset1 != 0), then + * set rep[0] = rep_offset1 and rep[1] = offsetSaved1. + */ + offsetSaved2 = ((offsetSaved1 != 0) && (rep_offset1 != 0)) ? offsetSaved1 : offsetSaved2; + + /* save reps for next block */ + rep[0] = rep_offset1 ? rep_offset1 : offsetSaved1; + rep[1] = rep_offset2 ? rep_offset2 : offsetSaved2; + + /* Return the last literals size */ + return (size_t)(iend - anchor); + +_offset: /* Requires: ip0, idx */ + + /* Compute the offset code. */ + match0 = base + matchIdx; + rep_offset2 = rep_offset1; + rep_offset1 = (U32)(ip0-match0); + offcode = OFFSET_TO_OFFBASE(rep_offset1); + mLength = 4; + + /* Count the backwards match length. */ + while (((ip0>anchor) & (match0>prefixStart)) && (ip0[-1] == match0[-1])) { + ip0--; + match0--; + mLength++; + } + +_match: /* Requires: ip0, match0, offcode */ + + /* Count the forward length. */ + mLength += ZSTD_count(ip0 + mLength, match0 + mLength, iend); + + ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength); + + ip0 += mLength; + anchor = ip0; + + /* Fill table and check for immediate repcode. */ + if (ip0 <= ilimit) { + /* Fill Table */ + assert(base+current0+2 > istart); /* check base overflow */ + hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */ + hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base); + + if (rep_offset2 > 0) { /* rep_offset2==0 means rep_offset2 is invalidated */ + while ( (ip0 <= ilimit) && (MEM_read32(ip0) == MEM_read32(ip0 - rep_offset2)) ) { + /* store sequence */ + size_t const rLength = ZSTD_count(ip0+4, ip0+4-rep_offset2, iend) + 4; + { U32 const tmpOff = rep_offset2; rep_offset2 = rep_offset1; rep_offset1 = tmpOff; } /* swap rep_offset2 <=> rep_offset1 */ + hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base); + ip0 += rLength; + ZSTD_storeSeq(seqStore, 0 /*litLen*/, anchor, iend, REPCODE1_TO_OFFBASE, rLength); + anchor = ip0; + continue; /* faster when present (confirmed on gcc-8) ... (?) */ + } } } + + goto _start; +} + +#define ZSTD_GEN_FAST_FN(dictMode, mml, cmov) \ + static size_t ZSTD_compressBlock_fast_##dictMode##_##mml##_##cmov( \ + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], \ + void const* src, size_t srcSize) \ + { \ + return ZSTD_compressBlock_fast_##dictMode##_generic(ms, seqStore, rep, src, srcSize, mml, cmov); \ + } + +ZSTD_GEN_FAST_FN(noDict, 4, 1) +ZSTD_GEN_FAST_FN(noDict, 5, 1) +ZSTD_GEN_FAST_FN(noDict, 6, 1) +ZSTD_GEN_FAST_FN(noDict, 7, 1) + +ZSTD_GEN_FAST_FN(noDict, 4, 0) +ZSTD_GEN_FAST_FN(noDict, 5, 0) +ZSTD_GEN_FAST_FN(noDict, 6, 0) +ZSTD_GEN_FAST_FN(noDict, 7, 0) + +size_t ZSTD_compressBlock_fast( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + U32 const mml = ms->cParams.minMatch; + /* use cmov when "candidate in range" branch is likely unpredictable */ + int const useCmov = ms->cParams.windowLog < 19; + assert(ms->dictMatchState == NULL); + if (useCmov) { + switch(mml) + { + default: /* includes case 3 */ + case 4 : + return ZSTD_compressBlock_fast_noDict_4_1(ms, seqStore, rep, src, srcSize); + case 5 : + return ZSTD_compressBlock_fast_noDict_5_1(ms, seqStore, rep, src, srcSize); + case 6 : + return ZSTD_compressBlock_fast_noDict_6_1(ms, seqStore, rep, src, srcSize); + case 7 : + return ZSTD_compressBlock_fast_noDict_7_1(ms, seqStore, rep, src, srcSize); + } + } else { + /* use a branch instead */ + switch(mml) + { + default: /* includes case 3 */ + case 4 : + return ZSTD_compressBlock_fast_noDict_4_0(ms, seqStore, rep, src, srcSize); + case 5 : + return ZSTD_compressBlock_fast_noDict_5_0(ms, seqStore, rep, src, srcSize); + case 6 : + return ZSTD_compressBlock_fast_noDict_6_0(ms, seqStore, rep, src, srcSize); + case 7 : + return ZSTD_compressBlock_fast_noDict_7_0(ms, seqStore, rep, src, srcSize); + } + } +} + +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_compressBlock_fast_dictMatchState_generic( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize, U32 const mls, U32 const hasStep) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashTable = ms->hashTable; + U32 const hlog = cParams->hashLog; + /* support stepSize of 0 */ + U32 const stepSize = cParams->targetLength + !(cParams->targetLength); + const BYTE* const base = ms->window.base; + const BYTE* const istart = (const BYTE*)src; + const BYTE* ip0 = istart; + const BYTE* ip1 = ip0 + stepSize; /* we assert below that stepSize >= 1 */ + const BYTE* anchor = istart; + const U32 prefixStartIndex = ms->window.dictLimit; + const BYTE* const prefixStart = base + prefixStartIndex; + const BYTE* const iend = istart + srcSize; + const BYTE* const ilimit = iend - HASH_READ_SIZE; + U32 offset_1=rep[0], offset_2=rep[1]; + + const ZSTD_MatchState_t* const dms = ms->dictMatchState; + const ZSTD_compressionParameters* const dictCParams = &dms->cParams ; + const U32* const dictHashTable = dms->hashTable; + const U32 dictStartIndex = dms->window.dictLimit; + const BYTE* const dictBase = dms->window.base; + const BYTE* const dictStart = dictBase + dictStartIndex; + const BYTE* const dictEnd = dms->window.nextSrc; + const U32 dictIndexDelta = prefixStartIndex - (U32)(dictEnd - dictBase); + const U32 dictAndPrefixLength = (U32)(istart - prefixStart + dictEnd - dictStart); + const U32 dictHBits = dictCParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS; + + /* if a dictionary is still attached, it necessarily means that + * it is within window size. So we just check it. */ + const U32 maxDistance = 1U << cParams->windowLog; + const U32 endIndex = (U32)((size_t)(istart - base) + srcSize); + assert(endIndex - prefixStartIndex <= maxDistance); + (void)maxDistance; (void)endIndex; /* these variables are not used when assert() is disabled */ + + (void)hasStep; /* not currently specialized on whether it's accelerated */ + + /* ensure there will be no underflow + * when translating a dict index into a local index */ + assert(prefixStartIndex >= (U32)(dictEnd - dictBase)); + + if (ms->prefetchCDictTables) { + size_t const hashTableBytes = (((size_t)1) << dictCParams->hashLog) * sizeof(U32); + PREFETCH_AREA(dictHashTable, hashTableBytes); + } + + /* init */ + DEBUGLOG(5, "ZSTD_compressBlock_fast_dictMatchState_generic"); + ip0 += (dictAndPrefixLength == 0); + /* dictMatchState repCode checks don't currently handle repCode == 0 + * disabling. */ + assert(offset_1 <= dictAndPrefixLength); + assert(offset_2 <= dictAndPrefixLength); + + /* Outer search loop */ + assert(stepSize >= 1); + while (ip1 <= ilimit) { /* repcode check at (ip0 + 1) is safe because ip0 < ip1 */ + size_t mLength; + size_t hash0 = ZSTD_hashPtr(ip0, hlog, mls); + + size_t const dictHashAndTag0 = ZSTD_hashPtr(ip0, dictHBits, mls); + U32 dictMatchIndexAndTag = dictHashTable[dictHashAndTag0 >> ZSTD_SHORT_CACHE_TAG_BITS]; + int dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag0); + + U32 matchIndex = hashTable[hash0]; + U32 curr = (U32)(ip0 - base); + size_t step = stepSize; + const size_t kStepIncr = 1 << kSearchStrength; + const BYTE* nextStep = ip0 + kStepIncr; + + /* Inner search loop */ + while (1) { + const BYTE* match = base + matchIndex; + const U32 repIndex = curr + 1 - offset_1; + const BYTE* repMatch = (repIndex < prefixStartIndex) ? + dictBase + (repIndex - dictIndexDelta) : + base + repIndex; + const size_t hash1 = ZSTD_hashPtr(ip1, hlog, mls); + size_t const dictHashAndTag1 = ZSTD_hashPtr(ip1, dictHBits, mls); + hashTable[hash0] = curr; /* update hash table */ + + if ((ZSTD_index_overlap_check(prefixStartIndex, repIndex)) + && (MEM_read32(repMatch) == MEM_read32(ip0 + 1))) { + const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend; + mLength = ZSTD_count_2segments(ip0 + 1 + 4, repMatch + 4, iend, repMatchEnd, prefixStart) + 4; + ip0++; + ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength); + break; + } + + if (dictTagsMatch) { + /* Found a possible dict match */ + const U32 dictMatchIndex = dictMatchIndexAndTag >> ZSTD_SHORT_CACHE_TAG_BITS; + const BYTE* dictMatch = dictBase + dictMatchIndex; + if (dictMatchIndex > dictStartIndex && + MEM_read32(dictMatch) == MEM_read32(ip0)) { + /* To replicate extDict parse behavior, we only use dict matches when the normal matchIndex is invalid */ + if (matchIndex <= prefixStartIndex) { + U32 const offset = (U32) (curr - dictMatchIndex - dictIndexDelta); + mLength = ZSTD_count_2segments(ip0 + 4, dictMatch + 4, iend, dictEnd, prefixStart) + 4; + while (((ip0 > anchor) & (dictMatch > dictStart)) + && (ip0[-1] == dictMatch[-1])) { + ip0--; + dictMatch--; + mLength++; + } /* catch up */ + offset_2 = offset_1; + offset_1 = offset; + ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength); + break; + } + } + } + + if (ZSTD_match4Found_cmov(ip0, match, matchIndex, prefixStartIndex)) { + /* found a regular match of size >= 4 */ + U32 const offset = (U32) (ip0 - match); + mLength = ZSTD_count(ip0 + 4, match + 4, iend) + 4; + while (((ip0 > anchor) & (match > prefixStart)) + && (ip0[-1] == match[-1])) { + ip0--; + match--; + mLength++; + } /* catch up */ + offset_2 = offset_1; + offset_1 = offset; + ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength); + break; + } + + /* Prepare for next iteration */ + dictMatchIndexAndTag = dictHashTable[dictHashAndTag1 >> ZSTD_SHORT_CACHE_TAG_BITS]; + dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag1); + matchIndex = hashTable[hash1]; + + if (ip1 >= nextStep) { + step++; + nextStep += kStepIncr; + } + ip0 = ip1; + ip1 = ip1 + step; + if (ip1 > ilimit) goto _cleanup; + + curr = (U32)(ip0 - base); + hash0 = hash1; + } /* end inner search loop */ + + /* match found */ + assert(mLength); + ip0 += mLength; + anchor = ip0; + + if (ip0 <= ilimit) { + /* Fill Table */ + assert(base+curr+2 > istart); /* check base overflow */ + hashTable[ZSTD_hashPtr(base+curr+2, hlog, mls)] = curr+2; /* here because curr+2 could be > iend-8 */ + hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base); + + /* check immediate repcode */ + while (ip0 <= ilimit) { + U32 const current2 = (U32)(ip0-base); + U32 const repIndex2 = current2 - offset_2; + const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? + dictBase - dictIndexDelta + repIndex2 : + base + repIndex2; + if ( (ZSTD_index_overlap_check(prefixStartIndex, repIndex2)) + && (MEM_read32(repMatch2) == MEM_read32(ip0))) { + const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend; + size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4; + U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */ + ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2); + hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = current2; + ip0 += repLength2; + anchor = ip0; + continue; + } + break; + } + } + + /* Prepare for next iteration */ + assert(ip0 == anchor); + ip1 = ip0 + stepSize; + } + +_cleanup: + /* save reps for next block */ + rep[0] = offset_1; + rep[1] = offset_2; + + /* Return the last literals size */ + return (size_t)(iend - anchor); +} + + +ZSTD_GEN_FAST_FN(dictMatchState, 4, 0) +ZSTD_GEN_FAST_FN(dictMatchState, 5, 0) +ZSTD_GEN_FAST_FN(dictMatchState, 6, 0) +ZSTD_GEN_FAST_FN(dictMatchState, 7, 0) + +size_t ZSTD_compressBlock_fast_dictMatchState( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + U32 const mls = ms->cParams.minMatch; + assert(ms->dictMatchState != NULL); + switch(mls) + { + default: /* includes case 3 */ + case 4 : + return ZSTD_compressBlock_fast_dictMatchState_4_0(ms, seqStore, rep, src, srcSize); + case 5 : + return ZSTD_compressBlock_fast_dictMatchState_5_0(ms, seqStore, rep, src, srcSize); + case 6 : + return ZSTD_compressBlock_fast_dictMatchState_6_0(ms, seqStore, rep, src, srcSize); + case 7 : + return ZSTD_compressBlock_fast_dictMatchState_7_0(ms, seqStore, rep, src, srcSize); + } +} + + +static +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_compressBlock_fast_extDict_generic( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize, U32 const mls, U32 const hasStep) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashTable = ms->hashTable; + U32 const hlog = cParams->hashLog; + /* support stepSize of 0 */ + size_t const stepSize = cParams->targetLength + !(cParams->targetLength) + 1; + const BYTE* const base = ms->window.base; + const BYTE* const dictBase = ms->window.dictBase; + const BYTE* const istart = (const BYTE*)src; + const BYTE* anchor = istart; + const U32 endIndex = (U32)((size_t)(istart - base) + srcSize); + const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog); + const U32 dictStartIndex = lowLimit; + const BYTE* const dictStart = dictBase + dictStartIndex; + const U32 dictLimit = ms->window.dictLimit; + const U32 prefixStartIndex = dictLimit < lowLimit ? lowLimit : dictLimit; + const BYTE* const prefixStart = base + prefixStartIndex; + const BYTE* const dictEnd = dictBase + prefixStartIndex; + const BYTE* const iend = istart + srcSize; + const BYTE* const ilimit = iend - 8; + U32 offset_1=rep[0], offset_2=rep[1]; + U32 offsetSaved1 = 0, offsetSaved2 = 0; + + const BYTE* ip0 = istart; + const BYTE* ip1; + const BYTE* ip2; + const BYTE* ip3; + U32 current0; + + + size_t hash0; /* hash for ip0 */ + size_t hash1; /* hash for ip1 */ + U32 idx; /* match idx for ip0 */ + const BYTE* idxBase; /* base pointer for idx */ + + U32 offcode; + const BYTE* match0; + size_t mLength; + const BYTE* matchEnd = 0; /* initialize to avoid warning, assert != 0 later */ + + size_t step; + const BYTE* nextStep; + const size_t kStepIncr = (1 << (kSearchStrength - 1)); + + (void)hasStep; /* not currently specialized on whether it's accelerated */ + + DEBUGLOG(5, "ZSTD_compressBlock_fast_extDict_generic (offset_1=%u)", offset_1); + + /* switch to "regular" variant if extDict is invalidated due to maxDistance */ + if (prefixStartIndex == dictStartIndex) + return ZSTD_compressBlock_fast(ms, seqStore, rep, src, srcSize); + + { U32 const curr = (U32)(ip0 - base); + U32 const maxRep = curr - dictStartIndex; + if (offset_2 >= maxRep) offsetSaved2 = offset_2, offset_2 = 0; + if (offset_1 >= maxRep) offsetSaved1 = offset_1, offset_1 = 0; + } + + /* start each op */ +_start: /* Requires: ip0 */ + + step = stepSize; + nextStep = ip0 + kStepIncr; + + /* calculate positions, ip0 - anchor == 0, so we skip step calc */ + ip1 = ip0 + 1; + ip2 = ip0 + step; + ip3 = ip2 + 1; + + if (ip3 >= ilimit) { + goto _cleanup; + } + + hash0 = ZSTD_hashPtr(ip0, hlog, mls); + hash1 = ZSTD_hashPtr(ip1, hlog, mls); + + idx = hashTable[hash0]; + idxBase = idx < prefixStartIndex ? dictBase : base; + + do { + { /* load repcode match for ip[2] */ + U32 const current2 = (U32)(ip2 - base); + U32 const repIndex = current2 - offset_1; + const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base; + U32 rval; + if ( ((U32)(prefixStartIndex - repIndex) >= 4) /* intentional underflow */ + & (offset_1 > 0) ) { + rval = MEM_read32(repBase + repIndex); + } else { + rval = MEM_read32(ip2) ^ 1; /* guaranteed to not match. */ + } + + /* write back hash table entry */ + current0 = (U32)(ip0 - base); + hashTable[hash0] = current0; + + /* check repcode at ip[2] */ + if (MEM_read32(ip2) == rval) { + ip0 = ip2; + match0 = repBase + repIndex; + matchEnd = repIndex < prefixStartIndex ? dictEnd : iend; + assert((match0 != prefixStart) & (match0 != dictStart)); + mLength = ip0[-1] == match0[-1]; + ip0 -= mLength; + match0 -= mLength; + offcode = REPCODE1_TO_OFFBASE; + mLength += 4; + goto _match; + } } + + { /* load match for ip[0] */ + U32 const mval = idx >= dictStartIndex ? + MEM_read32(idxBase + idx) : + MEM_read32(ip0) ^ 1; /* guaranteed not to match */ + + /* check match at ip[0] */ + if (MEM_read32(ip0) == mval) { + /* found a match! */ + goto _offset; + } } + + /* lookup ip[1] */ + idx = hashTable[hash1]; + idxBase = idx < prefixStartIndex ? dictBase : base; + + /* hash ip[2] */ + hash0 = hash1; + hash1 = ZSTD_hashPtr(ip2, hlog, mls); + + /* advance to next positions */ + ip0 = ip1; + ip1 = ip2; + ip2 = ip3; + + /* write back hash table entry */ + current0 = (U32)(ip0 - base); + hashTable[hash0] = current0; + + { /* load match for ip[0] */ + U32 const mval = idx >= dictStartIndex ? + MEM_read32(idxBase + idx) : + MEM_read32(ip0) ^ 1; /* guaranteed not to match */ + + /* check match at ip[0] */ + if (MEM_read32(ip0) == mval) { + /* found a match! */ + goto _offset; + } } + + /* lookup ip[1] */ + idx = hashTable[hash1]; + idxBase = idx < prefixStartIndex ? dictBase : base; + + /* hash ip[2] */ + hash0 = hash1; + hash1 = ZSTD_hashPtr(ip2, hlog, mls); + + /* advance to next positions */ + ip0 = ip1; + ip1 = ip2; + ip2 = ip0 + step; + ip3 = ip1 + step; + + /* calculate step */ + if (ip2 >= nextStep) { + step++; + PREFETCH_L1(ip1 + 64); + PREFETCH_L1(ip1 + 128); + nextStep += kStepIncr; + } + } while (ip3 < ilimit); + +_cleanup: + /* Note that there are probably still a couple positions we could search. + * However, it seems to be a meaningful performance hit to try to search + * them. So let's not. */ + + /* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0), + * rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */ + offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2; + + /* save reps for next block */ + rep[0] = offset_1 ? offset_1 : offsetSaved1; + rep[1] = offset_2 ? offset_2 : offsetSaved2; + + /* Return the last literals size */ + return (size_t)(iend - anchor); + +_offset: /* Requires: ip0, idx, idxBase */ + + /* Compute the offset code. */ + { U32 const offset = current0 - idx; + const BYTE* const lowMatchPtr = idx < prefixStartIndex ? dictStart : prefixStart; + matchEnd = idx < prefixStartIndex ? dictEnd : iend; + match0 = idxBase + idx; + offset_2 = offset_1; + offset_1 = offset; + offcode = OFFSET_TO_OFFBASE(offset); + mLength = 4; + + /* Count the backwards match length. */ + while (((ip0>anchor) & (match0>lowMatchPtr)) && (ip0[-1] == match0[-1])) { + ip0--; + match0--; + mLength++; + } } + +_match: /* Requires: ip0, match0, offcode, matchEnd */ + + /* Count the forward length. */ + assert(matchEnd != 0); + mLength += ZSTD_count_2segments(ip0 + mLength, match0 + mLength, iend, matchEnd, prefixStart); + + ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength); + + ip0 += mLength; + anchor = ip0; + + /* write next hash table entry */ + if (ip1 < ip0) { + hashTable[hash1] = (U32)(ip1 - base); + } + + /* Fill table and check for immediate repcode. */ + if (ip0 <= ilimit) { + /* Fill Table */ + assert(base+current0+2 > istart); /* check base overflow */ + hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */ + hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base); + + while (ip0 <= ilimit) { + U32 const repIndex2 = (U32)(ip0-base) - offset_2; + const BYTE* const repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2; + if ( ((ZSTD_index_overlap_check(prefixStartIndex, repIndex2)) & (offset_2 > 0)) + && (MEM_read32(repMatch2) == MEM_read32(ip0)) ) { + const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend; + size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4; + { U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; } /* swap offset_2 <=> offset_1 */ + ZSTD_storeSeq(seqStore, 0 /*litlen*/, anchor, iend, REPCODE1_TO_OFFBASE, repLength2); + hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base); + ip0 += repLength2; + anchor = ip0; + continue; + } + break; + } } + + goto _start; +} + +ZSTD_GEN_FAST_FN(extDict, 4, 0) +ZSTD_GEN_FAST_FN(extDict, 5, 0) +ZSTD_GEN_FAST_FN(extDict, 6, 0) +ZSTD_GEN_FAST_FN(extDict, 7, 0) + +size_t ZSTD_compressBlock_fast_extDict( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + U32 const mls = ms->cParams.minMatch; + assert(ms->dictMatchState == NULL); + switch(mls) + { + default: /* includes case 3 */ + case 4 : + return ZSTD_compressBlock_fast_extDict_4_0(ms, seqStore, rep, src, srcSize); + case 5 : + return ZSTD_compressBlock_fast_extDict_5_0(ms, seqStore, rep, src, srcSize); + case 6 : + return ZSTD_compressBlock_fast_extDict_6_0(ms, seqStore, rep, src, srcSize); + case 7 : + return ZSTD_compressBlock_fast_extDict_7_0(ms, seqStore, rep, src, srcSize); + } +} diff --git a/src/third-party/zstd/compress/zstd_fast.h b/src/third-party/zstd/compress/zstd_fast.h new file mode 100644 index 0000000000000..216821ac33bf2 --- /dev/null +++ b/src/third-party/zstd/compress/zstd_fast.h @@ -0,0 +1,30 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_FAST_H +#define ZSTD_FAST_H + +#include "../common/mem.h" /* U32 */ +#include "zstd_compress_internal.h" + +void ZSTD_fillHashTable(ZSTD_MatchState_t* ms, + void const* end, ZSTD_dictTableLoadMethod_e dtlm, + ZSTD_tableFillPurpose_e tfp); +size_t ZSTD_compressBlock_fast( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_fast_dictMatchState( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_fast_extDict( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + +#endif /* ZSTD_FAST_H */ diff --git a/src/third-party/zstd/compress/zstd_lazy.c b/src/third-party/zstd/compress/zstd_lazy.c new file mode 100644 index 0000000000000..272ebe0ece7d9 --- /dev/null +++ b/src/third-party/zstd/compress/zstd_lazy.c @@ -0,0 +1,2199 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#include "zstd_compress_internal.h" +#include "zstd_lazy.h" +#include "../common/bits.h" /* ZSTD_countTrailingZeros64 */ + +#if !defined(ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR) \ + || !defined(ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR) \ + || !defined(ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR) \ + || !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR) + +#define kLazySkippingStep 8 + + +/*-************************************* +* Binary Tree search +***************************************/ + +static +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +void ZSTD_updateDUBT(ZSTD_MatchState_t* ms, + const BYTE* ip, const BYTE* iend, + U32 mls) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashTable = ms->hashTable; + U32 const hashLog = cParams->hashLog; + + U32* const bt = ms->chainTable; + U32 const btLog = cParams->chainLog - 1; + U32 const btMask = (1 << btLog) - 1; + + const BYTE* const base = ms->window.base; + U32 const target = (U32)(ip - base); + U32 idx = ms->nextToUpdate; + + if (idx != target) + DEBUGLOG(7, "ZSTD_updateDUBT, from %u to %u (dictLimit:%u)", + idx, target, ms->window.dictLimit); + assert(ip + 8 <= iend); /* condition for ZSTD_hashPtr */ + (void)iend; + + assert(idx >= ms->window.dictLimit); /* condition for valid base+idx */ + for ( ; idx < target ; idx++) { + size_t const h = ZSTD_hashPtr(base + idx, hashLog, mls); /* assumption : ip + 8 <= iend */ + U32 const matchIndex = hashTable[h]; + + U32* const nextCandidatePtr = bt + 2*(idx&btMask); + U32* const sortMarkPtr = nextCandidatePtr + 1; + + DEBUGLOG(8, "ZSTD_updateDUBT: insert %u", idx); + hashTable[h] = idx; /* Update Hash Table */ + *nextCandidatePtr = matchIndex; /* update BT like a chain */ + *sortMarkPtr = ZSTD_DUBT_UNSORTED_MARK; + } + ms->nextToUpdate = target; +} + + +/** ZSTD_insertDUBT1() : + * sort one already inserted but unsorted position + * assumption : curr >= btlow == (curr - btmask) + * doesn't fail */ +static +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +void ZSTD_insertDUBT1(const ZSTD_MatchState_t* ms, + U32 curr, const BYTE* inputEnd, + U32 nbCompares, U32 btLow, + const ZSTD_dictMode_e dictMode) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const bt = ms->chainTable; + U32 const btLog = cParams->chainLog - 1; + U32 const btMask = (1 << btLog) - 1; + size_t commonLengthSmaller=0, commonLengthLarger=0; + const BYTE* const base = ms->window.base; + const BYTE* const dictBase = ms->window.dictBase; + const U32 dictLimit = ms->window.dictLimit; + const BYTE* const ip = (curr>=dictLimit) ? base + curr : dictBase + curr; + const BYTE* const iend = (curr>=dictLimit) ? inputEnd : dictBase + dictLimit; + const BYTE* const dictEnd = dictBase + dictLimit; + const BYTE* const prefixStart = base + dictLimit; + const BYTE* match; + U32* smallerPtr = bt + 2*(curr&btMask); + U32* largerPtr = smallerPtr + 1; + U32 matchIndex = *smallerPtr; /* this candidate is unsorted : next sorted candidate is reached through *smallerPtr, while *largerPtr contains previous unsorted candidate (which is already saved and can be overwritten) */ + U32 dummy32; /* to be nullified at the end */ + U32 const windowValid = ms->window.lowLimit; + U32 const maxDistance = 1U << cParams->windowLog; + U32 const windowLow = (curr - windowValid > maxDistance) ? curr - maxDistance : windowValid; + + + DEBUGLOG(8, "ZSTD_insertDUBT1(%u) (dictLimit=%u, lowLimit=%u)", + curr, dictLimit, windowLow); + assert(curr >= btLow); + assert(ip < iend); /* condition for ZSTD_count */ + + for (; nbCompares && (matchIndex > windowLow); --nbCompares) { + U32* const nextPtr = bt + 2*(matchIndex & btMask); + size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ + assert(matchIndex < curr); + /* note : all candidates are now supposed sorted, + * but it's still possible to have nextPtr[1] == ZSTD_DUBT_UNSORTED_MARK + * when a real index has the same value as ZSTD_DUBT_UNSORTED_MARK */ + + if ( (dictMode != ZSTD_extDict) + || (matchIndex+matchLength >= dictLimit) /* both in current segment*/ + || (curr < dictLimit) /* both in extDict */) { + const BYTE* const mBase = ( (dictMode != ZSTD_extDict) + || (matchIndex+matchLength >= dictLimit)) ? + base : dictBase; + assert( (matchIndex+matchLength >= dictLimit) /* might be wrong if extDict is incorrectly set to 0 */ + || (curr < dictLimit) ); + match = mBase + matchIndex; + matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend); + } else { + match = dictBase + matchIndex; + matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); + if (matchIndex+matchLength >= dictLimit) + match = base + matchIndex; /* preparation for next read of match[matchLength] */ + } + + DEBUGLOG(8, "ZSTD_insertDUBT1: comparing %u with %u : found %u common bytes ", + curr, matchIndex, (U32)matchLength); + + if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */ + break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */ + } + + if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */ + /* match is smaller than current */ + *smallerPtr = matchIndex; /* update smaller idx */ + commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ + if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */ + DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is smaller : next => %u", + matchIndex, btLow, nextPtr[1]); + smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */ + matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */ + } else { + /* match is larger than current */ + *largerPtr = matchIndex; + commonLengthLarger = matchLength; + if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */ + DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is larger => %u", + matchIndex, btLow, nextPtr[0]); + largerPtr = nextPtr; + matchIndex = nextPtr[0]; + } } + + *smallerPtr = *largerPtr = 0; +} + + +static +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_DUBT_findBetterDictMatch ( + const ZSTD_MatchState_t* ms, + const BYTE* const ip, const BYTE* const iend, + size_t* offsetPtr, + size_t bestLength, + U32 nbCompares, + U32 const mls, + const ZSTD_dictMode_e dictMode) +{ + const ZSTD_MatchState_t * const dms = ms->dictMatchState; + const ZSTD_compressionParameters* const dmsCParams = &dms->cParams; + const U32 * const dictHashTable = dms->hashTable; + U32 const hashLog = dmsCParams->hashLog; + size_t const h = ZSTD_hashPtr(ip, hashLog, mls); + U32 dictMatchIndex = dictHashTable[h]; + + const BYTE* const base = ms->window.base; + const BYTE* const prefixStart = base + ms->window.dictLimit; + U32 const curr = (U32)(ip-base); + const BYTE* const dictBase = dms->window.base; + const BYTE* const dictEnd = dms->window.nextSrc; + U32 const dictHighLimit = (U32)(dms->window.nextSrc - dms->window.base); + U32 const dictLowLimit = dms->window.lowLimit; + U32 const dictIndexDelta = ms->window.lowLimit - dictHighLimit; + + U32* const dictBt = dms->chainTable; + U32 const btLog = dmsCParams->chainLog - 1; + U32 const btMask = (1 << btLog) - 1; + U32 const btLow = (btMask >= dictHighLimit - dictLowLimit) ? dictLowLimit : dictHighLimit - btMask; + + size_t commonLengthSmaller=0, commonLengthLarger=0; + + (void)dictMode; + assert(dictMode == ZSTD_dictMatchState); + + for (; nbCompares && (dictMatchIndex > dictLowLimit); --nbCompares) { + U32* const nextPtr = dictBt + 2*(dictMatchIndex & btMask); + size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ + const BYTE* match = dictBase + dictMatchIndex; + matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); + if (dictMatchIndex+matchLength >= dictHighLimit) + match = base + dictMatchIndex + dictIndexDelta; /* to prepare for next usage of match[matchLength] */ + + if (matchLength > bestLength) { + U32 matchIndex = dictMatchIndex + dictIndexDelta; + if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) ) { + DEBUGLOG(9, "ZSTD_DUBT_findBetterDictMatch(%u) : found better match length %u -> %u and offsetCode %u -> %u (dictMatchIndex %u, matchIndex %u)", + curr, (U32)bestLength, (U32)matchLength, (U32)*offsetPtr, OFFSET_TO_OFFBASE(curr - matchIndex), dictMatchIndex, matchIndex); + bestLength = matchLength, *offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex); + } + if (ip+matchLength == iend) { /* reached end of input : ip[matchLength] is not valid, no way to know if it's larger or smaller than match */ + break; /* drop, to guarantee consistency (miss a little bit of compression) */ + } + } + + if (match[matchLength] < ip[matchLength]) { + if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */ + commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ + dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ + } else { + /* match is larger than current */ + if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */ + commonLengthLarger = matchLength; + dictMatchIndex = nextPtr[0]; + } + } + + if (bestLength >= MINMATCH) { + U32 const mIndex = curr - (U32)OFFBASE_TO_OFFSET(*offsetPtr); (void)mIndex; + DEBUGLOG(8, "ZSTD_DUBT_findBetterDictMatch(%u) : found match of length %u and offsetCode %u (pos %u)", + curr, (U32)bestLength, (U32)*offsetPtr, mIndex); + } + return bestLength; + +} + + +static +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_DUBT_findBestMatch(ZSTD_MatchState_t* ms, + const BYTE* const ip, const BYTE* const iend, + size_t* offBasePtr, + U32 const mls, + const ZSTD_dictMode_e dictMode) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashTable = ms->hashTable; + U32 const hashLog = cParams->hashLog; + size_t const h = ZSTD_hashPtr(ip, hashLog, mls); + U32 matchIndex = hashTable[h]; + + const BYTE* const base = ms->window.base; + U32 const curr = (U32)(ip-base); + U32 const windowLow = ZSTD_getLowestMatchIndex(ms, curr, cParams->windowLog); + + U32* const bt = ms->chainTable; + U32 const btLog = cParams->chainLog - 1; + U32 const btMask = (1 << btLog) - 1; + U32 const btLow = (btMask >= curr) ? 0 : curr - btMask; + U32 const unsortLimit = MAX(btLow, windowLow); + + U32* nextCandidate = bt + 2*(matchIndex&btMask); + U32* unsortedMark = bt + 2*(matchIndex&btMask) + 1; + U32 nbCompares = 1U << cParams->searchLog; + U32 nbCandidates = nbCompares; + U32 previousCandidate = 0; + + DEBUGLOG(7, "ZSTD_DUBT_findBestMatch (%u) ", curr); + assert(ip <= iend-8); /* required for h calculation */ + assert(dictMode != ZSTD_dedicatedDictSearch); + + /* reach end of unsorted candidates list */ + while ( (matchIndex > unsortLimit) + && (*unsortedMark == ZSTD_DUBT_UNSORTED_MARK) + && (nbCandidates > 1) ) { + DEBUGLOG(8, "ZSTD_DUBT_findBestMatch: candidate %u is unsorted", + matchIndex); + *unsortedMark = previousCandidate; /* the unsortedMark becomes a reversed chain, to move up back to original position */ + previousCandidate = matchIndex; + matchIndex = *nextCandidate; + nextCandidate = bt + 2*(matchIndex&btMask); + unsortedMark = bt + 2*(matchIndex&btMask) + 1; + nbCandidates --; + } + + /* nullify last candidate if it's still unsorted + * simplification, detrimental to compression ratio, beneficial for speed */ + if ( (matchIndex > unsortLimit) + && (*unsortedMark==ZSTD_DUBT_UNSORTED_MARK) ) { + DEBUGLOG(7, "ZSTD_DUBT_findBestMatch: nullify last unsorted candidate %u", + matchIndex); + *nextCandidate = *unsortedMark = 0; + } + + /* batch sort stacked candidates */ + matchIndex = previousCandidate; + while (matchIndex) { /* will end on matchIndex == 0 */ + U32* const nextCandidateIdxPtr = bt + 2*(matchIndex&btMask) + 1; + U32 const nextCandidateIdx = *nextCandidateIdxPtr; + ZSTD_insertDUBT1(ms, matchIndex, iend, + nbCandidates, unsortLimit, dictMode); + matchIndex = nextCandidateIdx; + nbCandidates++; + } + + /* find longest match */ + { size_t commonLengthSmaller = 0, commonLengthLarger = 0; + const BYTE* const dictBase = ms->window.dictBase; + const U32 dictLimit = ms->window.dictLimit; + const BYTE* const dictEnd = dictBase + dictLimit; + const BYTE* const prefixStart = base + dictLimit; + U32* smallerPtr = bt + 2*(curr&btMask); + U32* largerPtr = bt + 2*(curr&btMask) + 1; + U32 matchEndIdx = curr + 8 + 1; + U32 dummy32; /* to be nullified at the end */ + size_t bestLength = 0; + + matchIndex = hashTable[h]; + hashTable[h] = curr; /* Update Hash Table */ + + for (; nbCompares && (matchIndex > windowLow); --nbCompares) { + U32* const nextPtr = bt + 2*(matchIndex & btMask); + size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ + const BYTE* match; + + if ((dictMode != ZSTD_extDict) || (matchIndex+matchLength >= dictLimit)) { + match = base + matchIndex; + matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend); + } else { + match = dictBase + matchIndex; + matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); + if (matchIndex+matchLength >= dictLimit) + match = base + matchIndex; /* to prepare for next usage of match[matchLength] */ + } + + if (matchLength > bestLength) { + if (matchLength > matchEndIdx - matchIndex) + matchEndIdx = matchIndex + (U32)matchLength; + if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr - matchIndex + 1) - ZSTD_highbit32((U32)*offBasePtr)) ) + bestLength = matchLength, *offBasePtr = OFFSET_TO_OFFBASE(curr - matchIndex); + if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */ + if (dictMode == ZSTD_dictMatchState) { + nbCompares = 0; /* in addition to avoiding checking any + * further in this loop, make sure we + * skip checking in the dictionary. */ + } + break; /* drop, to guarantee consistency (miss a little bit of compression) */ + } + } + + if (match[matchLength] < ip[matchLength]) { + /* match is smaller than current */ + *smallerPtr = matchIndex; /* update smaller idx */ + commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ + if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */ + smallerPtr = nextPtr+1; /* new "smaller" => larger of match */ + matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ + } else { + /* match is larger than current */ + *largerPtr = matchIndex; + commonLengthLarger = matchLength; + if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */ + largerPtr = nextPtr; + matchIndex = nextPtr[0]; + } } + + *smallerPtr = *largerPtr = 0; + + assert(nbCompares <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */ + if (dictMode == ZSTD_dictMatchState && nbCompares) { + bestLength = ZSTD_DUBT_findBetterDictMatch( + ms, ip, iend, + offBasePtr, bestLength, nbCompares, + mls, dictMode); + } + + assert(matchEndIdx > curr+8); /* ensure nextToUpdate is increased */ + ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */ + if (bestLength >= MINMATCH) { + U32 const mIndex = curr - (U32)OFFBASE_TO_OFFSET(*offBasePtr); (void)mIndex; + DEBUGLOG(8, "ZSTD_DUBT_findBestMatch(%u) : found match of length %u and offsetCode %u (pos %u)", + curr, (U32)bestLength, (U32)*offBasePtr, mIndex); + } + return bestLength; + } +} + + +/** ZSTD_BtFindBestMatch() : Tree updater, providing best match */ +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_BtFindBestMatch( ZSTD_MatchState_t* ms, + const BYTE* const ip, const BYTE* const iLimit, + size_t* offBasePtr, + const U32 mls /* template */, + const ZSTD_dictMode_e dictMode) +{ + DEBUGLOG(7, "ZSTD_BtFindBestMatch"); + if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */ + ZSTD_updateDUBT(ms, ip, iLimit, mls); + return ZSTD_DUBT_findBestMatch(ms, ip, iLimit, offBasePtr, mls, dictMode); +} + +/*********************************** +* Dedicated dict search +***********************************/ + +void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_MatchState_t* ms, const BYTE* const ip) +{ + const BYTE* const base = ms->window.base; + U32 const target = (U32)(ip - base); + U32* const hashTable = ms->hashTable; + U32* const chainTable = ms->chainTable; + U32 const chainSize = 1 << ms->cParams.chainLog; + U32 idx = ms->nextToUpdate; + U32 const minChain = chainSize < target - idx ? target - chainSize : idx; + U32 const bucketSize = 1 << ZSTD_LAZY_DDSS_BUCKET_LOG; + U32 const cacheSize = bucketSize - 1; + U32 const chainAttempts = (1 << ms->cParams.searchLog) - cacheSize; + U32 const chainLimit = chainAttempts > 255 ? 255 : chainAttempts; + + /* We know the hashtable is oversized by a factor of `bucketSize`. + * We are going to temporarily pretend `bucketSize == 1`, keeping only a + * single entry. We will use the rest of the space to construct a temporary + * chaintable. + */ + U32 const hashLog = ms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG; + U32* const tmpHashTable = hashTable; + U32* const tmpChainTable = hashTable + ((size_t)1 << hashLog); + U32 const tmpChainSize = (U32)((1 << ZSTD_LAZY_DDSS_BUCKET_LOG) - 1) << hashLog; + U32 const tmpMinChain = tmpChainSize < target ? target - tmpChainSize : idx; + U32 hashIdx; + + assert(ms->cParams.chainLog <= 24); + assert(ms->cParams.hashLog > ms->cParams.chainLog); + assert(idx != 0); + assert(tmpMinChain <= minChain); + + /* fill conventional hash table and conventional chain table */ + for ( ; idx < target; idx++) { + U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch); + if (idx >= tmpMinChain) { + tmpChainTable[idx - tmpMinChain] = hashTable[h]; + } + tmpHashTable[h] = idx; + } + + /* sort chains into ddss chain table */ + { + U32 chainPos = 0; + for (hashIdx = 0; hashIdx < (1U << hashLog); hashIdx++) { + U32 count; + U32 countBeyondMinChain = 0; + U32 i = tmpHashTable[hashIdx]; + for (count = 0; i >= tmpMinChain && count < cacheSize; count++) { + /* skip through the chain to the first position that won't be + * in the hash cache bucket */ + if (i < minChain) { + countBeyondMinChain++; + } + i = tmpChainTable[i - tmpMinChain]; + } + if (count == cacheSize) { + for (count = 0; count < chainLimit;) { + if (i < minChain) { + if (!i || ++countBeyondMinChain > cacheSize) { + /* only allow pulling `cacheSize` number of entries + * into the cache or chainTable beyond `minChain`, + * to replace the entries pulled out of the + * chainTable into the cache. This lets us reach + * back further without increasing the total number + * of entries in the chainTable, guaranteeing the + * DDSS chain table will fit into the space + * allocated for the regular one. */ + break; + } + } + chainTable[chainPos++] = i; + count++; + if (i < tmpMinChain) { + break; + } + i = tmpChainTable[i - tmpMinChain]; + } + } else { + count = 0; + } + if (count) { + tmpHashTable[hashIdx] = ((chainPos - count) << 8) + count; + } else { + tmpHashTable[hashIdx] = 0; + } + } + assert(chainPos <= chainSize); /* I believe this is guaranteed... */ + } + + /* move chain pointers into the last entry of each hash bucket */ + for (hashIdx = (1 << hashLog); hashIdx; ) { + U32 const bucketIdx = --hashIdx << ZSTD_LAZY_DDSS_BUCKET_LOG; + U32 const chainPackedPointer = tmpHashTable[hashIdx]; + U32 i; + for (i = 0; i < cacheSize; i++) { + hashTable[bucketIdx + i] = 0; + } + hashTable[bucketIdx + bucketSize - 1] = chainPackedPointer; + } + + /* fill the buckets of the hash table */ + for (idx = ms->nextToUpdate; idx < target; idx++) { + U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch) + << ZSTD_LAZY_DDSS_BUCKET_LOG; + U32 i; + /* Shift hash cache down 1. */ + for (i = cacheSize - 1; i; i--) + hashTable[h + i] = hashTable[h + i - 1]; + hashTable[h] = idx; + } + + ms->nextToUpdate = target; +} + +/* Returns the longest match length found in the dedicated dict search structure. + * If none are longer than the argument ml, then ml will be returned. + */ +FORCE_INLINE_TEMPLATE +size_t ZSTD_dedicatedDictSearch_lazy_search(size_t* offsetPtr, size_t ml, U32 nbAttempts, + const ZSTD_MatchState_t* const dms, + const BYTE* const ip, const BYTE* const iLimit, + const BYTE* const prefixStart, const U32 curr, + const U32 dictLimit, const size_t ddsIdx) { + const U32 ddsLowestIndex = dms->window.dictLimit; + const BYTE* const ddsBase = dms->window.base; + const BYTE* const ddsEnd = dms->window.nextSrc; + const U32 ddsSize = (U32)(ddsEnd - ddsBase); + const U32 ddsIndexDelta = dictLimit - ddsSize; + const U32 bucketSize = (1 << ZSTD_LAZY_DDSS_BUCKET_LOG); + const U32 bucketLimit = nbAttempts < bucketSize - 1 ? nbAttempts : bucketSize - 1; + U32 ddsAttempt; + U32 matchIndex; + + for (ddsAttempt = 0; ddsAttempt < bucketSize - 1; ddsAttempt++) { + PREFETCH_L1(ddsBase + dms->hashTable[ddsIdx + ddsAttempt]); + } + + { + U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1]; + U32 const chainIndex = chainPackedPointer >> 8; + + PREFETCH_L1(&dms->chainTable[chainIndex]); + } + + for (ddsAttempt = 0; ddsAttempt < bucketLimit; ddsAttempt++) { + size_t currentMl=0; + const BYTE* match; + matchIndex = dms->hashTable[ddsIdx + ddsAttempt]; + match = ddsBase + matchIndex; + + if (!matchIndex) { + return ml; + } + + /* guaranteed by table construction */ + (void)ddsLowestIndex; + assert(matchIndex >= ddsLowestIndex); + assert(match+4 <= ddsEnd); + if (MEM_read32(match) == MEM_read32(ip)) { + /* assumption : matchIndex <= dictLimit-4 (by table construction) */ + currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4; + } + + /* save best solution */ + if (currentMl > ml) { + ml = currentMl; + *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + ddsIndexDelta)); + if (ip+currentMl == iLimit) { + /* best possible, avoids read overflow on next attempt */ + return ml; + } + } + } + + { + U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1]; + U32 chainIndex = chainPackedPointer >> 8; + U32 const chainLength = chainPackedPointer & 0xFF; + U32 const chainAttempts = nbAttempts - ddsAttempt; + U32 const chainLimit = chainAttempts > chainLength ? chainLength : chainAttempts; + U32 chainAttempt; + + for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++) { + PREFETCH_L1(ddsBase + dms->chainTable[chainIndex + chainAttempt]); + } + + for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++, chainIndex++) { + size_t currentMl=0; + const BYTE* match; + matchIndex = dms->chainTable[chainIndex]; + match = ddsBase + matchIndex; + + /* guaranteed by table construction */ + assert(matchIndex >= ddsLowestIndex); + assert(match+4 <= ddsEnd); + if (MEM_read32(match) == MEM_read32(ip)) { + /* assumption : matchIndex <= dictLimit-4 (by table construction) */ + currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4; + } + + /* save best solution */ + if (currentMl > ml) { + ml = currentMl; + *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + ddsIndexDelta)); + if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ + } + } + } + return ml; +} + + +/* ********************************* +* Hash Chain +***********************************/ +#define NEXT_IN_CHAIN(d, mask) chainTable[(d) & (mask)] + +/* Update chains up to ip (excluded) + Assumption : always within prefix (i.e. not within extDict) */ +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +U32 ZSTD_insertAndFindFirstIndex_internal( + ZSTD_MatchState_t* ms, + const ZSTD_compressionParameters* const cParams, + const BYTE* ip, U32 const mls, U32 const lazySkipping) +{ + U32* const hashTable = ms->hashTable; + const U32 hashLog = cParams->hashLog; + U32* const chainTable = ms->chainTable; + const U32 chainMask = (1 << cParams->chainLog) - 1; + const BYTE* const base = ms->window.base; + const U32 target = (U32)(ip - base); + U32 idx = ms->nextToUpdate; + + while(idx < target) { /* catch up */ + size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls); + NEXT_IN_CHAIN(idx, chainMask) = hashTable[h]; + hashTable[h] = idx; + idx++; + /* Stop inserting every position when in the lazy skipping mode. */ + if (lazySkipping) + break; + } + + ms->nextToUpdate = target; + return hashTable[ZSTD_hashPtr(ip, hashLog, mls)]; +} + +U32 ZSTD_insertAndFindFirstIndex(ZSTD_MatchState_t* ms, const BYTE* ip) { + const ZSTD_compressionParameters* const cParams = &ms->cParams; + return ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, ms->cParams.minMatch, /* lazySkipping*/ 0); +} + +/* inlining is important to hardwire a hot branch (template emulation) */ +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_HcFindBestMatch( + ZSTD_MatchState_t* ms, + const BYTE* const ip, const BYTE* const iLimit, + size_t* offsetPtr, + const U32 mls, const ZSTD_dictMode_e dictMode) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const chainTable = ms->chainTable; + const U32 chainSize = (1 << cParams->chainLog); + const U32 chainMask = chainSize-1; + const BYTE* const base = ms->window.base; + const BYTE* const dictBase = ms->window.dictBase; + const U32 dictLimit = ms->window.dictLimit; + const BYTE* const prefixStart = base + dictLimit; + const BYTE* const dictEnd = dictBase + dictLimit; + const U32 curr = (U32)(ip-base); + const U32 maxDistance = 1U << cParams->windowLog; + const U32 lowestValid = ms->window.lowLimit; + const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid; + const U32 isDictionary = (ms->loadedDictEnd != 0); + const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance; + const U32 minChain = curr > chainSize ? curr - chainSize : 0; + U32 nbAttempts = 1U << cParams->searchLog; + size_t ml=4-1; + + const ZSTD_MatchState_t* const dms = ms->dictMatchState; + const U32 ddsHashLog = dictMode == ZSTD_dedicatedDictSearch + ? dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG : 0; + const size_t ddsIdx = dictMode == ZSTD_dedicatedDictSearch + ? ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG : 0; + + U32 matchIndex; + + if (dictMode == ZSTD_dedicatedDictSearch) { + const U32* entry = &dms->hashTable[ddsIdx]; + PREFETCH_L1(entry); + } + + /* HC4 match finder */ + matchIndex = ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, mls, ms->lazySkipping); + + for ( ; (matchIndex>=lowLimit) & (nbAttempts>0) ; nbAttempts--) { + size_t currentMl=0; + if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) { + const BYTE* const match = base + matchIndex; + assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */ + /* read 4B starting from (match + ml + 1 - sizeof(U32)) */ + if (MEM_read32(match + ml - 3) == MEM_read32(ip + ml - 3)) /* potentially better */ + currentMl = ZSTD_count(ip, match, iLimit); + } else { + const BYTE* const match = dictBase + matchIndex; + assert(match+4 <= dictEnd); + if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */ + currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4; + } + + /* save best solution */ + if (currentMl > ml) { + ml = currentMl; + *offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex); + if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ + } + + if (matchIndex <= minChain) break; + matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask); + } + + assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */ + if (dictMode == ZSTD_dedicatedDictSearch) { + ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts, dms, + ip, iLimit, prefixStart, curr, dictLimit, ddsIdx); + } else if (dictMode == ZSTD_dictMatchState) { + const U32* const dmsChainTable = dms->chainTable; + const U32 dmsChainSize = (1 << dms->cParams.chainLog); + const U32 dmsChainMask = dmsChainSize - 1; + const U32 dmsLowestIndex = dms->window.dictLimit; + const BYTE* const dmsBase = dms->window.base; + const BYTE* const dmsEnd = dms->window.nextSrc; + const U32 dmsSize = (U32)(dmsEnd - dmsBase); + const U32 dmsIndexDelta = dictLimit - dmsSize; + const U32 dmsMinChain = dmsSize > dmsChainSize ? dmsSize - dmsChainSize : 0; + + matchIndex = dms->hashTable[ZSTD_hashPtr(ip, dms->cParams.hashLog, mls)]; + + for ( ; (matchIndex>=dmsLowestIndex) & (nbAttempts>0) ; nbAttempts--) { + size_t currentMl=0; + const BYTE* const match = dmsBase + matchIndex; + assert(match+4 <= dmsEnd); + if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */ + currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4; + + /* save best solution */ + if (currentMl > ml) { + ml = currentMl; + assert(curr > matchIndex + dmsIndexDelta); + *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + dmsIndexDelta)); + if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ + } + + if (matchIndex <= dmsMinChain) break; + + matchIndex = dmsChainTable[matchIndex & dmsChainMask]; + } + } + + return ml; +} + +/* ********************************* +* (SIMD) Row-based matchfinder +***********************************/ +/* Constants for row-based hash */ +#define ZSTD_ROW_HASH_TAG_MASK ((1u << ZSTD_ROW_HASH_TAG_BITS) - 1) +#define ZSTD_ROW_HASH_MAX_ENTRIES 64 /* absolute maximum number of entries per row, for all configurations */ + +#define ZSTD_ROW_HASH_CACHE_MASK (ZSTD_ROW_HASH_CACHE_SIZE - 1) + +typedef U64 ZSTD_VecMask; /* Clarifies when we are interacting with a U64 representing a mask of matches */ + +/* ZSTD_VecMask_next(): + * Starting from the LSB, returns the idx of the next non-zero bit. + * Basically counting the nb of trailing zeroes. + */ +MEM_STATIC U32 ZSTD_VecMask_next(ZSTD_VecMask val) { + return ZSTD_countTrailingZeros64(val); +} + +/* ZSTD_row_nextIndex(): + * Returns the next index to insert at within a tagTable row, and updates the "head" + * value to reflect the update. Essentially cycles backwards from [1, {entries per row}) + */ +FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextIndex(BYTE* const tagRow, U32 const rowMask) { + U32 next = (*tagRow-1) & rowMask; + next += (next == 0) ? rowMask : 0; /* skip first position */ + *tagRow = (BYTE)next; + return next; +} + +/* ZSTD_isAligned(): + * Checks that a pointer is aligned to "align" bytes which must be a power of 2. + */ +MEM_STATIC int ZSTD_isAligned(void const* ptr, size_t align) { + assert((align & (align - 1)) == 0); + return (((size_t)ptr) & (align - 1)) == 0; +} + +/* ZSTD_row_prefetch(): + * Performs prefetching for the hashTable and tagTable at a given row. + */ +FORCE_INLINE_TEMPLATE void ZSTD_row_prefetch(U32 const* hashTable, BYTE const* tagTable, U32 const relRow, U32 const rowLog) { + PREFETCH_L1(hashTable + relRow); + if (rowLog >= 5) { + PREFETCH_L1(hashTable + relRow + 16); + /* Note: prefetching more of the hash table does not appear to be beneficial for 128-entry rows */ + } + PREFETCH_L1(tagTable + relRow); + if (rowLog == 6) { + PREFETCH_L1(tagTable + relRow + 32); + } + assert(rowLog == 4 || rowLog == 5 || rowLog == 6); + assert(ZSTD_isAligned(hashTable + relRow, 64)); /* prefetched hash row always 64-byte aligned */ + assert(ZSTD_isAligned(tagTable + relRow, (size_t)1 << rowLog)); /* prefetched tagRow sits on correct multiple of bytes (32,64,128) */ +} + +/* ZSTD_row_fillHashCache(): + * Fill up the hash cache starting at idx, prefetching up to ZSTD_ROW_HASH_CACHE_SIZE entries, + * but not beyond iLimit. + */ +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +void ZSTD_row_fillHashCache(ZSTD_MatchState_t* ms, const BYTE* base, + U32 const rowLog, U32 const mls, + U32 idx, const BYTE* const iLimit) +{ + U32 const* const hashTable = ms->hashTable; + BYTE const* const tagTable = ms->tagTable; + U32 const hashLog = ms->rowHashLog; + U32 const maxElemsToPrefetch = (base + idx) > iLimit ? 0 : (U32)(iLimit - (base + idx) + 1); + U32 const lim = idx + MIN(ZSTD_ROW_HASH_CACHE_SIZE, maxElemsToPrefetch); + + for (; idx < lim; ++idx) { + U32 const hash = (U32)ZSTD_hashPtrSalted(base + idx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt); + U32 const row = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; + ZSTD_row_prefetch(hashTable, tagTable, row, rowLog); + ms->hashCache[idx & ZSTD_ROW_HASH_CACHE_MASK] = hash; + } + + DEBUGLOG(6, "ZSTD_row_fillHashCache(): [%u %u %u %u %u %u %u %u]", ms->hashCache[0], ms->hashCache[1], + ms->hashCache[2], ms->hashCache[3], ms->hashCache[4], + ms->hashCache[5], ms->hashCache[6], ms->hashCache[7]); +} + +/* ZSTD_row_nextCachedHash(): + * Returns the hash of base + idx, and replaces the hash in the hash cache with the byte at + * base + idx + ZSTD_ROW_HASH_CACHE_SIZE. Also prefetches the appropriate rows from hashTable and tagTable. + */ +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +U32 ZSTD_row_nextCachedHash(U32* cache, U32 const* hashTable, + BYTE const* tagTable, BYTE const* base, + U32 idx, U32 const hashLog, + U32 const rowLog, U32 const mls, + U64 const hashSalt) +{ + U32 const newHash = (U32)ZSTD_hashPtrSalted(base+idx+ZSTD_ROW_HASH_CACHE_SIZE, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, hashSalt); + U32 const row = (newHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; + ZSTD_row_prefetch(hashTable, tagTable, row, rowLog); + { U32 const hash = cache[idx & ZSTD_ROW_HASH_CACHE_MASK]; + cache[idx & ZSTD_ROW_HASH_CACHE_MASK] = newHash; + return hash; + } +} + +/* ZSTD_row_update_internalImpl(): + * Updates the hash table with positions starting from updateStartIdx until updateEndIdx. + */ +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +void ZSTD_row_update_internalImpl(ZSTD_MatchState_t* ms, + U32 updateStartIdx, U32 const updateEndIdx, + U32 const mls, U32 const rowLog, + U32 const rowMask, U32 const useCache) +{ + U32* const hashTable = ms->hashTable; + BYTE* const tagTable = ms->tagTable; + U32 const hashLog = ms->rowHashLog; + const BYTE* const base = ms->window.base; + + DEBUGLOG(6, "ZSTD_row_update_internalImpl(): updateStartIdx=%u, updateEndIdx=%u", updateStartIdx, updateEndIdx); + for (; updateStartIdx < updateEndIdx; ++updateStartIdx) { + U32 const hash = useCache ? ZSTD_row_nextCachedHash(ms->hashCache, hashTable, tagTable, base, updateStartIdx, hashLog, rowLog, mls, ms->hashSalt) + : (U32)ZSTD_hashPtrSalted(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt); + U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; + U32* const row = hashTable + relRow; + BYTE* tagRow = tagTable + relRow; + U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask); + + assert(hash == ZSTD_hashPtrSalted(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt)); + tagRow[pos] = hash & ZSTD_ROW_HASH_TAG_MASK; + row[pos] = updateStartIdx; + } +} + +/* ZSTD_row_update_internal(): + * Inserts the byte at ip into the appropriate position in the hash table, and updates ms->nextToUpdate. + * Skips sections of long matches as is necessary. + */ +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +void ZSTD_row_update_internal(ZSTD_MatchState_t* ms, const BYTE* ip, + U32 const mls, U32 const rowLog, + U32 const rowMask, U32 const useCache) +{ + U32 idx = ms->nextToUpdate; + const BYTE* const base = ms->window.base; + const U32 target = (U32)(ip - base); + const U32 kSkipThreshold = 384; + const U32 kMaxMatchStartPositionsToUpdate = 96; + const U32 kMaxMatchEndPositionsToUpdate = 32; + + if (useCache) { + /* Only skip positions when using hash cache, i.e. + * if we are loading a dict, don't skip anything. + * If we decide to skip, then we only update a set number + * of positions at the beginning and end of the match. + */ + if (UNLIKELY(target - idx > kSkipThreshold)) { + U32 const bound = idx + kMaxMatchStartPositionsToUpdate; + ZSTD_row_update_internalImpl(ms, idx, bound, mls, rowLog, rowMask, useCache); + idx = target - kMaxMatchEndPositionsToUpdate; + ZSTD_row_fillHashCache(ms, base, rowLog, mls, idx, ip+1); + } + } + assert(target >= idx); + ZSTD_row_update_internalImpl(ms, idx, target, mls, rowLog, rowMask, useCache); + ms->nextToUpdate = target; +} + +/* ZSTD_row_update(): + * External wrapper for ZSTD_row_update_internal(). Used for filling the hashtable during dictionary + * processing. + */ +void ZSTD_row_update(ZSTD_MatchState_t* const ms, const BYTE* ip) { + const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6); + const U32 rowMask = (1u << rowLog) - 1; + const U32 mls = MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */); + + DEBUGLOG(5, "ZSTD_row_update(), rowLog=%u", rowLog); + ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 0 /* don't use cache */); +} + +/* Returns the mask width of bits group of which will be set to 1. Given not all + * architectures have easy movemask instruction, this helps to iterate over + * groups of bits easier and faster. + */ +FORCE_INLINE_TEMPLATE U32 +ZSTD_row_matchMaskGroupWidth(const U32 rowEntries) +{ + assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64); + assert(rowEntries <= ZSTD_ROW_HASH_MAX_ENTRIES); + (void)rowEntries; +#if defined(ZSTD_ARCH_ARM_NEON) + /* NEON path only works for little endian */ + if (!MEM_isLittleEndian()) { + return 1; + } + if (rowEntries == 16) { + return 4; + } + if (rowEntries == 32) { + return 2; + } + if (rowEntries == 64) { + return 1; + } +#endif + return 1; +} + +#if defined(ZSTD_ARCH_X86_SSE2) +FORCE_INLINE_TEMPLATE ZSTD_VecMask +ZSTD_row_getSSEMask(int nbChunks, const BYTE* const src, const BYTE tag, const U32 head) +{ + const __m128i comparisonMask = _mm_set1_epi8((char)tag); + int matches[4] = {0}; + int i; + assert(nbChunks == 1 || nbChunks == 2 || nbChunks == 4); + for (i=0; i> chunkSize; + do { + size_t chunk = MEM_readST(&src[i]); + chunk ^= splatChar; + chunk = (((chunk | x80) - x01) | chunk) & x80; + matches <<= chunkSize; + matches |= (chunk * extractMagic) >> shiftAmount; + i -= chunkSize; + } while (i >= 0); + } else { /* big endian: reverse bits during extraction */ + const size_t msb = xFF ^ (xFF >> 1); + const size_t extractMagic = (msb / 0x1FF) | msb; + do { + size_t chunk = MEM_readST(&src[i]); + chunk ^= splatChar; + chunk = (((chunk | x80) - x01) | chunk) & x80; + matches <<= chunkSize; + matches |= ((chunk >> 7) * extractMagic) >> shiftAmount; + i -= chunkSize; + } while (i >= 0); + } + matches = ~matches; + if (rowEntries == 16) { + return ZSTD_rotateRight_U16((U16)matches, headGrouped); + } else if (rowEntries == 32) { + return ZSTD_rotateRight_U32((U32)matches, headGrouped); + } else { + return ZSTD_rotateRight_U64((U64)matches, headGrouped); + } + } +#endif +} + +/* The high-level approach of the SIMD row based match finder is as follows: + * - Figure out where to insert the new entry: + * - Generate a hash for current input position and split it into a one byte of tag and `rowHashLog` bits of index. + * - The hash is salted by a value that changes on every context reset, so when the same table is used + * we will avoid collisions that would otherwise slow us down by introducing phantom matches. + * - The hashTable is effectively split into groups or "rows" of 15 or 31 entries of U32, and the index determines + * which row to insert into. + * - Determine the correct position within the row to insert the entry into. Each row of 15 or 31 can + * be considered as a circular buffer with a "head" index that resides in the tagTable (overall 16 or 32 bytes + * per row). + * - Use SIMD to efficiently compare the tags in the tagTable to the 1-byte tag calculated for the position and + * generate a bitfield that we can cycle through to check the collisions in the hash table. + * - Pick the longest match. + * - Insert the tag into the equivalent row and position in the tagTable. + */ +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_RowFindBestMatch( + ZSTD_MatchState_t* ms, + const BYTE* const ip, const BYTE* const iLimit, + size_t* offsetPtr, + const U32 mls, const ZSTD_dictMode_e dictMode, + const U32 rowLog) +{ + U32* const hashTable = ms->hashTable; + BYTE* const tagTable = ms->tagTable; + U32* const hashCache = ms->hashCache; + const U32 hashLog = ms->rowHashLog; + const ZSTD_compressionParameters* const cParams = &ms->cParams; + const BYTE* const base = ms->window.base; + const BYTE* const dictBase = ms->window.dictBase; + const U32 dictLimit = ms->window.dictLimit; + const BYTE* const prefixStart = base + dictLimit; + const BYTE* const dictEnd = dictBase + dictLimit; + const U32 curr = (U32)(ip-base); + const U32 maxDistance = 1U << cParams->windowLog; + const U32 lowestValid = ms->window.lowLimit; + const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid; + const U32 isDictionary = (ms->loadedDictEnd != 0); + const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance; + const U32 rowEntries = (1U << rowLog); + const U32 rowMask = rowEntries - 1; + const U32 cappedSearchLog = MIN(cParams->searchLog, rowLog); /* nb of searches is capped at nb entries per row */ + const U32 groupWidth = ZSTD_row_matchMaskGroupWidth(rowEntries); + const U64 hashSalt = ms->hashSalt; + U32 nbAttempts = 1U << cappedSearchLog; + size_t ml=4-1; + U32 hash; + + /* DMS/DDS variables that may be referenced laster */ + const ZSTD_MatchState_t* const dms = ms->dictMatchState; + + /* Initialize the following variables to satisfy static analyzer */ + size_t ddsIdx = 0; + U32 ddsExtraAttempts = 0; /* cctx hash tables are limited in searches, but allow extra searches into DDS */ + U32 dmsTag = 0; + U32* dmsRow = NULL; + BYTE* dmsTagRow = NULL; + + if (dictMode == ZSTD_dedicatedDictSearch) { + const U32 ddsHashLog = dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG; + { /* Prefetch DDS hashtable entry */ + ddsIdx = ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG; + PREFETCH_L1(&dms->hashTable[ddsIdx]); + } + ddsExtraAttempts = cParams->searchLog > rowLog ? 1U << (cParams->searchLog - rowLog) : 0; + } + + if (dictMode == ZSTD_dictMatchState) { + /* Prefetch DMS rows */ + U32* const dmsHashTable = dms->hashTable; + BYTE* const dmsTagTable = dms->tagTable; + U32 const dmsHash = (U32)ZSTD_hashPtr(ip, dms->rowHashLog + ZSTD_ROW_HASH_TAG_BITS, mls); + U32 const dmsRelRow = (dmsHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; + dmsTag = dmsHash & ZSTD_ROW_HASH_TAG_MASK; + dmsTagRow = (BYTE*)(dmsTagTable + dmsRelRow); + dmsRow = dmsHashTable + dmsRelRow; + ZSTD_row_prefetch(dmsHashTable, dmsTagTable, dmsRelRow, rowLog); + } + + /* Update the hashTable and tagTable up to (but not including) ip */ + if (!ms->lazySkipping) { + ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 1 /* useCache */); + hash = ZSTD_row_nextCachedHash(hashCache, hashTable, tagTable, base, curr, hashLog, rowLog, mls, hashSalt); + } else { + /* Stop inserting every position when in the lazy skipping mode. + * The hash cache is also not kept up to date in this mode. + */ + hash = (U32)ZSTD_hashPtrSalted(ip, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, hashSalt); + ms->nextToUpdate = curr; + } + ms->hashSaltEntropy += hash; /* collect salt entropy */ + + { /* Get the hash for ip, compute the appropriate row */ + U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; + U32 const tag = hash & ZSTD_ROW_HASH_TAG_MASK; + U32* const row = hashTable + relRow; + BYTE* tagRow = (BYTE*)(tagTable + relRow); + U32 const headGrouped = (*tagRow & rowMask) * groupWidth; + U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES]; + size_t numMatches = 0; + size_t currMatch = 0; + ZSTD_VecMask matches = ZSTD_row_getMatchMask(tagRow, (BYTE)tag, headGrouped, rowEntries); + + /* Cycle through the matches and prefetch */ + for (; (matches > 0) && (nbAttempts > 0); matches &= (matches - 1)) { + U32 const matchPos = ((headGrouped + ZSTD_VecMask_next(matches)) / groupWidth) & rowMask; + U32 const matchIndex = row[matchPos]; + if(matchPos == 0) continue; + assert(numMatches < rowEntries); + if (matchIndex < lowLimit) + break; + if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) { + PREFETCH_L1(base + matchIndex); + } else { + PREFETCH_L1(dictBase + matchIndex); + } + matchBuffer[numMatches++] = matchIndex; + --nbAttempts; + } + + /* Speed opt: insert current byte into hashtable too. This allows us to avoid one iteration of the loop + in ZSTD_row_update_internal() at the next search. */ + { + U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask); + tagRow[pos] = (BYTE)tag; + row[pos] = ms->nextToUpdate++; + } + + /* Return the longest match */ + for (; currMatch < numMatches; ++currMatch) { + U32 const matchIndex = matchBuffer[currMatch]; + size_t currentMl=0; + assert(matchIndex < curr); + assert(matchIndex >= lowLimit); + + if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) { + const BYTE* const match = base + matchIndex; + assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */ + /* read 4B starting from (match + ml + 1 - sizeof(U32)) */ + if (MEM_read32(match + ml - 3) == MEM_read32(ip + ml - 3)) /* potentially better */ + currentMl = ZSTD_count(ip, match, iLimit); + } else { + const BYTE* const match = dictBase + matchIndex; + assert(match+4 <= dictEnd); + if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */ + currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4; + } + + /* Save best solution */ + if (currentMl > ml) { + ml = currentMl; + *offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex); + if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ + } + } + } + + assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */ + if (dictMode == ZSTD_dedicatedDictSearch) { + ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts + ddsExtraAttempts, dms, + ip, iLimit, prefixStart, curr, dictLimit, ddsIdx); + } else if (dictMode == ZSTD_dictMatchState) { + /* TODO: Measure and potentially add prefetching to DMS */ + const U32 dmsLowestIndex = dms->window.dictLimit; + const BYTE* const dmsBase = dms->window.base; + const BYTE* const dmsEnd = dms->window.nextSrc; + const U32 dmsSize = (U32)(dmsEnd - dmsBase); + const U32 dmsIndexDelta = dictLimit - dmsSize; + + { U32 const headGrouped = (*dmsTagRow & rowMask) * groupWidth; + U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES]; + size_t numMatches = 0; + size_t currMatch = 0; + ZSTD_VecMask matches = ZSTD_row_getMatchMask(dmsTagRow, (BYTE)dmsTag, headGrouped, rowEntries); + + for (; (matches > 0) && (nbAttempts > 0); matches &= (matches - 1)) { + U32 const matchPos = ((headGrouped + ZSTD_VecMask_next(matches)) / groupWidth) & rowMask; + U32 const matchIndex = dmsRow[matchPos]; + if(matchPos == 0) continue; + if (matchIndex < dmsLowestIndex) + break; + PREFETCH_L1(dmsBase + matchIndex); + matchBuffer[numMatches++] = matchIndex; + --nbAttempts; + } + + /* Return the longest match */ + for (; currMatch < numMatches; ++currMatch) { + U32 const matchIndex = matchBuffer[currMatch]; + size_t currentMl=0; + assert(matchIndex >= dmsLowestIndex); + assert(matchIndex < curr); + + { const BYTE* const match = dmsBase + matchIndex; + assert(match+4 <= dmsEnd); + if (MEM_read32(match) == MEM_read32(ip)) + currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4; + } + + if (currentMl > ml) { + ml = currentMl; + assert(curr > matchIndex + dmsIndexDelta); + *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + dmsIndexDelta)); + if (ip+currentMl == iLimit) break; + } + } + } + } + return ml; +} + + +/** + * Generate search functions templated on (dictMode, mls, rowLog). + * These functions are outlined for code size & compilation time. + * ZSTD_searchMax() dispatches to the correct implementation function. + * + * TODO: The start of the search function involves loading and calculating a + * bunch of constants from the ZSTD_MatchState_t. These computations could be + * done in an initialization function, and saved somewhere in the match state. + * Then we could pass a pointer to the saved state instead of the match state, + * and avoid duplicate computations. + * + * TODO: Move the match re-winding into searchMax. This improves compression + * ratio, and unlocks further simplifications with the next TODO. + * + * TODO: Try moving the repcode search into searchMax. After the re-winding + * and repcode search are in searchMax, there is no more logic in the match + * finder loop that requires knowledge about the dictMode. So we should be + * able to avoid force inlining it, and we can join the extDict loop with + * the single segment loop. It should go in searchMax instead of its own + * function to avoid having multiple virtual function calls per search. + */ + +#define ZSTD_BT_SEARCH_FN(dictMode, mls) ZSTD_BtFindBestMatch_##dictMode##_##mls +#define ZSTD_HC_SEARCH_FN(dictMode, mls) ZSTD_HcFindBestMatch_##dictMode##_##mls +#define ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog) ZSTD_RowFindBestMatch_##dictMode##_##mls##_##rowLog + +#define ZSTD_SEARCH_FN_ATTRS FORCE_NOINLINE + +#define GEN_ZSTD_BT_SEARCH_FN(dictMode, mls) \ + ZSTD_SEARCH_FN_ATTRS size_t ZSTD_BT_SEARCH_FN(dictMode, mls)( \ + ZSTD_MatchState_t* ms, \ + const BYTE* ip, const BYTE* const iLimit, \ + size_t* offBasePtr) \ + { \ + assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \ + return ZSTD_BtFindBestMatch(ms, ip, iLimit, offBasePtr, mls, ZSTD_##dictMode); \ + } \ + +#define GEN_ZSTD_HC_SEARCH_FN(dictMode, mls) \ + ZSTD_SEARCH_FN_ATTRS size_t ZSTD_HC_SEARCH_FN(dictMode, mls)( \ + ZSTD_MatchState_t* ms, \ + const BYTE* ip, const BYTE* const iLimit, \ + size_t* offsetPtr) \ + { \ + assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \ + return ZSTD_HcFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode); \ + } \ + +#define GEN_ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog) \ + ZSTD_SEARCH_FN_ATTRS size_t ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog)( \ + ZSTD_MatchState_t* ms, \ + const BYTE* ip, const BYTE* const iLimit, \ + size_t* offsetPtr) \ + { \ + assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \ + assert(MAX(4, MIN(6, ms->cParams.searchLog)) == rowLog); \ + return ZSTD_RowFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode, rowLog); \ + } \ + +#define ZSTD_FOR_EACH_ROWLOG(X, dictMode, mls) \ + X(dictMode, mls, 4) \ + X(dictMode, mls, 5) \ + X(dictMode, mls, 6) + +#define ZSTD_FOR_EACH_MLS_ROWLOG(X, dictMode) \ + ZSTD_FOR_EACH_ROWLOG(X, dictMode, 4) \ + ZSTD_FOR_EACH_ROWLOG(X, dictMode, 5) \ + ZSTD_FOR_EACH_ROWLOG(X, dictMode, 6) + +#define ZSTD_FOR_EACH_MLS(X, dictMode) \ + X(dictMode, 4) \ + X(dictMode, 5) \ + X(dictMode, 6) + +#define ZSTD_FOR_EACH_DICT_MODE(X, ...) \ + X(__VA_ARGS__, noDict) \ + X(__VA_ARGS__, extDict) \ + X(__VA_ARGS__, dictMatchState) \ + X(__VA_ARGS__, dedicatedDictSearch) + +/* Generate row search fns for each combination of (dictMode, mls, rowLog) */ +ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS_ROWLOG, GEN_ZSTD_ROW_SEARCH_FN) +/* Generate binary Tree search fns for each combination of (dictMode, mls) */ +ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_BT_SEARCH_FN) +/* Generate hash chain search fns for each combination of (dictMode, mls) */ +ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_HC_SEARCH_FN) + +typedef enum { search_hashChain=0, search_binaryTree=1, search_rowHash=2 } searchMethod_e; + +#define GEN_ZSTD_CALL_BT_SEARCH_FN(dictMode, mls) \ + case mls: \ + return ZSTD_BT_SEARCH_FN(dictMode, mls)(ms, ip, iend, offsetPtr); +#define GEN_ZSTD_CALL_HC_SEARCH_FN(dictMode, mls) \ + case mls: \ + return ZSTD_HC_SEARCH_FN(dictMode, mls)(ms, ip, iend, offsetPtr); +#define GEN_ZSTD_CALL_ROW_SEARCH_FN(dictMode, mls, rowLog) \ + case rowLog: \ + return ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog)(ms, ip, iend, offsetPtr); + +#define ZSTD_SWITCH_MLS(X, dictMode) \ + switch (mls) { \ + ZSTD_FOR_EACH_MLS(X, dictMode) \ + } + +#define ZSTD_SWITCH_ROWLOG(dictMode, mls) \ + case mls: \ + switch (rowLog) { \ + ZSTD_FOR_EACH_ROWLOG(GEN_ZSTD_CALL_ROW_SEARCH_FN, dictMode, mls) \ + } \ + ZSTD_UNREACHABLE; \ + break; + +#define ZSTD_SWITCH_SEARCH_METHOD(dictMode) \ + switch (searchMethod) { \ + case search_hashChain: \ + ZSTD_SWITCH_MLS(GEN_ZSTD_CALL_HC_SEARCH_FN, dictMode) \ + break; \ + case search_binaryTree: \ + ZSTD_SWITCH_MLS(GEN_ZSTD_CALL_BT_SEARCH_FN, dictMode) \ + break; \ + case search_rowHash: \ + ZSTD_SWITCH_MLS(ZSTD_SWITCH_ROWLOG, dictMode) \ + break; \ + } \ + ZSTD_UNREACHABLE; + +/** + * Searches for the longest match at @p ip. + * Dispatches to the correct implementation function based on the + * (searchMethod, dictMode, mls, rowLog). We use switch statements + * here instead of using an indirect function call through a function + * pointer because after Spectre and Meltdown mitigations, indirect + * function calls can be very costly, especially in the kernel. + * + * NOTE: dictMode and searchMethod should be templated, so those switch + * statements should be optimized out. Only the mls & rowLog switches + * should be left. + * + * @param ms The match state. + * @param ip The position to search at. + * @param iend The end of the input data. + * @param[out] offsetPtr Stores the match offset into this pointer. + * @param mls The minimum search length, in the range [4, 6]. + * @param rowLog The row log (if applicable), in the range [4, 6]. + * @param searchMethod The search method to use (templated). + * @param dictMode The dictMode (templated). + * + * @returns The length of the longest match found, or < mls if no match is found. + * If a match is found its offset is stored in @p offsetPtr. + */ +FORCE_INLINE_TEMPLATE size_t ZSTD_searchMax( + ZSTD_MatchState_t* ms, + const BYTE* ip, + const BYTE* iend, + size_t* offsetPtr, + U32 const mls, + U32 const rowLog, + searchMethod_e const searchMethod, + ZSTD_dictMode_e const dictMode) +{ + if (dictMode == ZSTD_noDict) { + ZSTD_SWITCH_SEARCH_METHOD(noDict) + } else if (dictMode == ZSTD_extDict) { + ZSTD_SWITCH_SEARCH_METHOD(extDict) + } else if (dictMode == ZSTD_dictMatchState) { + ZSTD_SWITCH_SEARCH_METHOD(dictMatchState) + } else if (dictMode == ZSTD_dedicatedDictSearch) { + ZSTD_SWITCH_SEARCH_METHOD(dedicatedDictSearch) + } + ZSTD_UNREACHABLE; + return 0; +} + +/* ******************************* +* Common parser - lazy strategy +*********************************/ + +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_compressBlock_lazy_generic( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, + U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize, + const searchMethod_e searchMethod, const U32 depth, + ZSTD_dictMode_e const dictMode) +{ + const BYTE* const istart = (const BYTE*)src; + const BYTE* ip = istart; + const BYTE* anchor = istart; + const BYTE* const iend = istart + srcSize; + const BYTE* const ilimit = (searchMethod == search_rowHash) ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8; + const BYTE* const base = ms->window.base; + const U32 prefixLowestIndex = ms->window.dictLimit; + const BYTE* const prefixLowest = base + prefixLowestIndex; + const U32 mls = BOUNDED(4, ms->cParams.minMatch, 6); + const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6); + + U32 offset_1 = rep[0], offset_2 = rep[1]; + U32 offsetSaved1 = 0, offsetSaved2 = 0; + + const int isDMS = dictMode == ZSTD_dictMatchState; + const int isDDS = dictMode == ZSTD_dedicatedDictSearch; + const int isDxS = isDMS || isDDS; + const ZSTD_MatchState_t* const dms = ms->dictMatchState; + const U32 dictLowestIndex = isDxS ? dms->window.dictLimit : 0; + const BYTE* const dictBase = isDxS ? dms->window.base : NULL; + const BYTE* const dictLowest = isDxS ? dictBase + dictLowestIndex : NULL; + const BYTE* const dictEnd = isDxS ? dms->window.nextSrc : NULL; + const U32 dictIndexDelta = isDxS ? + prefixLowestIndex - (U32)(dictEnd - dictBase) : + 0; + const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictLowest)); + + DEBUGLOG(5, "ZSTD_compressBlock_lazy_generic (dictMode=%u) (searchFunc=%u)", (U32)dictMode, (U32)searchMethod); + ip += (dictAndPrefixLength == 0); + if (dictMode == ZSTD_noDict) { + U32 const curr = (U32)(ip - base); + U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, ms->cParams.windowLog); + U32 const maxRep = curr - windowLow; + if (offset_2 > maxRep) offsetSaved2 = offset_2, offset_2 = 0; + if (offset_1 > maxRep) offsetSaved1 = offset_1, offset_1 = 0; + } + if (isDxS) { + /* dictMatchState repCode checks don't currently handle repCode == 0 + * disabling. */ + assert(offset_1 <= dictAndPrefixLength); + assert(offset_2 <= dictAndPrefixLength); + } + + /* Reset the lazy skipping state */ + ms->lazySkipping = 0; + + if (searchMethod == search_rowHash) { + ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit); + } + + /* Match Loop */ +#if defined(__GNUC__) && defined(__x86_64__) + /* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the + * code alignment is perturbed. To fix the instability align the loop on 32-bytes. + */ + __asm__(".p2align 5"); +#endif + while (ip < ilimit) { + size_t matchLength=0; + size_t offBase = REPCODE1_TO_OFFBASE; + const BYTE* start=ip+1; + DEBUGLOG(7, "search baseline (depth 0)"); + + /* check repCode */ + if (isDxS) { + const U32 repIndex = (U32)(ip - base) + 1 - offset_1; + const BYTE* repMatch = ((dictMode == ZSTD_dictMatchState || dictMode == ZSTD_dedicatedDictSearch) + && repIndex < prefixLowestIndex) ? + dictBase + (repIndex - dictIndexDelta) : + base + repIndex; + if ((ZSTD_index_overlap_check(prefixLowestIndex, repIndex)) + && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) { + const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; + matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; + if (depth==0) goto _storeSequence; + } + } + if ( dictMode == ZSTD_noDict + && ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) { + matchLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4; + if (depth==0) goto _storeSequence; + } + + /* first search (depth 0) */ + { size_t offbaseFound = 999999999; + size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &offbaseFound, mls, rowLog, searchMethod, dictMode); + if (ml2 > matchLength) + matchLength = ml2, start = ip, offBase = offbaseFound; + } + + if (matchLength < 4) { + size_t const step = ((size_t)(ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */; + ip += step; + /* Enter the lazy skipping mode once we are skipping more than 8 bytes at a time. + * In this mode we stop inserting every position into our tables, and only insert + * positions that we search, which is one in step positions. + * The exact cutoff is flexible, I've just chosen a number that is reasonably high, + * so we minimize the compression ratio loss in "normal" scenarios. This mode gets + * triggered once we've gone 2KB without finding any matches. + */ + ms->lazySkipping = step > kLazySkippingStep; + continue; + } + + /* let's try to find a better solution */ + if (depth>=1) + while (ip0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) { + size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4; + int const gain2 = (int)(mlRep * 3); + int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1); + if ((mlRep >= 4) && (gain2 > gain1)) + matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip; + } + if (isDxS) { + const U32 repIndex = (U32)(ip - base) - offset_1; + const BYTE* repMatch = repIndex < prefixLowestIndex ? + dictBase + (repIndex - dictIndexDelta) : + base + repIndex; + if ((ZSTD_index_overlap_check(prefixLowestIndex, repIndex)) + && (MEM_read32(repMatch) == MEM_read32(ip)) ) { + const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; + size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; + int const gain2 = (int)(mlRep * 3); + int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1); + if ((mlRep >= 4) && (gain2 > gain1)) + matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip; + } + } + { size_t ofbCandidate=999999999; + size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, dictMode); + int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */ + int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 4); + if ((ml2 >= 4) && (gain2 > gain1)) { + matchLength = ml2, offBase = ofbCandidate, start = ip; + continue; /* search a better one */ + } } + + /* let's find an even better one */ + if ((depth==2) && (ip0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) { + size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4; + int const gain2 = (int)(mlRep * 4); + int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1); + if ((mlRep >= 4) && (gain2 > gain1)) + matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip; + } + if (isDxS) { + const U32 repIndex = (U32)(ip - base) - offset_1; + const BYTE* repMatch = repIndex < prefixLowestIndex ? + dictBase + (repIndex - dictIndexDelta) : + base + repIndex; + if ((ZSTD_index_overlap_check(prefixLowestIndex, repIndex)) + && (MEM_read32(repMatch) == MEM_read32(ip)) ) { + const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; + size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; + int const gain2 = (int)(mlRep * 4); + int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1); + if ((mlRep >= 4) && (gain2 > gain1)) + matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip; + } + } + { size_t ofbCandidate=999999999; + size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, dictMode); + int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */ + int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 7); + if ((ml2 >= 4) && (gain2 > gain1)) { + matchLength = ml2, offBase = ofbCandidate, start = ip; + continue; + } } } + break; /* nothing found : store previous solution */ + } + + /* NOTE: + * Pay attention that `start[-value]` can lead to strange undefined behavior + * notably if `value` is unsigned, resulting in a large positive `-value`. + */ + /* catch up */ + if (OFFBASE_IS_OFFSET(offBase)) { + if (dictMode == ZSTD_noDict) { + while ( ((start > anchor) & (start - OFFBASE_TO_OFFSET(offBase) > prefixLowest)) + && (start[-1] == (start-OFFBASE_TO_OFFSET(offBase))[-1]) ) /* only search for offset within prefix */ + { start--; matchLength++; } + } + if (isDxS) { + U32 const matchIndex = (U32)((size_t)(start-base) - OFFBASE_TO_OFFSET(offBase)); + const BYTE* match = (matchIndex < prefixLowestIndex) ? dictBase + matchIndex - dictIndexDelta : base + matchIndex; + const BYTE* const mStart = (matchIndex < prefixLowestIndex) ? dictLowest : prefixLowest; + while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */ + } + offset_2 = offset_1; offset_1 = (U32)OFFBASE_TO_OFFSET(offBase); + } + /* store sequence */ +_storeSequence: + { size_t const litLength = (size_t)(start - anchor); + ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offBase, matchLength); + anchor = ip = start + matchLength; + } + if (ms->lazySkipping) { + /* We've found a match, disable lazy skipping mode, and refill the hash cache. */ + if (searchMethod == search_rowHash) { + ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit); + } + ms->lazySkipping = 0; + } + + /* check immediate repcode */ + if (isDxS) { + while (ip <= ilimit) { + U32 const current2 = (U32)(ip-base); + U32 const repIndex = current2 - offset_2; + const BYTE* repMatch = repIndex < prefixLowestIndex ? + dictBase - dictIndexDelta + repIndex : + base + repIndex; + if ( (ZSTD_index_overlap_check(prefixLowestIndex, repIndex)) + && (MEM_read32(repMatch) == MEM_read32(ip)) ) { + const BYTE* const repEnd2 = repIndex < prefixLowestIndex ? dictEnd : iend; + matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd2, prefixLowest) + 4; + offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap offset_2 <=> offset_1 */ + ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength); + ip += matchLength; + anchor = ip; + continue; + } + break; + } + } + + if (dictMode == ZSTD_noDict) { + while ( ((ip <= ilimit) & (offset_2>0)) + && (MEM_read32(ip) == MEM_read32(ip - offset_2)) ) { + /* store sequence */ + matchLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4; + offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap repcodes */ + ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength); + ip += matchLength; + anchor = ip; + continue; /* faster when present ... (?) */ + } } } + + /* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0), + * rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */ + offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2; + + /* save reps for next block */ + rep[0] = offset_1 ? offset_1 : offsetSaved1; + rep[1] = offset_2 ? offset_2 : offsetSaved2; + + /* Return the last literals size */ + return (size_t)(iend - anchor); +} +#endif /* build exclusions */ + + +#ifndef ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR +size_t ZSTD_compressBlock_greedy( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_noDict); +} + +size_t ZSTD_compressBlock_greedy_dictMatchState( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dictMatchState); +} + +size_t ZSTD_compressBlock_greedy_dedicatedDictSearch( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dedicatedDictSearch); +} + +size_t ZSTD_compressBlock_greedy_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_noDict); +} + +size_t ZSTD_compressBlock_greedy_dictMatchState_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dictMatchState); +} + +size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dedicatedDictSearch); +} +#endif + +#ifndef ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR +size_t ZSTD_compressBlock_lazy( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_noDict); +} + +size_t ZSTD_compressBlock_lazy_dictMatchState( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dictMatchState); +} + +size_t ZSTD_compressBlock_lazy_dedicatedDictSearch( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dedicatedDictSearch); +} + +size_t ZSTD_compressBlock_lazy_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_noDict); +} + +size_t ZSTD_compressBlock_lazy_dictMatchState_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dictMatchState); +} + +size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dedicatedDictSearch); +} +#endif + +#ifndef ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR +size_t ZSTD_compressBlock_lazy2( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_noDict); +} + +size_t ZSTD_compressBlock_lazy2_dictMatchState( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dictMatchState); +} + +size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dedicatedDictSearch); +} + +size_t ZSTD_compressBlock_lazy2_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_noDict); +} + +size_t ZSTD_compressBlock_lazy2_dictMatchState_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dictMatchState); +} + +size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dedicatedDictSearch); +} +#endif + +#ifndef ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR +size_t ZSTD_compressBlock_btlazy2( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_noDict); +} + +size_t ZSTD_compressBlock_btlazy2_dictMatchState( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_dictMatchState); +} +#endif + +#if !defined(ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR) \ + || !defined(ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR) \ + || !defined(ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR) \ + || !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR) +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_compressBlock_lazy_extDict_generic( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, + U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize, + const searchMethod_e searchMethod, const U32 depth) +{ + const BYTE* const istart = (const BYTE*)src; + const BYTE* ip = istart; + const BYTE* anchor = istart; + const BYTE* const iend = istart + srcSize; + const BYTE* const ilimit = searchMethod == search_rowHash ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8; + const BYTE* const base = ms->window.base; + const U32 dictLimit = ms->window.dictLimit; + const BYTE* const prefixStart = base + dictLimit; + const BYTE* const dictBase = ms->window.dictBase; + const BYTE* const dictEnd = dictBase + dictLimit; + const BYTE* const dictStart = dictBase + ms->window.lowLimit; + const U32 windowLog = ms->cParams.windowLog; + const U32 mls = BOUNDED(4, ms->cParams.minMatch, 6); + const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6); + + U32 offset_1 = rep[0], offset_2 = rep[1]; + + DEBUGLOG(5, "ZSTD_compressBlock_lazy_extDict_generic (searchFunc=%u)", (U32)searchMethod); + + /* Reset the lazy skipping state */ + ms->lazySkipping = 0; + + /* init */ + ip += (ip == prefixStart); + if (searchMethod == search_rowHash) { + ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit); + } + + /* Match Loop */ +#if defined(__GNUC__) && defined(__x86_64__) + /* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the + * code alignment is perturbed. To fix the instability align the loop on 32-bytes. + */ + __asm__(".p2align 5"); +#endif + while (ip < ilimit) { + size_t matchLength=0; + size_t offBase = REPCODE1_TO_OFFBASE; + const BYTE* start=ip+1; + U32 curr = (U32)(ip-base); + + /* check repCode */ + { const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr+1, windowLog); + const U32 repIndex = (U32)(curr+1 - offset_1); + const BYTE* const repBase = repIndex < dictLimit ? dictBase : base; + const BYTE* const repMatch = repBase + repIndex; + if ( (ZSTD_index_overlap_check(dictLimit, repIndex)) + & (offset_1 <= curr+1 - windowLow) ) /* note: we are searching at curr+1 */ + if (MEM_read32(ip+1) == MEM_read32(repMatch)) { + /* repcode detected we should take it */ + const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; + matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repEnd, prefixStart) + 4; + if (depth==0) goto _storeSequence; + } } + + /* first search (depth 0) */ + { size_t ofbCandidate = 999999999; + size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict); + if (ml2 > matchLength) + matchLength = ml2, start = ip, offBase = ofbCandidate; + } + + if (matchLength < 4) { + size_t const step = ((size_t)(ip-anchor) >> kSearchStrength); + ip += step + 1; /* jump faster over incompressible sections */ + /* Enter the lazy skipping mode once we are skipping more than 8 bytes at a time. + * In this mode we stop inserting every position into our tables, and only insert + * positions that we search, which is one in step positions. + * The exact cutoff is flexible, I've just chosen a number that is reasonably high, + * so we minimize the compression ratio loss in "normal" scenarios. This mode gets + * triggered once we've gone 2KB without finding any matches. + */ + ms->lazySkipping = step > kLazySkippingStep; + continue; + } + + /* let's try to find a better solution */ + if (depth>=1) + while (ip repIndex >= windowLow` */ + if (MEM_read32(ip) == MEM_read32(repMatch)) { + /* repcode detected */ + const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; + size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; + int const gain2 = (int)(repLength * 3); + int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1); + if ((repLength >= 4) && (gain2 > gain1)) + matchLength = repLength, offBase = REPCODE1_TO_OFFBASE, start = ip; + } } + + /* search match, depth 1 */ + { size_t ofbCandidate = 999999999; + size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict); + int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */ + int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 4); + if ((ml2 >= 4) && (gain2 > gain1)) { + matchLength = ml2, offBase = ofbCandidate, start = ip; + continue; /* search a better one */ + } } + + /* let's find an even better one */ + if ((depth==2) && (ip repIndex >= windowLow` */ + if (MEM_read32(ip) == MEM_read32(repMatch)) { + /* repcode detected */ + const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; + size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; + int const gain2 = (int)(repLength * 4); + int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1); + if ((repLength >= 4) && (gain2 > gain1)) + matchLength = repLength, offBase = REPCODE1_TO_OFFBASE, start = ip; + } } + + /* search match, depth 2 */ + { size_t ofbCandidate = 999999999; + size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict); + int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */ + int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 7); + if ((ml2 >= 4) && (gain2 > gain1)) { + matchLength = ml2, offBase = ofbCandidate, start = ip; + continue; + } } } + break; /* nothing found : store previous solution */ + } + + /* catch up */ + if (OFFBASE_IS_OFFSET(offBase)) { + U32 const matchIndex = (U32)((size_t)(start-base) - OFFBASE_TO_OFFSET(offBase)); + const BYTE* match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex; + const BYTE* const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart; + while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */ + offset_2 = offset_1; offset_1 = (U32)OFFBASE_TO_OFFSET(offBase); + } + + /* store sequence */ +_storeSequence: + { size_t const litLength = (size_t)(start - anchor); + ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offBase, matchLength); + anchor = ip = start + matchLength; + } + if (ms->lazySkipping) { + /* We've found a match, disable lazy skipping mode, and refill the hash cache. */ + if (searchMethod == search_rowHash) { + ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit); + } + ms->lazySkipping = 0; + } + + /* check immediate repcode */ + while (ip <= ilimit) { + const U32 repCurrent = (U32)(ip-base); + const U32 windowLow = ZSTD_getLowestMatchIndex(ms, repCurrent, windowLog); + const U32 repIndex = repCurrent - offset_2; + const BYTE* const repBase = repIndex < dictLimit ? dictBase : base; + const BYTE* const repMatch = repBase + repIndex; + if ( (ZSTD_index_overlap_check(dictLimit, repIndex)) + & (offset_2 <= repCurrent - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */ + if (MEM_read32(ip) == MEM_read32(repMatch)) { + /* repcode detected we should take it */ + const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; + matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; + offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap offset history */ + ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength); + ip += matchLength; + anchor = ip; + continue; /* faster when present ... (?) */ + } + break; + } } + + /* Save reps for next block */ + rep[0] = offset_1; + rep[1] = offset_2; + + /* Return the last literals size */ + return (size_t)(iend - anchor); +} +#endif /* build exclusions */ + +#ifndef ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR +size_t ZSTD_compressBlock_greedy_extDict( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0); +} + +size_t ZSTD_compressBlock_greedy_extDict_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0); +} +#endif + +#ifndef ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR +size_t ZSTD_compressBlock_lazy_extDict( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) + +{ + return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1); +} + +size_t ZSTD_compressBlock_lazy_extDict_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) + +{ + return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1); +} +#endif + +#ifndef ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR +size_t ZSTD_compressBlock_lazy2_extDict( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) + +{ + return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2); +} + +size_t ZSTD_compressBlock_lazy2_extDict_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2); +} +#endif + +#ifndef ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR +size_t ZSTD_compressBlock_btlazy2_extDict( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) + +{ + return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2); +} +#endif diff --git a/src/third-party/zstd/compress/zstd_lazy.h b/src/third-party/zstd/compress/zstd_lazy.h new file mode 100644 index 0000000000000..bd8dc49e64c23 --- /dev/null +++ b/src/third-party/zstd/compress/zstd_lazy.h @@ -0,0 +1,193 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_LAZY_H +#define ZSTD_LAZY_H + +#include "zstd_compress_internal.h" + +/** + * Dedicated Dictionary Search Structure bucket log. In the + * ZSTD_dedicatedDictSearch mode, the hashTable has + * 2 ** ZSTD_LAZY_DDSS_BUCKET_LOG entries in each bucket, rather than just + * one. + */ +#define ZSTD_LAZY_DDSS_BUCKET_LOG 2 + +#define ZSTD_ROW_HASH_TAG_BITS 8 /* nb bits to use for the tag */ + +#if !defined(ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR) \ + || !defined(ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR) \ + || !defined(ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR) \ + || !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR) +U32 ZSTD_insertAndFindFirstIndex(ZSTD_MatchState_t* ms, const BYTE* ip); +void ZSTD_row_update(ZSTD_MatchState_t* const ms, const BYTE* ip); + +void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_MatchState_t* ms, const BYTE* const ip); + +void ZSTD_preserveUnsortedMark (U32* const table, U32 const size, U32 const reducerValue); /*! used in ZSTD_reduceIndex(). preemptively increase value of ZSTD_DUBT_UNSORTED_MARK */ +#endif + +#ifndef ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR +size_t ZSTD_compressBlock_greedy( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_greedy_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_greedy_dictMatchState( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_greedy_dictMatchState_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_greedy_dedicatedDictSearch( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_greedy_extDict( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_greedy_extDict_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + +#define ZSTD_COMPRESSBLOCK_GREEDY ZSTD_compressBlock_greedy +#define ZSTD_COMPRESSBLOCK_GREEDY_ROW ZSTD_compressBlock_greedy_row +#define ZSTD_COMPRESSBLOCK_GREEDY_DICTMATCHSTATE ZSTD_compressBlock_greedy_dictMatchState +#define ZSTD_COMPRESSBLOCK_GREEDY_DICTMATCHSTATE_ROW ZSTD_compressBlock_greedy_dictMatchState_row +#define ZSTD_COMPRESSBLOCK_GREEDY_DEDICATEDDICTSEARCH ZSTD_compressBlock_greedy_dedicatedDictSearch +#define ZSTD_COMPRESSBLOCK_GREEDY_DEDICATEDDICTSEARCH_ROW ZSTD_compressBlock_greedy_dedicatedDictSearch_row +#define ZSTD_COMPRESSBLOCK_GREEDY_EXTDICT ZSTD_compressBlock_greedy_extDict +#define ZSTD_COMPRESSBLOCK_GREEDY_EXTDICT_ROW ZSTD_compressBlock_greedy_extDict_row +#else +#define ZSTD_COMPRESSBLOCK_GREEDY NULL +#define ZSTD_COMPRESSBLOCK_GREEDY_ROW NULL +#define ZSTD_COMPRESSBLOCK_GREEDY_DICTMATCHSTATE NULL +#define ZSTD_COMPRESSBLOCK_GREEDY_DICTMATCHSTATE_ROW NULL +#define ZSTD_COMPRESSBLOCK_GREEDY_DEDICATEDDICTSEARCH NULL +#define ZSTD_COMPRESSBLOCK_GREEDY_DEDICATEDDICTSEARCH_ROW NULL +#define ZSTD_COMPRESSBLOCK_GREEDY_EXTDICT NULL +#define ZSTD_COMPRESSBLOCK_GREEDY_EXTDICT_ROW NULL +#endif + +#ifndef ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR +size_t ZSTD_compressBlock_lazy( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy_dictMatchState( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy_dictMatchState_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy_dedicatedDictSearch( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy_extDict( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy_extDict_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + +#define ZSTD_COMPRESSBLOCK_LAZY ZSTD_compressBlock_lazy +#define ZSTD_COMPRESSBLOCK_LAZY_ROW ZSTD_compressBlock_lazy_row +#define ZSTD_COMPRESSBLOCK_LAZY_DICTMATCHSTATE ZSTD_compressBlock_lazy_dictMatchState +#define ZSTD_COMPRESSBLOCK_LAZY_DICTMATCHSTATE_ROW ZSTD_compressBlock_lazy_dictMatchState_row +#define ZSTD_COMPRESSBLOCK_LAZY_DEDICATEDDICTSEARCH ZSTD_compressBlock_lazy_dedicatedDictSearch +#define ZSTD_COMPRESSBLOCK_LAZY_DEDICATEDDICTSEARCH_ROW ZSTD_compressBlock_lazy_dedicatedDictSearch_row +#define ZSTD_COMPRESSBLOCK_LAZY_EXTDICT ZSTD_compressBlock_lazy_extDict +#define ZSTD_COMPRESSBLOCK_LAZY_EXTDICT_ROW ZSTD_compressBlock_lazy_extDict_row +#else +#define ZSTD_COMPRESSBLOCK_LAZY NULL +#define ZSTD_COMPRESSBLOCK_LAZY_ROW NULL +#define ZSTD_COMPRESSBLOCK_LAZY_DICTMATCHSTATE NULL +#define ZSTD_COMPRESSBLOCK_LAZY_DICTMATCHSTATE_ROW NULL +#define ZSTD_COMPRESSBLOCK_LAZY_DEDICATEDDICTSEARCH NULL +#define ZSTD_COMPRESSBLOCK_LAZY_DEDICATEDDICTSEARCH_ROW NULL +#define ZSTD_COMPRESSBLOCK_LAZY_EXTDICT NULL +#define ZSTD_COMPRESSBLOCK_LAZY_EXTDICT_ROW NULL +#endif + +#ifndef ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR +size_t ZSTD_compressBlock_lazy2( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy2_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy2_dictMatchState( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy2_dictMatchState_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy2_extDict( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy2_extDict_row( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + +#define ZSTD_COMPRESSBLOCK_LAZY2 ZSTD_compressBlock_lazy2 +#define ZSTD_COMPRESSBLOCK_LAZY2_ROW ZSTD_compressBlock_lazy2_row +#define ZSTD_COMPRESSBLOCK_LAZY2_DICTMATCHSTATE ZSTD_compressBlock_lazy2_dictMatchState +#define ZSTD_COMPRESSBLOCK_LAZY2_DICTMATCHSTATE_ROW ZSTD_compressBlock_lazy2_dictMatchState_row +#define ZSTD_COMPRESSBLOCK_LAZY2_DEDICATEDDICTSEARCH ZSTD_compressBlock_lazy2_dedicatedDictSearch +#define ZSTD_COMPRESSBLOCK_LAZY2_DEDICATEDDICTSEARCH_ROW ZSTD_compressBlock_lazy2_dedicatedDictSearch_row +#define ZSTD_COMPRESSBLOCK_LAZY2_EXTDICT ZSTD_compressBlock_lazy2_extDict +#define ZSTD_COMPRESSBLOCK_LAZY2_EXTDICT_ROW ZSTD_compressBlock_lazy2_extDict_row +#else +#define ZSTD_COMPRESSBLOCK_LAZY2 NULL +#define ZSTD_COMPRESSBLOCK_LAZY2_ROW NULL +#define ZSTD_COMPRESSBLOCK_LAZY2_DICTMATCHSTATE NULL +#define ZSTD_COMPRESSBLOCK_LAZY2_DICTMATCHSTATE_ROW NULL +#define ZSTD_COMPRESSBLOCK_LAZY2_DEDICATEDDICTSEARCH NULL +#define ZSTD_COMPRESSBLOCK_LAZY2_DEDICATEDDICTSEARCH_ROW NULL +#define ZSTD_COMPRESSBLOCK_LAZY2_EXTDICT NULL +#define ZSTD_COMPRESSBLOCK_LAZY2_EXTDICT_ROW NULL +#endif + +#ifndef ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR +size_t ZSTD_compressBlock_btlazy2( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_btlazy2_dictMatchState( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_btlazy2_extDict( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + +#define ZSTD_COMPRESSBLOCK_BTLAZY2 ZSTD_compressBlock_btlazy2 +#define ZSTD_COMPRESSBLOCK_BTLAZY2_DICTMATCHSTATE ZSTD_compressBlock_btlazy2_dictMatchState +#define ZSTD_COMPRESSBLOCK_BTLAZY2_EXTDICT ZSTD_compressBlock_btlazy2_extDict +#else +#define ZSTD_COMPRESSBLOCK_BTLAZY2 NULL +#define ZSTD_COMPRESSBLOCK_BTLAZY2_DICTMATCHSTATE NULL +#define ZSTD_COMPRESSBLOCK_BTLAZY2_EXTDICT NULL +#endif + +#endif /* ZSTD_LAZY_H */ diff --git a/src/third-party/zstd/compress/zstd_ldm.c b/src/third-party/zstd/compress/zstd_ldm.c new file mode 100644 index 0000000000000..42b38c0d0e464 --- /dev/null +++ b/src/third-party/zstd/compress/zstd_ldm.c @@ -0,0 +1,731 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#include "zstd_ldm.h" + +#include "../common/debug.h" +#include "../common/xxhash.h" +#include "zstd_fast.h" /* ZSTD_fillHashTable() */ +#include "zstd_double_fast.h" /* ZSTD_fillDoubleHashTable() */ +#include "zstd_ldm_geartab.h" + +#define LDM_BUCKET_SIZE_LOG 3 +#define LDM_MIN_MATCH_LENGTH 64 +#define LDM_HASH_RLOG 7 + +typedef struct { + U64 rolling; + U64 stopMask; +} ldmRollingHashState_t; + +/** ZSTD_ldm_gear_init(): + * + * Initializes the rolling hash state such that it will honor the + * settings in params. */ +static void ZSTD_ldm_gear_init(ldmRollingHashState_t* state, ldmParams_t const* params) +{ + unsigned maxBitsInMask = MIN(params->minMatchLength, 64); + unsigned hashRateLog = params->hashRateLog; + + state->rolling = ~(U32)0; + + /* The choice of the splitting criterion is subject to two conditions: + * 1. it has to trigger on average every 2^(hashRateLog) bytes; + * 2. ideally, it has to depend on a window of minMatchLength bytes. + * + * In the gear hash algorithm, bit n depends on the last n bytes; + * so in order to obtain a good quality splitting criterion it is + * preferable to use bits with high weight. + * + * To match condition 1 we use a mask with hashRateLog bits set + * and, because of the previous remark, we make sure these bits + * have the highest possible weight while still respecting + * condition 2. + */ + if (hashRateLog > 0 && hashRateLog <= maxBitsInMask) { + state->stopMask = (((U64)1 << hashRateLog) - 1) << (maxBitsInMask - hashRateLog); + } else { + /* In this degenerate case we simply honor the hash rate. */ + state->stopMask = ((U64)1 << hashRateLog) - 1; + } +} + +/** ZSTD_ldm_gear_reset() + * Feeds [data, data + minMatchLength) into the hash without registering any + * splits. This effectively resets the hash state. This is used when skipping + * over data, either at the beginning of a block, or skipping sections. + */ +static void ZSTD_ldm_gear_reset(ldmRollingHashState_t* state, + BYTE const* data, size_t minMatchLength) +{ + U64 hash = state->rolling; + size_t n = 0; + +#define GEAR_ITER_ONCE() do { \ + hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \ + n += 1; \ + } while (0) + while (n + 3 < minMatchLength) { + GEAR_ITER_ONCE(); + GEAR_ITER_ONCE(); + GEAR_ITER_ONCE(); + GEAR_ITER_ONCE(); + } + while (n < minMatchLength) { + GEAR_ITER_ONCE(); + } +#undef GEAR_ITER_ONCE +} + +/** ZSTD_ldm_gear_feed(): + * + * Registers in the splits array all the split points found in the first + * size bytes following the data pointer. This function terminates when + * either all the data has been processed or LDM_BATCH_SIZE splits are + * present in the splits array. + * + * Precondition: The splits array must not be full. + * Returns: The number of bytes processed. */ +static size_t ZSTD_ldm_gear_feed(ldmRollingHashState_t* state, + BYTE const* data, size_t size, + size_t* splits, unsigned* numSplits) +{ + size_t n; + U64 hash, mask; + + hash = state->rolling; + mask = state->stopMask; + n = 0; + +#define GEAR_ITER_ONCE() do { \ + hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \ + n += 1; \ + if (UNLIKELY((hash & mask) == 0)) { \ + splits[*numSplits] = n; \ + *numSplits += 1; \ + if (*numSplits == LDM_BATCH_SIZE) \ + goto done; \ + } \ + } while (0) + + while (n + 3 < size) { + GEAR_ITER_ONCE(); + GEAR_ITER_ONCE(); + GEAR_ITER_ONCE(); + GEAR_ITER_ONCE(); + } + while (n < size) { + GEAR_ITER_ONCE(); + } + +#undef GEAR_ITER_ONCE + +done: + state->rolling = hash; + return n; +} + +void ZSTD_ldm_adjustParameters(ldmParams_t* params, + ZSTD_compressionParameters const* cParams) +{ + params->windowLog = cParams->windowLog; + ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX); + DEBUGLOG(4, "ZSTD_ldm_adjustParameters"); + if (!params->bucketSizeLog) params->bucketSizeLog = LDM_BUCKET_SIZE_LOG; + if (!params->minMatchLength) params->minMatchLength = LDM_MIN_MATCH_LENGTH; + if (params->hashLog == 0) { + params->hashLog = MAX(ZSTD_HASHLOG_MIN, params->windowLog - LDM_HASH_RLOG); + assert(params->hashLog <= ZSTD_HASHLOG_MAX); + } + if (params->hashRateLog == 0) { + params->hashRateLog = params->windowLog < params->hashLog + ? 0 + : params->windowLog - params->hashLog; + } + params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog); +} + +size_t ZSTD_ldm_getTableSize(ldmParams_t params) +{ + size_t const ldmHSize = ((size_t)1) << params.hashLog; + size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog); + size_t const ldmBucketSize = ((size_t)1) << (params.hashLog - ldmBucketSizeLog); + size_t const totalSize = ZSTD_cwksp_alloc_size(ldmBucketSize) + + ZSTD_cwksp_alloc_size(ldmHSize * sizeof(ldmEntry_t)); + return params.enableLdm == ZSTD_ps_enable ? totalSize : 0; +} + +size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize) +{ + return params.enableLdm == ZSTD_ps_enable ? (maxChunkSize / params.minMatchLength) : 0; +} + +/** ZSTD_ldm_getBucket() : + * Returns a pointer to the start of the bucket associated with hash. */ +static ldmEntry_t* ZSTD_ldm_getBucket( + const ldmState_t* ldmState, size_t hash, U32 const bucketSizeLog) +{ + return ldmState->hashTable + (hash << bucketSizeLog); +} + +/** ZSTD_ldm_insertEntry() : + * Insert the entry with corresponding hash into the hash table */ +static void ZSTD_ldm_insertEntry(ldmState_t* ldmState, + size_t const hash, const ldmEntry_t entry, + U32 const bucketSizeLog) +{ + BYTE* const pOffset = ldmState->bucketOffsets + hash; + unsigned const offset = *pOffset; + + *(ZSTD_ldm_getBucket(ldmState, hash, bucketSizeLog) + offset) = entry; + *pOffset = (BYTE)((offset + 1) & ((1u << bucketSizeLog) - 1)); + +} + +/** ZSTD_ldm_countBackwardsMatch() : + * Returns the number of bytes that match backwards before pIn and pMatch. + * + * We count only bytes where pMatch >= pBase and pIn >= pAnchor. */ +static size_t ZSTD_ldm_countBackwardsMatch( + const BYTE* pIn, const BYTE* pAnchor, + const BYTE* pMatch, const BYTE* pMatchBase) +{ + size_t matchLength = 0; + while (pIn > pAnchor && pMatch > pMatchBase && pIn[-1] == pMatch[-1]) { + pIn--; + pMatch--; + matchLength++; + } + return matchLength; +} + +/** ZSTD_ldm_countBackwardsMatch_2segments() : + * Returns the number of bytes that match backwards from pMatch, + * even with the backwards match spanning 2 different segments. + * + * On reaching `pMatchBase`, start counting from mEnd */ +static size_t ZSTD_ldm_countBackwardsMatch_2segments( + const BYTE* pIn, const BYTE* pAnchor, + const BYTE* pMatch, const BYTE* pMatchBase, + const BYTE* pExtDictStart, const BYTE* pExtDictEnd) +{ + size_t matchLength = ZSTD_ldm_countBackwardsMatch(pIn, pAnchor, pMatch, pMatchBase); + if (pMatch - matchLength != pMatchBase || pMatchBase == pExtDictStart) { + /* If backwards match is entirely in the extDict or prefix, immediately return */ + return matchLength; + } + DEBUGLOG(7, "ZSTD_ldm_countBackwardsMatch_2segments: found 2-parts backwards match (length in prefix==%zu)", matchLength); + matchLength += ZSTD_ldm_countBackwardsMatch(pIn - matchLength, pAnchor, pExtDictEnd, pExtDictStart); + DEBUGLOG(7, "final backwards match length = %zu", matchLength); + return matchLength; +} + +/** ZSTD_ldm_fillFastTables() : + * + * Fills the relevant tables for the ZSTD_fast and ZSTD_dfast strategies. + * This is similar to ZSTD_loadDictionaryContent. + * + * The tables for the other strategies are filled within their + * block compressors. */ +static size_t ZSTD_ldm_fillFastTables(ZSTD_MatchState_t* ms, + void const* end) +{ + const BYTE* const iend = (const BYTE*)end; + + switch(ms->cParams.strategy) + { + case ZSTD_fast: + ZSTD_fillHashTable(ms, iend, ZSTD_dtlm_fast, ZSTD_tfp_forCCtx); + break; + + case ZSTD_dfast: +#ifndef ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR + ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast, ZSTD_tfp_forCCtx); +#else + assert(0); /* shouldn't be called: cparams should've been adjusted. */ +#endif + break; + + case ZSTD_greedy: + case ZSTD_lazy: + case ZSTD_lazy2: + case ZSTD_btlazy2: + case ZSTD_btopt: + case ZSTD_btultra: + case ZSTD_btultra2: + break; + default: + assert(0); /* not possible : not a valid strategy id */ + } + + return 0; +} + +void ZSTD_ldm_fillHashTable( + ldmState_t* ldmState, const BYTE* ip, + const BYTE* iend, ldmParams_t const* params) +{ + U32 const minMatchLength = params->minMatchLength; + U32 const bucketSizeLog = params->bucketSizeLog; + U32 const hBits = params->hashLog - bucketSizeLog; + BYTE const* const base = ldmState->window.base; + BYTE const* const istart = ip; + ldmRollingHashState_t hashState; + size_t* const splits = ldmState->splitIndices; + unsigned numSplits; + + DEBUGLOG(5, "ZSTD_ldm_fillHashTable"); + + ZSTD_ldm_gear_init(&hashState, params); + while (ip < iend) { + size_t hashed; + unsigned n; + + numSplits = 0; + hashed = ZSTD_ldm_gear_feed(&hashState, ip, (size_t)(iend - ip), splits, &numSplits); + + for (n = 0; n < numSplits; n++) { + if (ip + splits[n] >= istart + minMatchLength) { + BYTE const* const split = ip + splits[n] - minMatchLength; + U64 const xxhash = XXH64(split, minMatchLength, 0); + U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1)); + ldmEntry_t entry; + + entry.offset = (U32)(split - base); + entry.checksum = (U32)(xxhash >> 32); + ZSTD_ldm_insertEntry(ldmState, hash, entry, params->bucketSizeLog); + } + } + + ip += hashed; + } +} + + +/** ZSTD_ldm_limitTableUpdate() : + * + * Sets cctx->nextToUpdate to a position corresponding closer to anchor + * if it is far way + * (after a long match, only update tables a limited amount). */ +static void ZSTD_ldm_limitTableUpdate(ZSTD_MatchState_t* ms, const BYTE* anchor) +{ + U32 const curr = (U32)(anchor - ms->window.base); + if (curr > ms->nextToUpdate + 1024) { + ms->nextToUpdate = + curr - MIN(512, curr - ms->nextToUpdate - 1024); + } +} + +static +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_ldm_generateSequences_internal( + ldmState_t* ldmState, RawSeqStore_t* rawSeqStore, + ldmParams_t const* params, void const* src, size_t srcSize) +{ + /* LDM parameters */ + int const extDict = ZSTD_window_hasExtDict(ldmState->window); + U32 const minMatchLength = params->minMatchLength; + U32 const entsPerBucket = 1U << params->bucketSizeLog; + U32 const hBits = params->hashLog - params->bucketSizeLog; + /* Prefix and extDict parameters */ + U32 const dictLimit = ldmState->window.dictLimit; + U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit; + BYTE const* const base = ldmState->window.base; + BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL; + BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL; + BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL; + BYTE const* const lowPrefixPtr = base + dictLimit; + /* Input bounds */ + BYTE const* const istart = (BYTE const*)src; + BYTE const* const iend = istart + srcSize; + BYTE const* const ilimit = iend - HASH_READ_SIZE; + /* Input positions */ + BYTE const* anchor = istart; + BYTE const* ip = istart; + /* Rolling hash state */ + ldmRollingHashState_t hashState; + /* Arrays for staged-processing */ + size_t* const splits = ldmState->splitIndices; + ldmMatchCandidate_t* const candidates = ldmState->matchCandidates; + unsigned numSplits; + + if (srcSize < minMatchLength) + return iend - anchor; + + /* Initialize the rolling hash state with the first minMatchLength bytes */ + ZSTD_ldm_gear_init(&hashState, params); + ZSTD_ldm_gear_reset(&hashState, ip, minMatchLength); + ip += minMatchLength; + + while (ip < ilimit) { + size_t hashed; + unsigned n; + + numSplits = 0; + hashed = ZSTD_ldm_gear_feed(&hashState, ip, ilimit - ip, + splits, &numSplits); + + for (n = 0; n < numSplits; n++) { + BYTE const* const split = ip + splits[n] - minMatchLength; + U64 const xxhash = XXH64(split, minMatchLength, 0); + U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1)); + + candidates[n].split = split; + candidates[n].hash = hash; + candidates[n].checksum = (U32)(xxhash >> 32); + candidates[n].bucket = ZSTD_ldm_getBucket(ldmState, hash, params->bucketSizeLog); + PREFETCH_L1(candidates[n].bucket); + } + + for (n = 0; n < numSplits; n++) { + size_t forwardMatchLength = 0, backwardMatchLength = 0, + bestMatchLength = 0, mLength; + U32 offset; + BYTE const* const split = candidates[n].split; + U32 const checksum = candidates[n].checksum; + U32 const hash = candidates[n].hash; + ldmEntry_t* const bucket = candidates[n].bucket; + ldmEntry_t const* cur; + ldmEntry_t const* bestEntry = NULL; + ldmEntry_t newEntry; + + newEntry.offset = (U32)(split - base); + newEntry.checksum = checksum; + + /* If a split point would generate a sequence overlapping with + * the previous one, we merely register it in the hash table and + * move on */ + if (split < anchor) { + ZSTD_ldm_insertEntry(ldmState, hash, newEntry, params->bucketSizeLog); + continue; + } + + for (cur = bucket; cur < bucket + entsPerBucket; cur++) { + size_t curForwardMatchLength, curBackwardMatchLength, + curTotalMatchLength; + if (cur->checksum != checksum || cur->offset <= lowestIndex) { + continue; + } + if (extDict) { + BYTE const* const curMatchBase = + cur->offset < dictLimit ? dictBase : base; + BYTE const* const pMatch = curMatchBase + cur->offset; + BYTE const* const matchEnd = + cur->offset < dictLimit ? dictEnd : iend; + BYTE const* const lowMatchPtr = + cur->offset < dictLimit ? dictStart : lowPrefixPtr; + curForwardMatchLength = + ZSTD_count_2segments(split, pMatch, iend, matchEnd, lowPrefixPtr); + if (curForwardMatchLength < minMatchLength) { + continue; + } + curBackwardMatchLength = ZSTD_ldm_countBackwardsMatch_2segments( + split, anchor, pMatch, lowMatchPtr, dictStart, dictEnd); + } else { /* !extDict */ + BYTE const* const pMatch = base + cur->offset; + curForwardMatchLength = ZSTD_count(split, pMatch, iend); + if (curForwardMatchLength < minMatchLength) { + continue; + } + curBackwardMatchLength = + ZSTD_ldm_countBackwardsMatch(split, anchor, pMatch, lowPrefixPtr); + } + curTotalMatchLength = curForwardMatchLength + curBackwardMatchLength; + + if (curTotalMatchLength > bestMatchLength) { + bestMatchLength = curTotalMatchLength; + forwardMatchLength = curForwardMatchLength; + backwardMatchLength = curBackwardMatchLength; + bestEntry = cur; + } + } + + /* No match found -- insert an entry into the hash table + * and process the next candidate match */ + if (bestEntry == NULL) { + ZSTD_ldm_insertEntry(ldmState, hash, newEntry, params->bucketSizeLog); + continue; + } + + /* Match found */ + offset = (U32)(split - base) - bestEntry->offset; + mLength = forwardMatchLength + backwardMatchLength; + { + rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size; + + /* Out of sequence storage */ + if (rawSeqStore->size == rawSeqStore->capacity) + return ERROR(dstSize_tooSmall); + seq->litLength = (U32)(split - backwardMatchLength - anchor); + seq->matchLength = (U32)mLength; + seq->offset = offset; + rawSeqStore->size++; + } + + /* Insert the current entry into the hash table --- it must be + * done after the previous block to avoid clobbering bestEntry */ + ZSTD_ldm_insertEntry(ldmState, hash, newEntry, params->bucketSizeLog); + + anchor = split + forwardMatchLength; + + /* If we find a match that ends after the data that we've hashed + * then we have a repeating, overlapping, pattern. E.g. all zeros. + * If one repetition of the pattern matches our `stopMask` then all + * repetitions will. We don't need to insert them all into out table, + * only the first one. So skip over overlapping matches. + * This is a major speed boost (20x) for compressing a single byte + * repeated, when that byte ends up in the table. + */ + if (anchor > ip + hashed) { + ZSTD_ldm_gear_reset(&hashState, anchor - minMatchLength, minMatchLength); + /* Continue the outer loop at anchor (ip + hashed == anchor). */ + ip = anchor - hashed; + break; + } + } + + ip += hashed; + } + + return iend - anchor; +} + +/*! ZSTD_ldm_reduceTable() : + * reduce table indexes by `reducerValue` */ +static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size, + U32 const reducerValue) +{ + U32 u; + for (u = 0; u < size; u++) { + if (table[u].offset < reducerValue) table[u].offset = 0; + else table[u].offset -= reducerValue; + } +} + +size_t ZSTD_ldm_generateSequences( + ldmState_t* ldmState, RawSeqStore_t* sequences, + ldmParams_t const* params, void const* src, size_t srcSize) +{ + U32 const maxDist = 1U << params->windowLog; + BYTE const* const istart = (BYTE const*)src; + BYTE const* const iend = istart + srcSize; + size_t const kMaxChunkSize = 1 << 20; + size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0); + size_t chunk; + size_t leftoverSize = 0; + + assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize); + /* Check that ZSTD_window_update() has been called for this chunk prior + * to passing it to this function. + */ + assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize); + /* The input could be very large (in zstdmt), so it must be broken up into + * chunks to enforce the maximum distance and handle overflow correction. + */ + assert(sequences->pos <= sequences->size); + assert(sequences->size <= sequences->capacity); + for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) { + BYTE const* const chunkStart = istart + chunk * kMaxChunkSize; + size_t const remaining = (size_t)(iend - chunkStart); + BYTE const *const chunkEnd = + (remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize; + size_t const chunkSize = chunkEnd - chunkStart; + size_t newLeftoverSize; + size_t const prevSize = sequences->size; + + assert(chunkStart < iend); + /* 1. Perform overflow correction if necessary. */ + if (ZSTD_window_needOverflowCorrection(ldmState->window, 0, maxDist, ldmState->loadedDictEnd, chunkStart, chunkEnd)) { + U32 const ldmHSize = 1U << params->hashLog; + U32 const correction = ZSTD_window_correctOverflow( + &ldmState->window, /* cycleLog */ 0, maxDist, chunkStart); + ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction); + /* invalidate dictionaries on overflow correction */ + ldmState->loadedDictEnd = 0; + } + /* 2. We enforce the maximum offset allowed. + * + * kMaxChunkSize should be small enough that we don't lose too much of + * the window through early invalidation. + * TODO: * Test the chunk size. + * * Try invalidation after the sequence generation and test the + * offset against maxDist directly. + * + * NOTE: Because of dictionaries + sequence splitting we MUST make sure + * that any offset used is valid at the END of the sequence, since it may + * be split into two sequences. This condition holds when using + * ZSTD_window_enforceMaxDist(), but if we move to checking offsets + * against maxDist directly, we'll have to carefully handle that case. + */ + ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, &ldmState->loadedDictEnd, NULL); + /* 3. Generate the sequences for the chunk, and get newLeftoverSize. */ + newLeftoverSize = ZSTD_ldm_generateSequences_internal( + ldmState, sequences, params, chunkStart, chunkSize); + if (ZSTD_isError(newLeftoverSize)) + return newLeftoverSize; + /* 4. We add the leftover literals from previous iterations to the first + * newly generated sequence, or add the `newLeftoverSize` if none are + * generated. + */ + /* Prepend the leftover literals from the last call */ + if (prevSize < sequences->size) { + sequences->seq[prevSize].litLength += (U32)leftoverSize; + leftoverSize = newLeftoverSize; + } else { + assert(newLeftoverSize == chunkSize); + leftoverSize += chunkSize; + } + } + return 0; +} + +void +ZSTD_ldm_skipSequences(RawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch) +{ + while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) { + rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos; + if (srcSize <= seq->litLength) { + /* Skip past srcSize literals */ + seq->litLength -= (U32)srcSize; + return; + } + srcSize -= seq->litLength; + seq->litLength = 0; + if (srcSize < seq->matchLength) { + /* Skip past the first srcSize of the match */ + seq->matchLength -= (U32)srcSize; + if (seq->matchLength < minMatch) { + /* The match is too short, omit it */ + if (rawSeqStore->pos + 1 < rawSeqStore->size) { + seq[1].litLength += seq[0].matchLength; + } + rawSeqStore->pos++; + } + return; + } + srcSize -= seq->matchLength; + seq->matchLength = 0; + rawSeqStore->pos++; + } +} + +/** + * If the sequence length is longer than remaining then the sequence is split + * between this block and the next. + * + * Returns the current sequence to handle, or if the rest of the block should + * be literals, it returns a sequence with offset == 0. + */ +static rawSeq maybeSplitSequence(RawSeqStore_t* rawSeqStore, + U32 const remaining, U32 const minMatch) +{ + rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos]; + assert(sequence.offset > 0); + /* Likely: No partial sequence */ + if (remaining >= sequence.litLength + sequence.matchLength) { + rawSeqStore->pos++; + return sequence; + } + /* Cut the sequence short (offset == 0 ==> rest is literals). */ + if (remaining <= sequence.litLength) { + sequence.offset = 0; + } else if (remaining < sequence.litLength + sequence.matchLength) { + sequence.matchLength = remaining - sequence.litLength; + if (sequence.matchLength < minMatch) { + sequence.offset = 0; + } + } + /* Skip past `remaining` bytes for the future sequences. */ + ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch); + return sequence; +} + +void ZSTD_ldm_skipRawSeqStoreBytes(RawSeqStore_t* rawSeqStore, size_t nbBytes) { + U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes); + while (currPos && rawSeqStore->pos < rawSeqStore->size) { + rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos]; + if (currPos >= currSeq.litLength + currSeq.matchLength) { + currPos -= currSeq.litLength + currSeq.matchLength; + rawSeqStore->pos++; + } else { + rawSeqStore->posInSequence = currPos; + break; + } + } + if (currPos == 0 || rawSeqStore->pos == rawSeqStore->size) { + rawSeqStore->posInSequence = 0; + } +} + +size_t ZSTD_ldm_blockCompress(RawSeqStore_t* rawSeqStore, + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + ZSTD_ParamSwitch_e useRowMatchFinder, + void const* src, size_t srcSize) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + unsigned const minMatch = cParams->minMatch; + ZSTD_BlockCompressor_f const blockCompressor = + ZSTD_selectBlockCompressor(cParams->strategy, useRowMatchFinder, ZSTD_matchState_dictMode(ms)); + /* Input bounds */ + BYTE const* const istart = (BYTE const*)src; + BYTE const* const iend = istart + srcSize; + /* Input positions */ + BYTE const* ip = istart; + + DEBUGLOG(5, "ZSTD_ldm_blockCompress: srcSize=%zu", srcSize); + /* If using opt parser, use LDMs only as candidates rather than always accepting them */ + if (cParams->strategy >= ZSTD_btopt) { + size_t lastLLSize; + ms->ldmSeqStore = rawSeqStore; + lastLLSize = blockCompressor(ms, seqStore, rep, src, srcSize); + ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore, srcSize); + return lastLLSize; + } + + assert(rawSeqStore->pos <= rawSeqStore->size); + assert(rawSeqStore->size <= rawSeqStore->capacity); + /* Loop through each sequence and apply the block compressor to the literals */ + while (rawSeqStore->pos < rawSeqStore->size && ip < iend) { + /* maybeSplitSequence updates rawSeqStore->pos */ + rawSeq const sequence = maybeSplitSequence(rawSeqStore, + (U32)(iend - ip), minMatch); + /* End signal */ + if (sequence.offset == 0) + break; + + assert(ip + sequence.litLength + sequence.matchLength <= iend); + + /* Fill tables for block compressor */ + ZSTD_ldm_limitTableUpdate(ms, ip); + ZSTD_ldm_fillFastTables(ms, ip); + /* Run the block compressor */ + DEBUGLOG(5, "pos %u : calling block compressor on segment of size %u", (unsigned)(ip-istart), sequence.litLength); + { + int i; + size_t const newLitLength = + blockCompressor(ms, seqStore, rep, ip, sequence.litLength); + ip += sequence.litLength; + /* Update the repcodes */ + for (i = ZSTD_REP_NUM - 1; i > 0; i--) + rep[i] = rep[i-1]; + rep[0] = sequence.offset; + /* Store the sequence */ + ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, iend, + OFFSET_TO_OFFBASE(sequence.offset), + sequence.matchLength); + ip += sequence.matchLength; + } + } + /* Fill the tables for the block compressor */ + ZSTD_ldm_limitTableUpdate(ms, ip); + ZSTD_ldm_fillFastTables(ms, ip); + /* Compress the last literals */ + return blockCompressor(ms, seqStore, rep, ip, iend - ip); +} diff --git a/src/third-party/zstd/compress/zstd_ldm.h b/src/third-party/zstd/compress/zstd_ldm.h new file mode 100644 index 0000000000000..42736231aa8d8 --- /dev/null +++ b/src/third-party/zstd/compress/zstd_ldm.h @@ -0,0 +1,109 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_LDM_H +#define ZSTD_LDM_H + +#include "zstd_compress_internal.h" /* ldmParams_t, U32 */ +#include "../zstd.h" /* ZSTD_CCtx, size_t */ + +/*-************************************* +* Long distance matching +***************************************/ + +#define ZSTD_LDM_DEFAULT_WINDOW_LOG ZSTD_WINDOWLOG_LIMIT_DEFAULT + +void ZSTD_ldm_fillHashTable( + ldmState_t* state, const BYTE* ip, + const BYTE* iend, ldmParams_t const* params); + +/** + * ZSTD_ldm_generateSequences(): + * + * Generates the sequences using the long distance match finder. + * Generates long range matching sequences in `sequences`, which parse a prefix + * of the source. `sequences` must be large enough to store every sequence, + * which can be checked with `ZSTD_ldm_getMaxNbSeq()`. + * @returns 0 or an error code. + * + * NOTE: The user must have called ZSTD_window_update() for all of the input + * they have, even if they pass it to ZSTD_ldm_generateSequences() in chunks. + * NOTE: This function returns an error if it runs out of space to store + * sequences. + */ +size_t ZSTD_ldm_generateSequences( + ldmState_t* ldms, RawSeqStore_t* sequences, + ldmParams_t const* params, void const* src, size_t srcSize); + +/** + * ZSTD_ldm_blockCompress(): + * + * Compresses a block using the predefined sequences, along with a secondary + * block compressor. The literals section of every sequence is passed to the + * secondary block compressor, and those sequences are interspersed with the + * predefined sequences. Returns the length of the last literals. + * Updates `rawSeqStore.pos` to indicate how many sequences have been consumed. + * `rawSeqStore.seq` may also be updated to split the last sequence between two + * blocks. + * @return The length of the last literals. + * + * NOTE: The source must be at most the maximum block size, but the predefined + * sequences can be any size, and may be longer than the block. In the case that + * they are longer than the block, the last sequences may need to be split into + * two. We handle that case correctly, and update `rawSeqStore` appropriately. + * NOTE: This function does not return any errors. + */ +size_t ZSTD_ldm_blockCompress(RawSeqStore_t* rawSeqStore, + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + ZSTD_ParamSwitch_e useRowMatchFinder, + void const* src, size_t srcSize); + +/** + * ZSTD_ldm_skipSequences(): + * + * Skip past `srcSize` bytes worth of sequences in `rawSeqStore`. + * Avoids emitting matches less than `minMatch` bytes. + * Must be called for data that is not passed to ZSTD_ldm_blockCompress(). + */ +void ZSTD_ldm_skipSequences(RawSeqStore_t* rawSeqStore, size_t srcSize, + U32 const minMatch); + +/* ZSTD_ldm_skipRawSeqStoreBytes(): + * Moves forward in rawSeqStore by nbBytes, updating fields 'pos' and 'posInSequence'. + * Not to be used in conjunction with ZSTD_ldm_skipSequences(). + * Must be called for data with is not passed to ZSTD_ldm_blockCompress(). + */ +void ZSTD_ldm_skipRawSeqStoreBytes(RawSeqStore_t* rawSeqStore, size_t nbBytes); + +/** ZSTD_ldm_getTableSize() : + * Estimate the space needed for long distance matching tables or 0 if LDM is + * disabled. + */ +size_t ZSTD_ldm_getTableSize(ldmParams_t params); + +/** ZSTD_ldm_getSeqSpace() : + * Return an upper bound on the number of sequences that can be produced by + * the long distance matcher, or 0 if LDM is disabled. + */ +size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize); + +/** ZSTD_ldm_adjustParameters() : + * If the params->hashRateLog is not set, set it to its default value based on + * windowLog and params->hashLog. + * + * Ensures that params->bucketSizeLog is <= params->hashLog (setting it to + * params->hashLog if it is not). + * + * Ensures that the minMatchLength >= targetLength during optimal parsing. + */ +void ZSTD_ldm_adjustParameters(ldmParams_t* params, + ZSTD_compressionParameters const* cParams); + +#endif /* ZSTD_FAST_H */ diff --git a/src/third-party/zstd/compress/zstd_ldm_geartab.h b/src/third-party/zstd/compress/zstd_ldm_geartab.h new file mode 100644 index 0000000000000..ef34bc5c92314 --- /dev/null +++ b/src/third-party/zstd/compress/zstd_ldm_geartab.h @@ -0,0 +1,106 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_LDM_GEARTAB_H +#define ZSTD_LDM_GEARTAB_H + +#include "../common/compiler.h" /* UNUSED_ATTR */ +#include "../common/mem.h" /* U64 */ + +static UNUSED_ATTR const U64 ZSTD_ldm_gearTab[256] = { + 0xf5b8f72c5f77775c, 0x84935f266b7ac412, 0xb647ada9ca730ccc, + 0xb065bb4b114fb1de, 0x34584e7e8c3a9fd0, 0x4e97e17c6ae26b05, + 0x3a03d743bc99a604, 0xcecd042422c4044f, 0x76de76c58524259e, + 0x9c8528f65badeaca, 0x86563706e2097529, 0x2902475fa375d889, + 0xafb32a9739a5ebe6, 0xce2714da3883e639, 0x21eaf821722e69e, + 0x37b628620b628, 0x49a8d455d88caf5, 0x8556d711e6958140, + 0x4f7ae74fc605c1f, 0x829f0c3468bd3a20, 0x4ffdc885c625179e, + 0x8473de048a3daf1b, 0x51008822b05646b2, 0x69d75d12b2d1cc5f, + 0x8c9d4a19159154bc, 0xc3cc10f4abbd4003, 0xd06ddc1cecb97391, + 0xbe48e6e7ed80302e, 0x3481db31cee03547, 0xacc3f67cdaa1d210, + 0x65cb771d8c7f96cc, 0x8eb27177055723dd, 0xc789950d44cd94be, + 0x934feadc3700b12b, 0x5e485f11edbdf182, 0x1e2e2a46fd64767a, + 0x2969ca71d82efa7c, 0x9d46e9935ebbba2e, 0xe056b67e05e6822b, + 0x94d73f55739d03a0, 0xcd7010bdb69b5a03, 0x455ef9fcd79b82f4, + 0x869cb54a8749c161, 0x38d1a4fa6185d225, 0xb475166f94bbe9bb, + 0xa4143548720959f1, 0x7aed4780ba6b26ba, 0xd0ce264439e02312, + 0x84366d746078d508, 0xa8ce973c72ed17be, 0x21c323a29a430b01, + 0x9962d617e3af80ee, 0xab0ce91d9c8cf75b, 0x530e8ee6d19a4dbc, + 0x2ef68c0cf53f5d72, 0xc03a681640a85506, 0x496e4e9f9c310967, + 0x78580472b59b14a0, 0x273824c23b388577, 0x66bf923ad45cb553, + 0x47ae1a5a2492ba86, 0x35e304569e229659, 0x4765182a46870b6f, + 0x6cbab625e9099412, 0xddac9a2e598522c1, 0x7172086e666624f2, + 0xdf5003ca503b7837, 0x88c0c1db78563d09, 0x58d51865acfc289d, + 0x177671aec65224f1, 0xfb79d8a241e967d7, 0x2be1e101cad9a49a, + 0x6625682f6e29186b, 0x399553457ac06e50, 0x35dffb4c23abb74, + 0x429db2591f54aade, 0xc52802a8037d1009, 0x6acb27381f0b25f3, + 0xf45e2551ee4f823b, 0x8b0ea2d99580c2f7, 0x3bed519cbcb4e1e1, + 0xff452823dbb010a, 0x9d42ed614f3dd267, 0x5b9313c06257c57b, + 0xa114b8008b5e1442, 0xc1fe311c11c13d4b, 0x66e8763ea34c5568, + 0x8b982af1c262f05d, 0xee8876faaa75fbb7, 0x8a62a4d0d172bb2a, + 0xc13d94a3b7449a97, 0x6dbbba9dc15d037c, 0xc786101f1d92e0f1, + 0xd78681a907a0b79b, 0xf61aaf2962c9abb9, 0x2cfd16fcd3cb7ad9, + 0x868c5b6744624d21, 0x25e650899c74ddd7, 0xba042af4a7c37463, + 0x4eb1a539465a3eca, 0xbe09dbf03b05d5ca, 0x774e5a362b5472ba, + 0x47a1221229d183cd, 0x504b0ca18ef5a2df, 0xdffbdfbde2456eb9, + 0x46cd2b2fbee34634, 0xf2aef8fe819d98c3, 0x357f5276d4599d61, + 0x24a5483879c453e3, 0x88026889192b4b9, 0x28da96671782dbec, + 0x4ef37c40588e9aaa, 0x8837b90651bc9fb3, 0xc164f741d3f0e5d6, + 0xbc135a0a704b70ba, 0x69cd868f7622ada, 0xbc37ba89e0b9c0ab, + 0x47c14a01323552f6, 0x4f00794bacee98bb, 0x7107de7d637a69d5, + 0x88af793bb6f2255e, 0xf3c6466b8799b598, 0xc288c616aa7f3b59, + 0x81ca63cf42fca3fd, 0x88d85ace36a2674b, 0xd056bd3792389e7, + 0xe55c396c4e9dd32d, 0xbefb504571e6c0a6, 0x96ab32115e91e8cc, + 0xbf8acb18de8f38d1, 0x66dae58801672606, 0x833b6017872317fb, + 0xb87c16f2d1c92864, 0xdb766a74e58b669c, 0x89659f85c61417be, + 0xc8daad856011ea0c, 0x76a4b565b6fe7eae, 0xa469d085f6237312, + 0xaaf0365683a3e96c, 0x4dbb746f8424f7b8, 0x638755af4e4acc1, + 0x3d7807f5bde64486, 0x17be6d8f5bbb7639, 0x903f0cd44dc35dc, + 0x67b672eafdf1196c, 0xa676ff93ed4c82f1, 0x521d1004c5053d9d, + 0x37ba9ad09ccc9202, 0x84e54d297aacfb51, 0xa0b4b776a143445, + 0x820d471e20b348e, 0x1874383cb83d46dc, 0x97edeec7a1efe11c, + 0xb330e50b1bdc42aa, 0x1dd91955ce70e032, 0xa514cdb88f2939d5, + 0x2791233fd90db9d3, 0x7b670a4cc50f7a9b, 0x77c07d2a05c6dfa5, + 0xe3778b6646d0a6fa, 0xb39c8eda47b56749, 0x933ed448addbef28, + 0xaf846af6ab7d0bf4, 0xe5af208eb666e49, 0x5e6622f73534cd6a, + 0x297daeca42ef5b6e, 0x862daef3d35539a6, 0xe68722498f8e1ea9, + 0x981c53093dc0d572, 0xfa09b0bfbf86fbf5, 0x30b1e96166219f15, + 0x70e7d466bdc4fb83, 0x5a66736e35f2a8e9, 0xcddb59d2b7c1baef, + 0xd6c7d247d26d8996, 0xea4e39eac8de1ba3, 0x539c8bb19fa3aff2, + 0x9f90e4c5fd508d8, 0xa34e5956fbaf3385, 0x2e2f8e151d3ef375, + 0x173691e9b83faec1, 0xb85a8d56bf016379, 0x8382381267408ae3, + 0xb90f901bbdc0096d, 0x7c6ad32933bcec65, 0x76bb5e2f2c8ad595, + 0x390f851a6cf46d28, 0xc3e6064da1c2da72, 0xc52a0c101cfa5389, + 0xd78eaf84a3fbc530, 0x3781b9e2288b997e, 0x73c2f6dea83d05c4, + 0x4228e364c5b5ed7, 0x9d7a3edf0da43911, 0x8edcfeda24686756, + 0x5e7667a7b7a9b3a1, 0x4c4f389fa143791d, 0xb08bc1023da7cddc, + 0x7ab4be3ae529b1cc, 0x754e6132dbe74ff9, 0x71635442a839df45, + 0x2f6fb1643fbe52de, 0x961e0a42cf7a8177, 0xf3b45d83d89ef2ea, + 0xee3de4cf4a6e3e9b, 0xcd6848542c3295e7, 0xe4cee1664c78662f, + 0x9947548b474c68c4, 0x25d73777a5ed8b0b, 0xc915b1d636b7fc, + 0x21c2ba75d9b0d2da, 0x5f6b5dcf608a64a1, 0xdcf333255ff9570c, + 0x633b922418ced4ee, 0xc136dde0b004b34a, 0x58cc83b05d4b2f5a, + 0x5eb424dda28e42d2, 0x62df47369739cd98, 0xb4e0b42485e4ce17, + 0x16e1f0c1f9a8d1e7, 0x8ec3916707560ebf, 0x62ba6e2df2cc9db3, + 0xcbf9f4ff77d83a16, 0x78d9d7d07d2bbcc4, 0xef554ce1e02c41f4, + 0x8d7581127eccf94d, 0xa9b53336cb3c8a05, 0x38c42c0bf45c4f91, + 0x640893cdf4488863, 0x80ec34bc575ea568, 0x39f324f5b48eaa40, + 0xe9d9ed1f8eff527f, 0x9224fc058cc5a214, 0xbaba00b04cfe7741, + 0x309a9f120fcf52af, 0xa558f3ec65626212, 0x424bec8b7adabe2f, + 0x41622513a6aea433, 0xb88da2d5324ca798, 0xd287733b245528a4, + 0x9a44697e6d68aec3, 0x7b1093be2f49bb28, 0x50bbec632e3d8aad, + 0x6cd90723e1ea8283, 0x897b9e7431b02bf3, 0x219efdcb338a7047, + 0x3b0311f0a27c0656, 0xdb17bf91c0db96e7, 0x8cd4fd6b4e85a5b2, + 0xfab071054ba6409d, 0x40d6fe831fa9dfd9, 0xaf358debad7d791e, + 0xeb8d0e25a65e3e58, 0xbbcbd3df14e08580, 0xcf751f27ecdab2b, + 0x2b4da14f2613d8f4 +}; + +#endif /* ZSTD_LDM_GEARTAB_H */ diff --git a/src/third-party/zstd/compress/zstd_opt.c b/src/third-party/zstd/compress/zstd_opt.c new file mode 100644 index 0000000000000..3d7171b755bde --- /dev/null +++ b/src/third-party/zstd/compress/zstd_opt.c @@ -0,0 +1,1580 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#include "zstd_compress_internal.h" +#include "hist.h" +#include "zstd_opt.h" + +#if !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR) \ + || !defined(ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR) \ + || !defined(ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR) + +#define ZSTD_LITFREQ_ADD 2 /* scaling factor for litFreq, so that frequencies adapt faster to new stats */ +#define ZSTD_MAX_PRICE (1<<30) + +#define ZSTD_PREDEF_THRESHOLD 8 /* if srcSize < ZSTD_PREDEF_THRESHOLD, symbols' cost is assumed static, directly determined by pre-defined distributions */ + + +/*-************************************* +* Price functions for optimal parser +***************************************/ + +#if 0 /* approximation at bit level (for tests) */ +# define BITCOST_ACCURACY 0 +# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY) +# define WEIGHT(stat, opt) ((void)(opt), ZSTD_bitWeight(stat)) +#elif 0 /* fractional bit accuracy (for tests) */ +# define BITCOST_ACCURACY 8 +# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY) +# define WEIGHT(stat,opt) ((void)(opt), ZSTD_fracWeight(stat)) +#else /* opt==approx, ultra==accurate */ +# define BITCOST_ACCURACY 8 +# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY) +# define WEIGHT(stat,opt) ((opt) ? ZSTD_fracWeight(stat) : ZSTD_bitWeight(stat)) +#endif + +/* ZSTD_bitWeight() : + * provide estimated "cost" of a stat in full bits only */ +MEM_STATIC U32 ZSTD_bitWeight(U32 stat) +{ + return (ZSTD_highbit32(stat+1) * BITCOST_MULTIPLIER); +} + +/* ZSTD_fracWeight() : + * provide fractional-bit "cost" of a stat, + * using linear interpolation approximation */ +MEM_STATIC U32 ZSTD_fracWeight(U32 rawStat) +{ + U32 const stat = rawStat + 1; + U32 const hb = ZSTD_highbit32(stat); + U32 const BWeight = hb * BITCOST_MULTIPLIER; + /* Fweight was meant for "Fractional weight" + * but it's effectively a value between 1 and 2 + * using fixed point arithmetic */ + U32 const FWeight = (stat << BITCOST_ACCURACY) >> hb; + U32 const weight = BWeight + FWeight; + assert(hb + BITCOST_ACCURACY < 31); + return weight; +} + +#if (DEBUGLEVEL>=2) +/* debugging function, + * @return price in bytes as fractional value + * for debug messages only */ +MEM_STATIC double ZSTD_fCost(int price) +{ + return (double)price / (BITCOST_MULTIPLIER*8); +} +#endif + +static int ZSTD_compressedLiterals(optState_t const* const optPtr) +{ + return optPtr->literalCompressionMode != ZSTD_ps_disable; +} + +static void ZSTD_setBasePrices(optState_t* optPtr, int optLevel) +{ + if (ZSTD_compressedLiterals(optPtr)) + optPtr->litSumBasePrice = WEIGHT(optPtr->litSum, optLevel); + optPtr->litLengthSumBasePrice = WEIGHT(optPtr->litLengthSum, optLevel); + optPtr->matchLengthSumBasePrice = WEIGHT(optPtr->matchLengthSum, optLevel); + optPtr->offCodeSumBasePrice = WEIGHT(optPtr->offCodeSum, optLevel); +} + + +static U32 sum_u32(const unsigned table[], size_t nbElts) +{ + size_t n; + U32 total = 0; + for (n=0; n0); + unsigned const newStat = base + (table[s] >> shift); + sum += newStat; + table[s] = newStat; + } + return sum; +} + +/* ZSTD_scaleStats() : + * reduce all elt frequencies in table if sum too large + * return the resulting sum of elements */ +static U32 ZSTD_scaleStats(unsigned* table, U32 lastEltIndex, U32 logTarget) +{ + U32 const prevsum = sum_u32(table, lastEltIndex+1); + U32 const factor = prevsum >> logTarget; + DEBUGLOG(5, "ZSTD_scaleStats (nbElts=%u, target=%u)", (unsigned)lastEltIndex+1, (unsigned)logTarget); + assert(logTarget < 30); + if (factor <= 1) return prevsum; + return ZSTD_downscaleStats(table, lastEltIndex, ZSTD_highbit32(factor), base_1guaranteed); +} + +/* ZSTD_rescaleFreqs() : + * if first block (detected by optPtr->litLengthSum == 0) : init statistics + * take hints from dictionary if there is one + * and init from zero if there is none, + * using src for literals stats, and baseline stats for sequence symbols + * otherwise downscale existing stats, to be used as seed for next block. + */ +static void +ZSTD_rescaleFreqs(optState_t* const optPtr, + const BYTE* const src, size_t const srcSize, + int const optLevel) +{ + int const compressedLiterals = ZSTD_compressedLiterals(optPtr); + DEBUGLOG(5, "ZSTD_rescaleFreqs (srcSize=%u)", (unsigned)srcSize); + optPtr->priceType = zop_dynamic; + + if (optPtr->litLengthSum == 0) { /* no literals stats collected -> first block assumed -> init */ + + /* heuristic: use pre-defined stats for too small inputs */ + if (srcSize <= ZSTD_PREDEF_THRESHOLD) { + DEBUGLOG(5, "srcSize <= %i : use predefined stats", ZSTD_PREDEF_THRESHOLD); + optPtr->priceType = zop_predef; + } + + assert(optPtr->symbolCosts != NULL); + if (optPtr->symbolCosts->huf.repeatMode == HUF_repeat_valid) { + + /* huffman stats covering the full value set : table presumed generated by dictionary */ + optPtr->priceType = zop_dynamic; + + if (compressedLiterals) { + /* generate literals statistics from huffman table */ + unsigned lit; + assert(optPtr->litFreq != NULL); + optPtr->litSum = 0; + for (lit=0; lit<=MaxLit; lit++) { + U32 const scaleLog = 11; /* scale to 2K */ + U32 const bitCost = HUF_getNbBitsFromCTable(optPtr->symbolCosts->huf.CTable, lit); + assert(bitCost <= scaleLog); + optPtr->litFreq[lit] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/; + optPtr->litSum += optPtr->litFreq[lit]; + } } + + { unsigned ll; + FSE_CState_t llstate; + FSE_initCState(&llstate, optPtr->symbolCosts->fse.litlengthCTable); + optPtr->litLengthSum = 0; + for (ll=0; ll<=MaxLL; ll++) { + U32 const scaleLog = 10; /* scale to 1K */ + U32 const bitCost = FSE_getMaxNbBits(llstate.symbolTT, ll); + assert(bitCost < scaleLog); + optPtr->litLengthFreq[ll] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/; + optPtr->litLengthSum += optPtr->litLengthFreq[ll]; + } } + + { unsigned ml; + FSE_CState_t mlstate; + FSE_initCState(&mlstate, optPtr->symbolCosts->fse.matchlengthCTable); + optPtr->matchLengthSum = 0; + for (ml=0; ml<=MaxML; ml++) { + U32 const scaleLog = 10; + U32 const bitCost = FSE_getMaxNbBits(mlstate.symbolTT, ml); + assert(bitCost < scaleLog); + optPtr->matchLengthFreq[ml] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/; + optPtr->matchLengthSum += optPtr->matchLengthFreq[ml]; + } } + + { unsigned of; + FSE_CState_t ofstate; + FSE_initCState(&ofstate, optPtr->symbolCosts->fse.offcodeCTable); + optPtr->offCodeSum = 0; + for (of=0; of<=MaxOff; of++) { + U32 const scaleLog = 10; + U32 const bitCost = FSE_getMaxNbBits(ofstate.symbolTT, of); + assert(bitCost < scaleLog); + optPtr->offCodeFreq[of] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/; + optPtr->offCodeSum += optPtr->offCodeFreq[of]; + } } + + } else { /* first block, no dictionary */ + + assert(optPtr->litFreq != NULL); + if (compressedLiterals) { + /* base initial cost of literals on direct frequency within src */ + unsigned lit = MaxLit; + HIST_count_simple(optPtr->litFreq, &lit, src, srcSize); /* use raw first block to init statistics */ + optPtr->litSum = ZSTD_downscaleStats(optPtr->litFreq, MaxLit, 8, base_0possible); + } + + { unsigned const baseLLfreqs[MaxLL+1] = { + 4, 2, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1 + }; + ZSTD_memcpy(optPtr->litLengthFreq, baseLLfreqs, sizeof(baseLLfreqs)); + optPtr->litLengthSum = sum_u32(baseLLfreqs, MaxLL+1); + } + + { unsigned ml; + for (ml=0; ml<=MaxML; ml++) + optPtr->matchLengthFreq[ml] = 1; + } + optPtr->matchLengthSum = MaxML+1; + + { unsigned const baseOFCfreqs[MaxOff+1] = { + 6, 2, 1, 1, 2, 3, 4, 4, + 4, 3, 2, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1 + }; + ZSTD_memcpy(optPtr->offCodeFreq, baseOFCfreqs, sizeof(baseOFCfreqs)); + optPtr->offCodeSum = sum_u32(baseOFCfreqs, MaxOff+1); + } + + } + + } else { /* new block : scale down accumulated statistics */ + + if (compressedLiterals) + optPtr->litSum = ZSTD_scaleStats(optPtr->litFreq, MaxLit, 12); + optPtr->litLengthSum = ZSTD_scaleStats(optPtr->litLengthFreq, MaxLL, 11); + optPtr->matchLengthSum = ZSTD_scaleStats(optPtr->matchLengthFreq, MaxML, 11); + optPtr->offCodeSum = ZSTD_scaleStats(optPtr->offCodeFreq, MaxOff, 11); + } + + ZSTD_setBasePrices(optPtr, optLevel); +} + +/* ZSTD_rawLiteralsCost() : + * price of literals (only) in specified segment (which length can be 0). + * does not include price of literalLength symbol */ +static U32 ZSTD_rawLiteralsCost(const BYTE* const literals, U32 const litLength, + const optState_t* const optPtr, + int optLevel) +{ + DEBUGLOG(8, "ZSTD_rawLiteralsCost (%u literals)", litLength); + if (litLength == 0) return 0; + + if (!ZSTD_compressedLiterals(optPtr)) + return (litLength << 3) * BITCOST_MULTIPLIER; /* Uncompressed - 8 bytes per literal. */ + + if (optPtr->priceType == zop_predef) + return (litLength*6) * BITCOST_MULTIPLIER; /* 6 bit per literal - no statistic used */ + + /* dynamic statistics */ + { U32 price = optPtr->litSumBasePrice * litLength; + U32 const litPriceMax = optPtr->litSumBasePrice - BITCOST_MULTIPLIER; + U32 u; + assert(optPtr->litSumBasePrice >= BITCOST_MULTIPLIER); + for (u=0; u < litLength; u++) { + U32 litPrice = WEIGHT(optPtr->litFreq[literals[u]], optLevel); + if (UNLIKELY(litPrice > litPriceMax)) litPrice = litPriceMax; + price -= litPrice; + } + return price; + } +} + +/* ZSTD_litLengthPrice() : + * cost of literalLength symbol */ +static U32 ZSTD_litLengthPrice(U32 const litLength, const optState_t* const optPtr, int optLevel) +{ + assert(litLength <= ZSTD_BLOCKSIZE_MAX); + if (optPtr->priceType == zop_predef) + return WEIGHT(litLength, optLevel); + + /* ZSTD_LLcode() can't compute litLength price for sizes >= ZSTD_BLOCKSIZE_MAX + * because it isn't representable in the zstd format. + * So instead just pretend it would cost 1 bit more than ZSTD_BLOCKSIZE_MAX - 1. + * In such a case, the block would be all literals. + */ + if (litLength == ZSTD_BLOCKSIZE_MAX) + return BITCOST_MULTIPLIER + ZSTD_litLengthPrice(ZSTD_BLOCKSIZE_MAX - 1, optPtr, optLevel); + + /* dynamic statistics */ + { U32 const llCode = ZSTD_LLcode(litLength); + return (LL_bits[llCode] * BITCOST_MULTIPLIER) + + optPtr->litLengthSumBasePrice + - WEIGHT(optPtr->litLengthFreq[llCode], optLevel); + } +} + +/* ZSTD_getMatchPrice() : + * Provides the cost of the match part (offset + matchLength) of a sequence. + * Must be combined with ZSTD_fullLiteralsCost() to get the full cost of a sequence. + * @offBase : sumtype, representing an offset or a repcode, and using numeric representation of ZSTD_storeSeq() + * @optLevel: when <2, favors small offset for decompression speed (improved cache efficiency) + */ +FORCE_INLINE_TEMPLATE U32 +ZSTD_getMatchPrice(U32 const offBase, + U32 const matchLength, + const optState_t* const optPtr, + int const optLevel) +{ + U32 price; + U32 const offCode = ZSTD_highbit32(offBase); + U32 const mlBase = matchLength - MINMATCH; + assert(matchLength >= MINMATCH); + + if (optPtr->priceType == zop_predef) /* fixed scheme, does not use statistics */ + return WEIGHT(mlBase, optLevel) + + ((16 + offCode) * BITCOST_MULTIPLIER); /* emulated offset cost */ + + /* dynamic statistics */ + price = (offCode * BITCOST_MULTIPLIER) + (optPtr->offCodeSumBasePrice - WEIGHT(optPtr->offCodeFreq[offCode], optLevel)); + if ((optLevel<2) /*static*/ && offCode >= 20) + price += (offCode-19)*2 * BITCOST_MULTIPLIER; /* handicap for long distance offsets, favor decompression speed */ + + /* match Length */ + { U32 const mlCode = ZSTD_MLcode(mlBase); + price += (ML_bits[mlCode] * BITCOST_MULTIPLIER) + (optPtr->matchLengthSumBasePrice - WEIGHT(optPtr->matchLengthFreq[mlCode], optLevel)); + } + + price += BITCOST_MULTIPLIER / 5; /* heuristic : make matches a bit more costly to favor less sequences -> faster decompression speed */ + + DEBUGLOG(8, "ZSTD_getMatchPrice(ml:%u) = %u", matchLength, price); + return price; +} + +/* ZSTD_updateStats() : + * assumption : literals + litLength <= iend */ +static void ZSTD_updateStats(optState_t* const optPtr, + U32 litLength, const BYTE* literals, + U32 offBase, U32 matchLength) +{ + /* literals */ + if (ZSTD_compressedLiterals(optPtr)) { + U32 u; + for (u=0; u < litLength; u++) + optPtr->litFreq[literals[u]] += ZSTD_LITFREQ_ADD; + optPtr->litSum += litLength*ZSTD_LITFREQ_ADD; + } + + /* literal Length */ + { U32 const llCode = ZSTD_LLcode(litLength); + optPtr->litLengthFreq[llCode]++; + optPtr->litLengthSum++; + } + + /* offset code : follows storeSeq() numeric representation */ + { U32 const offCode = ZSTD_highbit32(offBase); + assert(offCode <= MaxOff); + optPtr->offCodeFreq[offCode]++; + optPtr->offCodeSum++; + } + + /* match Length */ + { U32 const mlBase = matchLength - MINMATCH; + U32 const mlCode = ZSTD_MLcode(mlBase); + optPtr->matchLengthFreq[mlCode]++; + optPtr->matchLengthSum++; + } +} + + +/* ZSTD_readMINMATCH() : + * function safe only for comparisons + * assumption : memPtr must be at least 4 bytes before end of buffer */ +MEM_STATIC U32 ZSTD_readMINMATCH(const void* memPtr, U32 length) +{ + switch (length) + { + default : + case 4 : return MEM_read32(memPtr); + case 3 : if (MEM_isLittleEndian()) + return MEM_read32(memPtr)<<8; + else + return MEM_read32(memPtr)>>8; + } +} + + +/* Update hashTable3 up to ip (excluded) + Assumption : always within prefix (i.e. not within extDict) */ +static +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +U32 ZSTD_insertAndFindFirstIndexHash3 (const ZSTD_MatchState_t* ms, + U32* nextToUpdate3, + const BYTE* const ip) +{ + U32* const hashTable3 = ms->hashTable3; + U32 const hashLog3 = ms->hashLog3; + const BYTE* const base = ms->window.base; + U32 idx = *nextToUpdate3; + U32 const target = (U32)(ip - base); + size_t const hash3 = ZSTD_hash3Ptr(ip, hashLog3); + assert(hashLog3 > 0); + + while(idx < target) { + hashTable3[ZSTD_hash3Ptr(base+idx, hashLog3)] = idx; + idx++; + } + + *nextToUpdate3 = target; + return hashTable3[hash3]; +} + + +/*-************************************* +* Binary Tree search +***************************************/ +/** ZSTD_insertBt1() : add one or multiple positions to tree. + * @param ip assumed <= iend-8 . + * @param target The target of ZSTD_updateTree_internal() - we are filling to this position + * @return : nb of positions added */ +static +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +U32 ZSTD_insertBt1( + const ZSTD_MatchState_t* ms, + const BYTE* const ip, const BYTE* const iend, + U32 const target, + U32 const mls, const int extDict) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashTable = ms->hashTable; + U32 const hashLog = cParams->hashLog; + size_t const h = ZSTD_hashPtr(ip, hashLog, mls); + U32* const bt = ms->chainTable; + U32 const btLog = cParams->chainLog - 1; + U32 const btMask = (1 << btLog) - 1; + U32 matchIndex = hashTable[h]; + size_t commonLengthSmaller=0, commonLengthLarger=0; + const BYTE* const base = ms->window.base; + const BYTE* const dictBase = ms->window.dictBase; + const U32 dictLimit = ms->window.dictLimit; + const BYTE* const dictEnd = dictBase + dictLimit; + const BYTE* const prefixStart = base + dictLimit; + const BYTE* match; + const U32 curr = (U32)(ip-base); + const U32 btLow = btMask >= curr ? 0 : curr - btMask; + U32* smallerPtr = bt + 2*(curr&btMask); + U32* largerPtr = smallerPtr + 1; + U32 dummy32; /* to be nullified at the end */ + /* windowLow is based on target because + * we only need positions that will be in the window at the end of the tree update. + */ + U32 const windowLow = ZSTD_getLowestMatchIndex(ms, target, cParams->windowLog); + U32 matchEndIdx = curr+8+1; + size_t bestLength = 8; + U32 nbCompares = 1U << cParams->searchLog; +#ifdef ZSTD_C_PREDICT + U32 predictedSmall = *(bt + 2*((curr-1)&btMask) + 0); + U32 predictedLarge = *(bt + 2*((curr-1)&btMask) + 1); + predictedSmall += (predictedSmall>0); + predictedLarge += (predictedLarge>0); +#endif /* ZSTD_C_PREDICT */ + + DEBUGLOG(8, "ZSTD_insertBt1 (%u)", curr); + + assert(curr <= target); + assert(ip <= iend-8); /* required for h calculation */ + hashTable[h] = curr; /* Update Hash Table */ + + assert(windowLow > 0); + for (; nbCompares && (matchIndex >= windowLow); --nbCompares) { + U32* const nextPtr = bt + 2*(matchIndex & btMask); + size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ + assert(matchIndex < curr); + +#ifdef ZSTD_C_PREDICT /* note : can create issues when hlog small <= 11 */ + const U32* predictPtr = bt + 2*((matchIndex-1) & btMask); /* written this way, as bt is a roll buffer */ + if (matchIndex == predictedSmall) { + /* no need to check length, result known */ + *smallerPtr = matchIndex; + if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */ + smallerPtr = nextPtr+1; /* new "smaller" => larger of match */ + matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ + predictedSmall = predictPtr[1] + (predictPtr[1]>0); + continue; + } + if (matchIndex == predictedLarge) { + *largerPtr = matchIndex; + if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */ + largerPtr = nextPtr; + matchIndex = nextPtr[0]; + predictedLarge = predictPtr[0] + (predictPtr[0]>0); + continue; + } +#endif + + if (!extDict || (matchIndex+matchLength >= dictLimit)) { + assert(matchIndex+matchLength >= dictLimit); /* might be wrong if actually extDict */ + match = base + matchIndex; + matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend); + } else { + match = dictBase + matchIndex; + matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); + if (matchIndex+matchLength >= dictLimit) + match = base + matchIndex; /* to prepare for next usage of match[matchLength] */ + } + + if (matchLength > bestLength) { + bestLength = matchLength; + if (matchLength > matchEndIdx - matchIndex) + matchEndIdx = matchIndex + (U32)matchLength; + } + + if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */ + break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */ + } + + if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */ + /* match is smaller than current */ + *smallerPtr = matchIndex; /* update smaller idx */ + commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ + if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */ + smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */ + matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */ + } else { + /* match is larger than current */ + *largerPtr = matchIndex; + commonLengthLarger = matchLength; + if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */ + largerPtr = nextPtr; + matchIndex = nextPtr[0]; + } } + + *smallerPtr = *largerPtr = 0; + { U32 positions = 0; + if (bestLength > 384) positions = MIN(192, (U32)(bestLength - 384)); /* speed optimization */ + assert(matchEndIdx > curr + 8); + return MAX(positions, matchEndIdx - (curr + 8)); + } +} + +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +void ZSTD_updateTree_internal( + ZSTD_MatchState_t* ms, + const BYTE* const ip, const BYTE* const iend, + const U32 mls, const ZSTD_dictMode_e dictMode) +{ + const BYTE* const base = ms->window.base; + U32 const target = (U32)(ip - base); + U32 idx = ms->nextToUpdate; + DEBUGLOG(7, "ZSTD_updateTree_internal, from %u to %u (dictMode:%u)", + idx, target, dictMode); + + while(idx < target) { + U32 const forward = ZSTD_insertBt1(ms, base+idx, iend, target, mls, dictMode == ZSTD_extDict); + assert(idx < (U32)(idx + forward)); + idx += forward; + } + assert((size_t)(ip - base) <= (size_t)(U32)(-1)); + assert((size_t)(iend - base) <= (size_t)(U32)(-1)); + ms->nextToUpdate = target; +} + +void ZSTD_updateTree(ZSTD_MatchState_t* ms, const BYTE* ip, const BYTE* iend) { + ZSTD_updateTree_internal(ms, ip, iend, ms->cParams.minMatch, ZSTD_noDict); +} + +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +U32 +ZSTD_insertBtAndGetAllMatches ( + ZSTD_match_t* matches, /* store result (found matches) in this table (presumed large enough) */ + ZSTD_MatchState_t* ms, + U32* nextToUpdate3, + const BYTE* const ip, const BYTE* const iLimit, + const ZSTD_dictMode_e dictMode, + const U32 rep[ZSTD_REP_NUM], + const U32 ll0, /* tells if associated literal length is 0 or not. This value must be 0 or 1 */ + const U32 lengthToBeat, + const U32 mls /* template */) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1); + const BYTE* const base = ms->window.base; + U32 const curr = (U32)(ip-base); + U32 const hashLog = cParams->hashLog; + U32 const minMatch = (mls==3) ? 3 : 4; + U32* const hashTable = ms->hashTable; + size_t const h = ZSTD_hashPtr(ip, hashLog, mls); + U32 matchIndex = hashTable[h]; + U32* const bt = ms->chainTable; + U32 const btLog = cParams->chainLog - 1; + U32 const btMask= (1U << btLog) - 1; + size_t commonLengthSmaller=0, commonLengthLarger=0; + const BYTE* const dictBase = ms->window.dictBase; + U32 const dictLimit = ms->window.dictLimit; + const BYTE* const dictEnd = dictBase + dictLimit; + const BYTE* const prefixStart = base + dictLimit; + U32 const btLow = (btMask >= curr) ? 0 : curr - btMask; + U32 const windowLow = ZSTD_getLowestMatchIndex(ms, curr, cParams->windowLog); + U32 const matchLow = windowLow ? windowLow : 1; + U32* smallerPtr = bt + 2*(curr&btMask); + U32* largerPtr = bt + 2*(curr&btMask) + 1; + U32 matchEndIdx = curr+8+1; /* farthest referenced position of any match => detects repetitive patterns */ + U32 dummy32; /* to be nullified at the end */ + U32 mnum = 0; + U32 nbCompares = 1U << cParams->searchLog; + + const ZSTD_MatchState_t* dms = dictMode == ZSTD_dictMatchState ? ms->dictMatchState : NULL; + const ZSTD_compressionParameters* const dmsCParams = + dictMode == ZSTD_dictMatchState ? &dms->cParams : NULL; + const BYTE* const dmsBase = dictMode == ZSTD_dictMatchState ? dms->window.base : NULL; + const BYTE* const dmsEnd = dictMode == ZSTD_dictMatchState ? dms->window.nextSrc : NULL; + U32 const dmsHighLimit = dictMode == ZSTD_dictMatchState ? (U32)(dmsEnd - dmsBase) : 0; + U32 const dmsLowLimit = dictMode == ZSTD_dictMatchState ? dms->window.lowLimit : 0; + U32 const dmsIndexDelta = dictMode == ZSTD_dictMatchState ? windowLow - dmsHighLimit : 0; + U32 const dmsHashLog = dictMode == ZSTD_dictMatchState ? dmsCParams->hashLog : hashLog; + U32 const dmsBtLog = dictMode == ZSTD_dictMatchState ? dmsCParams->chainLog - 1 : btLog; + U32 const dmsBtMask = dictMode == ZSTD_dictMatchState ? (1U << dmsBtLog) - 1 : 0; + U32 const dmsBtLow = dictMode == ZSTD_dictMatchState && dmsBtMask < dmsHighLimit - dmsLowLimit ? dmsHighLimit - dmsBtMask : dmsLowLimit; + + size_t bestLength = lengthToBeat-1; + DEBUGLOG(8, "ZSTD_insertBtAndGetAllMatches: current=%u", curr); + + /* check repCode */ + assert(ll0 <= 1); /* necessarily 1 or 0 */ + { U32 const lastR = ZSTD_REP_NUM + ll0; + U32 repCode; + for (repCode = ll0; repCode < lastR; repCode++) { + U32 const repOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode]; + U32 const repIndex = curr - repOffset; + U32 repLen = 0; + assert(curr >= dictLimit); + if (repOffset-1 /* intentional overflow, discards 0 and -1 */ < curr-dictLimit) { /* equivalent to `curr > repIndex >= dictLimit` */ + /* We must validate the repcode offset because when we're using a dictionary the + * valid offset range shrinks when the dictionary goes out of bounds. + */ + if ((repIndex >= windowLow) & (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(ip - repOffset, minMatch))) { + repLen = (U32)ZSTD_count(ip+minMatch, ip+minMatch-repOffset, iLimit) + minMatch; + } + } else { /* repIndex < dictLimit || repIndex >= curr */ + const BYTE* const repMatch = dictMode == ZSTD_dictMatchState ? + dmsBase + repIndex - dmsIndexDelta : + dictBase + repIndex; + assert(curr >= windowLow); + if ( dictMode == ZSTD_extDict + && ( ((repOffset-1) /*intentional overflow*/ < curr - windowLow) /* equivalent to `curr > repIndex >= windowLow` */ + & (ZSTD_index_overlap_check(dictLimit, repIndex)) ) + && (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) { + repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dictEnd, prefixStart) + minMatch; + } + if (dictMode == ZSTD_dictMatchState + && ( ((repOffset-1) /*intentional overflow*/ < curr - (dmsLowLimit + dmsIndexDelta)) /* equivalent to `curr > repIndex >= dmsLowLimit` */ + & (ZSTD_index_overlap_check(dictLimit, repIndex)) ) + && (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) { + repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dmsEnd, prefixStart) + minMatch; + } } + /* save longer solution */ + if (repLen > bestLength) { + DEBUGLOG(8, "found repCode %u (ll0:%u, offset:%u) of length %u", + repCode, ll0, repOffset, repLen); + bestLength = repLen; + matches[mnum].off = REPCODE_TO_OFFBASE(repCode - ll0 + 1); /* expect value between 1 and 3 */ + matches[mnum].len = (U32)repLen; + mnum++; + if ( (repLen > sufficient_len) + | (ip+repLen == iLimit) ) { /* best possible */ + return mnum; + } } } } + + /* HC3 match finder */ + if ((mls == 3) /*static*/ && (bestLength < mls)) { + U32 const matchIndex3 = ZSTD_insertAndFindFirstIndexHash3(ms, nextToUpdate3, ip); + if ((matchIndex3 >= matchLow) + & (curr - matchIndex3 < (1<<18)) /*heuristic : longer distance likely too expensive*/ ) { + size_t mlen; + if ((dictMode == ZSTD_noDict) /*static*/ || (dictMode == ZSTD_dictMatchState) /*static*/ || (matchIndex3 >= dictLimit)) { + const BYTE* const match = base + matchIndex3; + mlen = ZSTD_count(ip, match, iLimit); + } else { + const BYTE* const match = dictBase + matchIndex3; + mlen = ZSTD_count_2segments(ip, match, iLimit, dictEnd, prefixStart); + } + + /* save best solution */ + if (mlen >= mls /* == 3 > bestLength */) { + DEBUGLOG(8, "found small match with hlog3, of length %u", + (U32)mlen); + bestLength = mlen; + assert(curr > matchIndex3); + assert(mnum==0); /* no prior solution */ + matches[0].off = OFFSET_TO_OFFBASE(curr - matchIndex3); + matches[0].len = (U32)mlen; + mnum = 1; + if ( (mlen > sufficient_len) | + (ip+mlen == iLimit) ) { /* best possible length */ + ms->nextToUpdate = curr+1; /* skip insertion */ + return 1; + } } } + /* no dictMatchState lookup: dicts don't have a populated HC3 table */ + } /* if (mls == 3) */ + + hashTable[h] = curr; /* Update Hash Table */ + + for (; nbCompares && (matchIndex >= matchLow); --nbCompares) { + U32* const nextPtr = bt + 2*(matchIndex & btMask); + const BYTE* match; + size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ + assert(curr > matchIndex); + + if ((dictMode == ZSTD_noDict) || (dictMode == ZSTD_dictMatchState) || (matchIndex+matchLength >= dictLimit)) { + assert(matchIndex+matchLength >= dictLimit); /* ensure the condition is correct when !extDict */ + match = base + matchIndex; + if (matchIndex >= dictLimit) assert(memcmp(match, ip, matchLength) == 0); /* ensure early section of match is equal as expected */ + matchLength += ZSTD_count(ip+matchLength, match+matchLength, iLimit); + } else { + match = dictBase + matchIndex; + assert(memcmp(match, ip, matchLength) == 0); /* ensure early section of match is equal as expected */ + matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dictEnd, prefixStart); + if (matchIndex+matchLength >= dictLimit) + match = base + matchIndex; /* prepare for match[matchLength] read */ + } + + if (matchLength > bestLength) { + DEBUGLOG(8, "found match of length %u at distance %u (offBase=%u)", + (U32)matchLength, curr - matchIndex, OFFSET_TO_OFFBASE(curr - matchIndex)); + assert(matchEndIdx > matchIndex); + if (matchLength > matchEndIdx - matchIndex) + matchEndIdx = matchIndex + (U32)matchLength; + bestLength = matchLength; + matches[mnum].off = OFFSET_TO_OFFBASE(curr - matchIndex); + matches[mnum].len = (U32)matchLength; + mnum++; + if ( (matchLength > ZSTD_OPT_NUM) + | (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) { + if (dictMode == ZSTD_dictMatchState) nbCompares = 0; /* break should also skip searching dms */ + break; /* drop, to preserve bt consistency (miss a little bit of compression) */ + } } + + if (match[matchLength] < ip[matchLength]) { + /* match smaller than current */ + *smallerPtr = matchIndex; /* update smaller idx */ + commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ + if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */ + smallerPtr = nextPtr+1; /* new candidate => larger than match, which was smaller than current */ + matchIndex = nextPtr[1]; /* new matchIndex, larger than previous, closer to current */ + } else { + *largerPtr = matchIndex; + commonLengthLarger = matchLength; + if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */ + largerPtr = nextPtr; + matchIndex = nextPtr[0]; + } } + + *smallerPtr = *largerPtr = 0; + + assert(nbCompares <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */ + if (dictMode == ZSTD_dictMatchState && nbCompares) { + size_t const dmsH = ZSTD_hashPtr(ip, dmsHashLog, mls); + U32 dictMatchIndex = dms->hashTable[dmsH]; + const U32* const dmsBt = dms->chainTable; + commonLengthSmaller = commonLengthLarger = 0; + for (; nbCompares && (dictMatchIndex > dmsLowLimit); --nbCompares) { + const U32* const nextPtr = dmsBt + 2*(dictMatchIndex & dmsBtMask); + size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ + const BYTE* match = dmsBase + dictMatchIndex; + matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dmsEnd, prefixStart); + if (dictMatchIndex+matchLength >= dmsHighLimit) + match = base + dictMatchIndex + dmsIndexDelta; /* to prepare for next usage of match[matchLength] */ + + if (matchLength > bestLength) { + matchIndex = dictMatchIndex + dmsIndexDelta; + DEBUGLOG(8, "found dms match of length %u at distance %u (offBase=%u)", + (U32)matchLength, curr - matchIndex, OFFSET_TO_OFFBASE(curr - matchIndex)); + if (matchLength > matchEndIdx - matchIndex) + matchEndIdx = matchIndex + (U32)matchLength; + bestLength = matchLength; + matches[mnum].off = OFFSET_TO_OFFBASE(curr - matchIndex); + matches[mnum].len = (U32)matchLength; + mnum++; + if ( (matchLength > ZSTD_OPT_NUM) + | (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) { + break; /* drop, to guarantee consistency (miss a little bit of compression) */ + } } + + if (dictMatchIndex <= dmsBtLow) { break; } /* beyond tree size, stop the search */ + if (match[matchLength] < ip[matchLength]) { + commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ + dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ + } else { + /* match is larger than current */ + commonLengthLarger = matchLength; + dictMatchIndex = nextPtr[0]; + } } } /* if (dictMode == ZSTD_dictMatchState) */ + + assert(matchEndIdx > curr+8); + ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */ + return mnum; +} + +typedef U32 (*ZSTD_getAllMatchesFn)( + ZSTD_match_t*, + ZSTD_MatchState_t*, + U32*, + const BYTE*, + const BYTE*, + const U32 rep[ZSTD_REP_NUM], + U32 const ll0, + U32 const lengthToBeat); + +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +U32 ZSTD_btGetAllMatches_internal( + ZSTD_match_t* matches, + ZSTD_MatchState_t* ms, + U32* nextToUpdate3, + const BYTE* ip, + const BYTE* const iHighLimit, + const U32 rep[ZSTD_REP_NUM], + U32 const ll0, + U32 const lengthToBeat, + const ZSTD_dictMode_e dictMode, + const U32 mls) +{ + assert(BOUNDED(3, ms->cParams.minMatch, 6) == mls); + DEBUGLOG(8, "ZSTD_BtGetAllMatches(dictMode=%d, mls=%u)", (int)dictMode, mls); + if (ip < ms->window.base + ms->nextToUpdate) + return 0; /* skipped area */ + ZSTD_updateTree_internal(ms, ip, iHighLimit, mls, dictMode); + return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, mls); +} + +#define ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, mls) ZSTD_btGetAllMatches_##dictMode##_##mls + +#define GEN_ZSTD_BT_GET_ALL_MATCHES_(dictMode, mls) \ + static U32 ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, mls)( \ + ZSTD_match_t* matches, \ + ZSTD_MatchState_t* ms, \ + U32* nextToUpdate3, \ + const BYTE* ip, \ + const BYTE* const iHighLimit, \ + const U32 rep[ZSTD_REP_NUM], \ + U32 const ll0, \ + U32 const lengthToBeat) \ + { \ + return ZSTD_btGetAllMatches_internal( \ + matches, ms, nextToUpdate3, ip, iHighLimit, \ + rep, ll0, lengthToBeat, ZSTD_##dictMode, mls); \ + } + +#define GEN_ZSTD_BT_GET_ALL_MATCHES(dictMode) \ + GEN_ZSTD_BT_GET_ALL_MATCHES_(dictMode, 3) \ + GEN_ZSTD_BT_GET_ALL_MATCHES_(dictMode, 4) \ + GEN_ZSTD_BT_GET_ALL_MATCHES_(dictMode, 5) \ + GEN_ZSTD_BT_GET_ALL_MATCHES_(dictMode, 6) + +GEN_ZSTD_BT_GET_ALL_MATCHES(noDict) +GEN_ZSTD_BT_GET_ALL_MATCHES(extDict) +GEN_ZSTD_BT_GET_ALL_MATCHES(dictMatchState) + +#define ZSTD_BT_GET_ALL_MATCHES_ARRAY(dictMode) \ + { \ + ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, 3), \ + ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, 4), \ + ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, 5), \ + ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, 6) \ + } + +static ZSTD_getAllMatchesFn +ZSTD_selectBtGetAllMatches(ZSTD_MatchState_t const* ms, ZSTD_dictMode_e const dictMode) +{ + ZSTD_getAllMatchesFn const getAllMatchesFns[3][4] = { + ZSTD_BT_GET_ALL_MATCHES_ARRAY(noDict), + ZSTD_BT_GET_ALL_MATCHES_ARRAY(extDict), + ZSTD_BT_GET_ALL_MATCHES_ARRAY(dictMatchState) + }; + U32 const mls = BOUNDED(3, ms->cParams.minMatch, 6); + assert((U32)dictMode < 3); + assert(mls - 3 < 4); + return getAllMatchesFns[(int)dictMode][mls - 3]; +} + +/************************* +* LDM helper functions * +*************************/ + +/* Struct containing info needed to make decision about ldm inclusion */ +typedef struct { + RawSeqStore_t seqStore; /* External match candidates store for this block */ + U32 startPosInBlock; /* Start position of the current match candidate */ + U32 endPosInBlock; /* End position of the current match candidate */ + U32 offset; /* Offset of the match candidate */ +} ZSTD_optLdm_t; + +/* ZSTD_optLdm_skipRawSeqStoreBytes(): + * Moves forward in @rawSeqStore by @nbBytes, + * which will update the fields 'pos' and 'posInSequence'. + */ +static void ZSTD_optLdm_skipRawSeqStoreBytes(RawSeqStore_t* rawSeqStore, size_t nbBytes) +{ + U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes); + while (currPos && rawSeqStore->pos < rawSeqStore->size) { + rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos]; + if (currPos >= currSeq.litLength + currSeq.matchLength) { + currPos -= currSeq.litLength + currSeq.matchLength; + rawSeqStore->pos++; + } else { + rawSeqStore->posInSequence = currPos; + break; + } + } + if (currPos == 0 || rawSeqStore->pos == rawSeqStore->size) { + rawSeqStore->posInSequence = 0; + } +} + +/* ZSTD_opt_getNextMatchAndUpdateSeqStore(): + * Calculates the beginning and end of the next match in the current block. + * Updates 'pos' and 'posInSequence' of the ldmSeqStore. + */ +static void +ZSTD_opt_getNextMatchAndUpdateSeqStore(ZSTD_optLdm_t* optLdm, U32 currPosInBlock, + U32 blockBytesRemaining) +{ + rawSeq currSeq; + U32 currBlockEndPos; + U32 literalsBytesRemaining; + U32 matchBytesRemaining; + + /* Setting match end position to MAX to ensure we never use an LDM during this block */ + if (optLdm->seqStore.size == 0 || optLdm->seqStore.pos >= optLdm->seqStore.size) { + optLdm->startPosInBlock = UINT_MAX; + optLdm->endPosInBlock = UINT_MAX; + return; + } + /* Calculate appropriate bytes left in matchLength and litLength + * after adjusting based on ldmSeqStore->posInSequence */ + currSeq = optLdm->seqStore.seq[optLdm->seqStore.pos]; + assert(optLdm->seqStore.posInSequence <= currSeq.litLength + currSeq.matchLength); + currBlockEndPos = currPosInBlock + blockBytesRemaining; + literalsBytesRemaining = (optLdm->seqStore.posInSequence < currSeq.litLength) ? + currSeq.litLength - (U32)optLdm->seqStore.posInSequence : + 0; + matchBytesRemaining = (literalsBytesRemaining == 0) ? + currSeq.matchLength - ((U32)optLdm->seqStore.posInSequence - currSeq.litLength) : + currSeq.matchLength; + + /* If there are more literal bytes than bytes remaining in block, no ldm is possible */ + if (literalsBytesRemaining >= blockBytesRemaining) { + optLdm->startPosInBlock = UINT_MAX; + optLdm->endPosInBlock = UINT_MAX; + ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, blockBytesRemaining); + return; + } + + /* Matches may be < minMatch by this process. In that case, we will reject them + when we are deciding whether or not to add the ldm */ + optLdm->startPosInBlock = currPosInBlock + literalsBytesRemaining; + optLdm->endPosInBlock = optLdm->startPosInBlock + matchBytesRemaining; + optLdm->offset = currSeq.offset; + + if (optLdm->endPosInBlock > currBlockEndPos) { + /* Match ends after the block ends, we can't use the whole match */ + optLdm->endPosInBlock = currBlockEndPos; + ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, currBlockEndPos - currPosInBlock); + } else { + /* Consume nb of bytes equal to size of sequence left */ + ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, literalsBytesRemaining + matchBytesRemaining); + } +} + +/* ZSTD_optLdm_maybeAddMatch(): + * Adds a match if it's long enough, + * based on it's 'matchStartPosInBlock' and 'matchEndPosInBlock', + * into 'matches'. Maintains the correct ordering of 'matches'. + */ +static void ZSTD_optLdm_maybeAddMatch(ZSTD_match_t* matches, U32* nbMatches, + const ZSTD_optLdm_t* optLdm, U32 currPosInBlock, + U32 minMatch) +{ + U32 const posDiff = currPosInBlock - optLdm->startPosInBlock; + /* Note: ZSTD_match_t actually contains offBase and matchLength (before subtracting MINMATCH) */ + U32 const candidateMatchLength = optLdm->endPosInBlock - optLdm->startPosInBlock - posDiff; + + /* Ensure that current block position is not outside of the match */ + if (currPosInBlock < optLdm->startPosInBlock + || currPosInBlock >= optLdm->endPosInBlock + || candidateMatchLength < minMatch) { + return; + } + + if (*nbMatches == 0 || ((candidateMatchLength > matches[*nbMatches-1].len) && *nbMatches < ZSTD_OPT_NUM)) { + U32 const candidateOffBase = OFFSET_TO_OFFBASE(optLdm->offset); + DEBUGLOG(6, "ZSTD_optLdm_maybeAddMatch(): Adding ldm candidate match (offBase: %u matchLength %u) at block position=%u", + candidateOffBase, candidateMatchLength, currPosInBlock); + matches[*nbMatches].len = candidateMatchLength; + matches[*nbMatches].off = candidateOffBase; + (*nbMatches)++; + } +} + +/* ZSTD_optLdm_processMatchCandidate(): + * Wrapper function to update ldm seq store and call ldm functions as necessary. + */ +static void +ZSTD_optLdm_processMatchCandidate(ZSTD_optLdm_t* optLdm, + ZSTD_match_t* matches, U32* nbMatches, + U32 currPosInBlock, U32 remainingBytes, + U32 minMatch) +{ + if (optLdm->seqStore.size == 0 || optLdm->seqStore.pos >= optLdm->seqStore.size) { + return; + } + + if (currPosInBlock >= optLdm->endPosInBlock) { + if (currPosInBlock > optLdm->endPosInBlock) { + /* The position at which ZSTD_optLdm_processMatchCandidate() is called is not necessarily + * at the end of a match from the ldm seq store, and will often be some bytes + * over beyond matchEndPosInBlock. As such, we need to correct for these "overshoots" + */ + U32 const posOvershoot = currPosInBlock - optLdm->endPosInBlock; + ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, posOvershoot); + } + ZSTD_opt_getNextMatchAndUpdateSeqStore(optLdm, currPosInBlock, remainingBytes); + } + ZSTD_optLdm_maybeAddMatch(matches, nbMatches, optLdm, currPosInBlock, minMatch); +} + + +/*-******************************* +* Optimal parser +*********************************/ + +#if 0 /* debug */ + +static void +listStats(const U32* table, int lastEltID) +{ + int const nbElts = lastEltID + 1; + int enb; + for (enb=0; enb < nbElts; enb++) { + (void)table; + /* RAWLOG(2, "%3i:%3i, ", enb, table[enb]); */ + RAWLOG(2, "%4i,", table[enb]); + } + RAWLOG(2, " \n"); +} + +#endif + +#define LIT_PRICE(_p) (int)ZSTD_rawLiteralsCost(_p, 1, optStatePtr, optLevel) +#define LL_PRICE(_l) (int)ZSTD_litLengthPrice(_l, optStatePtr, optLevel) +#define LL_INCPRICE(_l) (LL_PRICE(_l) - LL_PRICE(_l-1)) + +FORCE_INLINE_TEMPLATE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t +ZSTD_compressBlock_opt_generic(ZSTD_MatchState_t* ms, + SeqStore_t* seqStore, + U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize, + const int optLevel, + const ZSTD_dictMode_e dictMode) +{ + optState_t* const optStatePtr = &ms->opt; + const BYTE* const istart = (const BYTE*)src; + const BYTE* ip = istart; + const BYTE* anchor = istart; + const BYTE* const iend = istart + srcSize; + const BYTE* const ilimit = iend - 8; + const BYTE* const base = ms->window.base; + const BYTE* const prefixStart = base + ms->window.dictLimit; + const ZSTD_compressionParameters* const cParams = &ms->cParams; + + ZSTD_getAllMatchesFn getAllMatches = ZSTD_selectBtGetAllMatches(ms, dictMode); + + U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1); + U32 const minMatch = (cParams->minMatch == 3) ? 3 : 4; + U32 nextToUpdate3 = ms->nextToUpdate; + + ZSTD_optimal_t* const opt = optStatePtr->priceTable; + ZSTD_match_t* const matches = optStatePtr->matchTable; + ZSTD_optimal_t lastStretch; + ZSTD_optLdm_t optLdm; + + ZSTD_memset(&lastStretch, 0, sizeof(ZSTD_optimal_t)); + + optLdm.seqStore = ms->ldmSeqStore ? *ms->ldmSeqStore : kNullRawSeqStore; + optLdm.endPosInBlock = optLdm.startPosInBlock = optLdm.offset = 0; + ZSTD_opt_getNextMatchAndUpdateSeqStore(&optLdm, (U32)(ip-istart), (U32)(iend-ip)); + + /* init */ + DEBUGLOG(5, "ZSTD_compressBlock_opt_generic: current=%u, prefix=%u, nextToUpdate=%u", + (U32)(ip - base), ms->window.dictLimit, ms->nextToUpdate); + assert(optLevel <= 2); + ZSTD_rescaleFreqs(optStatePtr, (const BYTE*)src, srcSize, optLevel); + ip += (ip==prefixStart); + + /* Match Loop */ + while (ip < ilimit) { + U32 cur, last_pos = 0; + + /* find first match */ + { U32 const litlen = (U32)(ip - anchor); + U32 const ll0 = !litlen; + U32 nbMatches = getAllMatches(matches, ms, &nextToUpdate3, ip, iend, rep, ll0, minMatch); + ZSTD_optLdm_processMatchCandidate(&optLdm, matches, &nbMatches, + (U32)(ip-istart), (U32)(iend-ip), + minMatch); + if (!nbMatches) { + DEBUGLOG(8, "no match found at cPos %u", (unsigned)(ip-istart)); + ip++; + continue; + } + + /* Match found: let's store this solution, and eventually find more candidates. + * During this forward pass, @opt is used to store stretches, + * defined as "a match followed by N literals". + * Note how this is different from a Sequence, which is "N literals followed by a match". + * Storing stretches allows us to store different match predecessors + * for each literal position part of a literals run. */ + + /* initialize opt[0] */ + opt[0].mlen = 0; /* there are only literals so far */ + opt[0].litlen = litlen; + /* No need to include the actual price of the literals before the first match + * because it is static for the duration of the forward pass, and is included + * in every subsequent price. But, we include the literal length because + * the cost variation of litlen depends on the value of litlen. + */ + opt[0].price = LL_PRICE(litlen); + ZSTD_STATIC_ASSERT(sizeof(opt[0].rep[0]) == sizeof(rep[0])); + ZSTD_memcpy(&opt[0].rep, rep, sizeof(opt[0].rep)); + + /* large match -> immediate encoding */ + { U32 const maxML = matches[nbMatches-1].len; + U32 const maxOffBase = matches[nbMatches-1].off; + DEBUGLOG(6, "found %u matches of maxLength=%u and maxOffBase=%u at cPos=%u => start new series", + nbMatches, maxML, maxOffBase, (U32)(ip-prefixStart)); + + if (maxML > sufficient_len) { + lastStretch.litlen = 0; + lastStretch.mlen = maxML; + lastStretch.off = maxOffBase; + DEBUGLOG(6, "large match (%u>%u) => immediate encoding", + maxML, sufficient_len); + cur = 0; + last_pos = maxML; + goto _shortestPath; + } } + + /* set prices for first matches starting position == 0 */ + assert(opt[0].price >= 0); + { U32 pos; + U32 matchNb; + for (pos = 1; pos < minMatch; pos++) { + opt[pos].price = ZSTD_MAX_PRICE; + opt[pos].mlen = 0; + opt[pos].litlen = litlen + pos; + } + for (matchNb = 0; matchNb < nbMatches; matchNb++) { + U32 const offBase = matches[matchNb].off; + U32 const end = matches[matchNb].len; + for ( ; pos <= end ; pos++ ) { + int const matchPrice = (int)ZSTD_getMatchPrice(offBase, pos, optStatePtr, optLevel); + int const sequencePrice = opt[0].price + matchPrice; + DEBUGLOG(7, "rPos:%u => set initial price : %.2f", + pos, ZSTD_fCost(sequencePrice)); + opt[pos].mlen = pos; + opt[pos].off = offBase; + opt[pos].litlen = 0; /* end of match */ + opt[pos].price = sequencePrice + LL_PRICE(0); + } + } + last_pos = pos-1; + opt[pos].price = ZSTD_MAX_PRICE; + } + } + + /* check further positions */ + for (cur = 1; cur <= last_pos; cur++) { + const BYTE* const inr = ip + cur; + assert(cur <= ZSTD_OPT_NUM); + DEBUGLOG(7, "cPos:%i==rPos:%u", (int)(inr-istart), cur); + + /* Fix current position with one literal if cheaper */ + { U32 const litlen = opt[cur-1].litlen + 1; + int const price = opt[cur-1].price + + LIT_PRICE(ip+cur-1) + + LL_INCPRICE(litlen); + assert(price < 1000000000); /* overflow check */ + if (price <= opt[cur].price) { + ZSTD_optimal_t const prevMatch = opt[cur]; + DEBUGLOG(7, "cPos:%i==rPos:%u : better price (%.2f<=%.2f) using literal (ll==%u) (hist:%u,%u,%u)", + (int)(inr-istart), cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price), litlen, + opt[cur-1].rep[0], opt[cur-1].rep[1], opt[cur-1].rep[2]); + opt[cur] = opt[cur-1]; + opt[cur].litlen = litlen; + opt[cur].price = price; + if ( (optLevel >= 1) /* additional check only for higher modes */ + && (prevMatch.litlen == 0) /* replace a match */ + && (LL_INCPRICE(1) < 0) /* ll1 is cheaper than ll0 */ + && LIKELY(ip + cur < iend) + ) { + /* check next position, in case it would be cheaper */ + int with1literal = prevMatch.price + LIT_PRICE(ip+cur) + LL_INCPRICE(1); + int withMoreLiterals = price + LIT_PRICE(ip+cur) + LL_INCPRICE(litlen+1); + DEBUGLOG(7, "then at next rPos %u : match+1lit %.2f vs %ulits %.2f", + cur+1, ZSTD_fCost(with1literal), litlen+1, ZSTD_fCost(withMoreLiterals)); + if ( (with1literal < withMoreLiterals) + && (with1literal < opt[cur+1].price) ) { + /* update offset history - before it disappears */ + U32 const prev = cur - prevMatch.mlen; + Repcodes_t const newReps = ZSTD_newRep(opt[prev].rep, prevMatch.off, opt[prev].litlen==0); + assert(cur >= prevMatch.mlen); + DEBUGLOG(7, "==> match+1lit is cheaper (%.2f < %.2f) (hist:%u,%u,%u) !", + ZSTD_fCost(with1literal), ZSTD_fCost(withMoreLiterals), + newReps.rep[0], newReps.rep[1], newReps.rep[2] ); + opt[cur+1] = prevMatch; /* mlen & offbase */ + ZSTD_memcpy(opt[cur+1].rep, &newReps, sizeof(Repcodes_t)); + opt[cur+1].litlen = 1; + opt[cur+1].price = with1literal; + if (last_pos < cur+1) last_pos = cur+1; + } + } + } else { + DEBUGLOG(7, "cPos:%i==rPos:%u : literal would cost more (%.2f>%.2f)", + (int)(inr-istart), cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price)); + } + } + + /* Offset history is not updated during match comparison. + * Do it here, now that the match is selected and confirmed. + */ + ZSTD_STATIC_ASSERT(sizeof(opt[cur].rep) == sizeof(Repcodes_t)); + assert(cur >= opt[cur].mlen); + if (opt[cur].litlen == 0) { + /* just finished a match => alter offset history */ + U32 const prev = cur - opt[cur].mlen; + Repcodes_t const newReps = ZSTD_newRep(opt[prev].rep, opt[cur].off, opt[prev].litlen==0); + ZSTD_memcpy(opt[cur].rep, &newReps, sizeof(Repcodes_t)); + } + + /* last match must start at a minimum distance of 8 from oend */ + if (inr > ilimit) continue; + + if (cur == last_pos) break; + + if ( (optLevel==0) /*static_test*/ + && (opt[cur+1].price <= opt[cur].price + (BITCOST_MULTIPLIER/2)) ) { + DEBUGLOG(7, "skip current position : next rPos(%u) price is cheaper", cur+1); + continue; /* skip unpromising positions; about ~+6% speed, -0.01 ratio */ + } + + assert(opt[cur].price >= 0); + { U32 const ll0 = (opt[cur].litlen == 0); + int const previousPrice = opt[cur].price; + int const basePrice = previousPrice + LL_PRICE(0); + U32 nbMatches = getAllMatches(matches, ms, &nextToUpdate3, inr, iend, opt[cur].rep, ll0, minMatch); + U32 matchNb; + + ZSTD_optLdm_processMatchCandidate(&optLdm, matches, &nbMatches, + (U32)(inr-istart), (U32)(iend-inr), + minMatch); + + if (!nbMatches) { + DEBUGLOG(7, "rPos:%u : no match found", cur); + continue; + } + + { U32 const longestML = matches[nbMatches-1].len; + DEBUGLOG(7, "cPos:%i==rPos:%u, found %u matches, of longest ML=%u", + (int)(inr-istart), cur, nbMatches, longestML); + + if ( (longestML > sufficient_len) + || (cur + longestML >= ZSTD_OPT_NUM) + || (ip + cur + longestML >= iend) ) { + lastStretch.mlen = longestML; + lastStretch.off = matches[nbMatches-1].off; + lastStretch.litlen = 0; + last_pos = cur + longestML; + goto _shortestPath; + } } + + /* set prices using matches found at position == cur */ + for (matchNb = 0; matchNb < nbMatches; matchNb++) { + U32 const offset = matches[matchNb].off; + U32 const lastML = matches[matchNb].len; + U32 const startML = (matchNb>0) ? matches[matchNb-1].len+1 : minMatch; + U32 mlen; + + DEBUGLOG(7, "testing match %u => offBase=%4u, mlen=%2u, llen=%2u", + matchNb, matches[matchNb].off, lastML, opt[cur].litlen); + + for (mlen = lastML; mlen >= startML; mlen--) { /* scan downward */ + U32 const pos = cur + mlen; + int const price = basePrice + (int)ZSTD_getMatchPrice(offset, mlen, optStatePtr, optLevel); + + if ((pos > last_pos) || (price < opt[pos].price)) { + DEBUGLOG(7, "rPos:%u (ml=%2u) => new better price (%.2f<%.2f)", + pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price)); + while (last_pos < pos) { + /* fill empty positions, for future comparisons */ + last_pos++; + opt[last_pos].price = ZSTD_MAX_PRICE; + opt[last_pos].litlen = !0; /* just needs to be != 0, to mean "not an end of match" */ + } + opt[pos].mlen = mlen; + opt[pos].off = offset; + opt[pos].litlen = 0; + opt[pos].price = price; + } else { + DEBUGLOG(7, "rPos:%u (ml=%2u) => new price is worse (%.2f>=%.2f)", + pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price)); + if (optLevel==0) break; /* early update abort; gets ~+10% speed for about -0.01 ratio loss */ + } + } } } + opt[last_pos+1].price = ZSTD_MAX_PRICE; + } /* for (cur = 1; cur <= last_pos; cur++) */ + + lastStretch = opt[last_pos]; + assert(cur >= lastStretch.mlen); + cur = last_pos - lastStretch.mlen; + +_shortestPath: /* cur, last_pos, best_mlen, best_off have to be set */ + assert(opt[0].mlen == 0); + assert(last_pos >= lastStretch.mlen); + assert(cur == last_pos - lastStretch.mlen); + + if (lastStretch.mlen==0) { + /* no solution : all matches have been converted into literals */ + assert(lastStretch.litlen == (ip - anchor) + last_pos); + ip += last_pos; + continue; + } + assert(lastStretch.off > 0); + + /* Update offset history */ + if (lastStretch.litlen == 0) { + /* finishing on a match : update offset history */ + Repcodes_t const reps = ZSTD_newRep(opt[cur].rep, lastStretch.off, opt[cur].litlen==0); + ZSTD_memcpy(rep, &reps, sizeof(Repcodes_t)); + } else { + ZSTD_memcpy(rep, lastStretch.rep, sizeof(Repcodes_t)); + assert(cur >= lastStretch.litlen); + cur -= lastStretch.litlen; + } + + /* Let's write the shortest path solution. + * It is stored in @opt in reverse order, + * starting from @storeEnd (==cur+2), + * effectively partially @opt overwriting. + * Content is changed too: + * - So far, @opt stored stretches, aka a match followed by literals + * - Now, it will store sequences, aka literals followed by a match + */ + { U32 const storeEnd = cur + 2; + U32 storeStart = storeEnd; + U32 stretchPos = cur; + + DEBUGLOG(6, "start reverse traversal (last_pos:%u, cur:%u)", + last_pos, cur); (void)last_pos; + assert(storeEnd < ZSTD_OPT_SIZE); + DEBUGLOG(6, "last stretch copied into pos=%u (llen=%u,mlen=%u,ofc=%u)", + storeEnd, lastStretch.litlen, lastStretch.mlen, lastStretch.off); + if (lastStretch.litlen > 0) { + /* last "sequence" is unfinished: just a bunch of literals */ + opt[storeEnd].litlen = lastStretch.litlen; + opt[storeEnd].mlen = 0; + storeStart = storeEnd-1; + opt[storeStart] = lastStretch; + } { + opt[storeEnd] = lastStretch; /* note: litlen will be fixed */ + storeStart = storeEnd; + } + while (1) { + ZSTD_optimal_t nextStretch = opt[stretchPos]; + opt[storeStart].litlen = nextStretch.litlen; + DEBUGLOG(6, "selected sequence (llen=%u,mlen=%u,ofc=%u)", + opt[storeStart].litlen, opt[storeStart].mlen, opt[storeStart].off); + if (nextStretch.mlen == 0) { + /* reaching beginning of segment */ + break; + } + storeStart--; + opt[storeStart] = nextStretch; /* note: litlen will be fixed */ + assert(nextStretch.litlen + nextStretch.mlen <= stretchPos); + stretchPos -= nextStretch.litlen + nextStretch.mlen; + } + + /* save sequences */ + DEBUGLOG(6, "sending selected sequences into seqStore"); + { U32 storePos; + for (storePos=storeStart; storePos <= storeEnd; storePos++) { + U32 const llen = opt[storePos].litlen; + U32 const mlen = opt[storePos].mlen; + U32 const offBase = opt[storePos].off; + U32 const advance = llen + mlen; + DEBUGLOG(6, "considering seq starting at %i, llen=%u, mlen=%u", + (int)(anchor - istart), (unsigned)llen, (unsigned)mlen); + + if (mlen==0) { /* only literals => must be last "sequence", actually starting a new stream of sequences */ + assert(storePos == storeEnd); /* must be last sequence */ + ip = anchor + llen; /* last "sequence" is a bunch of literals => don't progress anchor */ + continue; /* will finish */ + } + + assert(anchor + llen <= iend); + ZSTD_updateStats(optStatePtr, llen, anchor, offBase, mlen); + ZSTD_storeSeq(seqStore, llen, anchor, iend, offBase, mlen); + anchor += advance; + ip = anchor; + } } + DEBUGLOG(7, "new offset history : %u, %u, %u", rep[0], rep[1], rep[2]); + + /* update all costs */ + ZSTD_setBasePrices(optStatePtr, optLevel); + } + } /* while (ip < ilimit) */ + + /* Return the last literals size */ + return (size_t)(iend - anchor); +} +#endif /* build exclusions */ + +#ifndef ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR +static size_t ZSTD_compressBlock_opt0( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize, const ZSTD_dictMode_e dictMode) +{ + return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /* optLevel */, dictMode); +} +#endif + +#ifndef ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR +static size_t ZSTD_compressBlock_opt2( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize, const ZSTD_dictMode_e dictMode) +{ + return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /* optLevel */, dictMode); +} +#endif + +#ifndef ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR +size_t ZSTD_compressBlock_btopt( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize) +{ + DEBUGLOG(5, "ZSTD_compressBlock_btopt"); + return ZSTD_compressBlock_opt0(ms, seqStore, rep, src, srcSize, ZSTD_noDict); +} +#endif + + + + +#ifndef ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR +/* ZSTD_initStats_ultra(): + * make a first compression pass, just to seed stats with more accurate starting values. + * only works on first block, with no dictionary and no ldm. + * this function cannot error out, its narrow contract must be respected. + */ +static +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +void ZSTD_initStats_ultra(ZSTD_MatchState_t* ms, + SeqStore_t* seqStore, + U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize) +{ + U32 tmpRep[ZSTD_REP_NUM]; /* updated rep codes will sink here */ + ZSTD_memcpy(tmpRep, rep, sizeof(tmpRep)); + + DEBUGLOG(4, "ZSTD_initStats_ultra (srcSize=%zu)", srcSize); + assert(ms->opt.litLengthSum == 0); /* first block */ + assert(seqStore->sequences == seqStore->sequencesStart); /* no ldm */ + assert(ms->window.dictLimit == ms->window.lowLimit); /* no dictionary */ + assert(ms->window.dictLimit - ms->nextToUpdate <= 1); /* no prefix (note: intentional overflow, defined as 2-complement) */ + + ZSTD_compressBlock_opt2(ms, seqStore, tmpRep, src, srcSize, ZSTD_noDict); /* generate stats into ms->opt*/ + + /* invalidate first scan from history, only keep entropy stats */ + ZSTD_resetSeqStore(seqStore); + ms->window.base -= srcSize; + ms->window.dictLimit += (U32)srcSize; + ms->window.lowLimit = ms->window.dictLimit; + ms->nextToUpdate = ms->window.dictLimit; + +} + +size_t ZSTD_compressBlock_btultra( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize) +{ + DEBUGLOG(5, "ZSTD_compressBlock_btultra (srcSize=%zu)", srcSize); + return ZSTD_compressBlock_opt2(ms, seqStore, rep, src, srcSize, ZSTD_noDict); +} + +size_t ZSTD_compressBlock_btultra2( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize) +{ + U32 const curr = (U32)((const BYTE*)src - ms->window.base); + DEBUGLOG(5, "ZSTD_compressBlock_btultra2 (srcSize=%zu)", srcSize); + + /* 2-passes strategy: + * this strategy makes a first pass over first block to collect statistics + * in order to seed next round's statistics with it. + * After 1st pass, function forgets history, and starts a new block. + * Consequently, this can only work if no data has been previously loaded in tables, + * aka, no dictionary, no prefix, no ldm preprocessing. + * The compression ratio gain is generally small (~0.5% on first block), + * the cost is 2x cpu time on first block. */ + assert(srcSize <= ZSTD_BLOCKSIZE_MAX); + if ( (ms->opt.litLengthSum==0) /* first block */ + && (seqStore->sequences == seqStore->sequencesStart) /* no ldm */ + && (ms->window.dictLimit == ms->window.lowLimit) /* no dictionary */ + && (curr == ms->window.dictLimit) /* start of frame, nothing already loaded nor skipped */ + && (srcSize > ZSTD_PREDEF_THRESHOLD) /* input large enough to not employ default stats */ + ) { + ZSTD_initStats_ultra(ms, seqStore, rep, src, srcSize); + } + + return ZSTD_compressBlock_opt2(ms, seqStore, rep, src, srcSize, ZSTD_noDict); +} +#endif + +#ifndef ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR +size_t ZSTD_compressBlock_btopt_dictMatchState( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize) +{ + return ZSTD_compressBlock_opt0(ms, seqStore, rep, src, srcSize, ZSTD_dictMatchState); +} + +size_t ZSTD_compressBlock_btopt_extDict( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize) +{ + return ZSTD_compressBlock_opt0(ms, seqStore, rep, src, srcSize, ZSTD_extDict); +} +#endif + +#ifndef ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR +size_t ZSTD_compressBlock_btultra_dictMatchState( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize) +{ + return ZSTD_compressBlock_opt2(ms, seqStore, rep, src, srcSize, ZSTD_dictMatchState); +} + +size_t ZSTD_compressBlock_btultra_extDict( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize) +{ + return ZSTD_compressBlock_opt2(ms, seqStore, rep, src, srcSize, ZSTD_extDict); +} +#endif + +/* note : no btultra2 variant for extDict nor dictMatchState, + * because btultra2 is not meant to work with dictionaries + * and is only specific for the first block (no prefix) */ diff --git a/src/third-party/zstd/compress/zstd_opt.h b/src/third-party/zstd/compress/zstd_opt.h new file mode 100644 index 0000000000000..756c7b1d0c5d7 --- /dev/null +++ b/src/third-party/zstd/compress/zstd_opt.h @@ -0,0 +1,72 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_OPT_H +#define ZSTD_OPT_H + +#include "zstd_compress_internal.h" + +#if !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR) \ + || !defined(ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR) \ + || !defined(ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR) +/* used in ZSTD_loadDictionaryContent() */ +void ZSTD_updateTree(ZSTD_MatchState_t* ms, const BYTE* ip, const BYTE* iend); +#endif + +#ifndef ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR +size_t ZSTD_compressBlock_btopt( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_btopt_dictMatchState( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_btopt_extDict( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + +#define ZSTD_COMPRESSBLOCK_BTOPT ZSTD_compressBlock_btopt +#define ZSTD_COMPRESSBLOCK_BTOPT_DICTMATCHSTATE ZSTD_compressBlock_btopt_dictMatchState +#define ZSTD_COMPRESSBLOCK_BTOPT_EXTDICT ZSTD_compressBlock_btopt_extDict +#else +#define ZSTD_COMPRESSBLOCK_BTOPT NULL +#define ZSTD_COMPRESSBLOCK_BTOPT_DICTMATCHSTATE NULL +#define ZSTD_COMPRESSBLOCK_BTOPT_EXTDICT NULL +#endif + +#ifndef ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR +size_t ZSTD_compressBlock_btultra( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_btultra_dictMatchState( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_btultra_extDict( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + + /* note : no btultra2 variant for extDict nor dictMatchState, + * because btultra2 is not meant to work with dictionaries + * and is only specific for the first block (no prefix) */ +size_t ZSTD_compressBlock_btultra2( + ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + +#define ZSTD_COMPRESSBLOCK_BTULTRA ZSTD_compressBlock_btultra +#define ZSTD_COMPRESSBLOCK_BTULTRA_DICTMATCHSTATE ZSTD_compressBlock_btultra_dictMatchState +#define ZSTD_COMPRESSBLOCK_BTULTRA_EXTDICT ZSTD_compressBlock_btultra_extDict +#define ZSTD_COMPRESSBLOCK_BTULTRA2 ZSTD_compressBlock_btultra2 +#else +#define ZSTD_COMPRESSBLOCK_BTULTRA NULL +#define ZSTD_COMPRESSBLOCK_BTULTRA_DICTMATCHSTATE NULL +#define ZSTD_COMPRESSBLOCK_BTULTRA_EXTDICT NULL +#define ZSTD_COMPRESSBLOCK_BTULTRA2 NULL +#endif + +#endif /* ZSTD_OPT_H */ diff --git a/src/third-party/zstd/compress/zstd_preSplit.c b/src/third-party/zstd/compress/zstd_preSplit.c new file mode 100644 index 0000000000000..d820c20ac24de --- /dev/null +++ b/src/third-party/zstd/compress/zstd_preSplit.c @@ -0,0 +1,238 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#include "../common/compiler.h" /* ZSTD_ALIGNOF */ +#include "../common/mem.h" /* S64 */ +#include "../common/zstd_deps.h" /* ZSTD_memset */ +#include "../common/zstd_internal.h" /* ZSTD_STATIC_ASSERT */ +#include "hist.h" /* HIST_add */ +#include "zstd_preSplit.h" + + +#define BLOCKSIZE_MIN 3500 +#define THRESHOLD_PENALTY_RATE 16 +#define THRESHOLD_BASE (THRESHOLD_PENALTY_RATE - 2) +#define THRESHOLD_PENALTY 3 + +#define HASHLENGTH 2 +#define HASHLOG_MAX 10 +#define HASHTABLESIZE (1 << HASHLOG_MAX) +#define HASHMASK (HASHTABLESIZE - 1) +#define KNUTH 0x9e3779b9 + +/* for hashLog > 8, hash 2 bytes. + * for hashLog == 8, just take the byte, no hashing. + * The speed of this method relies on compile-time constant propagation */ +FORCE_INLINE_TEMPLATE unsigned hash2(const void *p, unsigned hashLog) +{ + assert(hashLog >= 8); + if (hashLog == 8) return (U32)((const BYTE*)p)[0]; + assert(hashLog <= HASHLOG_MAX); + return (U32)(MEM_read16(p)) * KNUTH >> (32 - hashLog); +} + + +typedef struct { + unsigned events[HASHTABLESIZE]; + size_t nbEvents; +} Fingerprint; +typedef struct { + Fingerprint pastEvents; + Fingerprint newEvents; +} FPStats; + +static void initStats(FPStats* fpstats) +{ + ZSTD_memset(fpstats, 0, sizeof(FPStats)); +} + +FORCE_INLINE_TEMPLATE void +addEvents_generic(Fingerprint* fp, const void* src, size_t srcSize, size_t samplingRate, unsigned hashLog) +{ + const char* p = (const char*)src; + size_t limit = srcSize - HASHLENGTH + 1; + size_t n; + assert(srcSize >= HASHLENGTH); + for (n = 0; n < limit; n+=samplingRate) { + fp->events[hash2(p+n, hashLog)]++; + } + fp->nbEvents += limit/samplingRate; +} + +FORCE_INLINE_TEMPLATE void +recordFingerprint_generic(Fingerprint* fp, const void* src, size_t srcSize, size_t samplingRate, unsigned hashLog) +{ + ZSTD_memset(fp, 0, sizeof(unsigned) * ((size_t)1 << hashLog)); + fp->nbEvents = 0; + addEvents_generic(fp, src, srcSize, samplingRate, hashLog); +} + +typedef void (*RecordEvents_f)(Fingerprint* fp, const void* src, size_t srcSize); + +#define FP_RECORD(_rate) ZSTD_recordFingerprint_##_rate + +#define ZSTD_GEN_RECORD_FINGERPRINT(_rate, _hSize) \ + static void FP_RECORD(_rate)(Fingerprint* fp, const void* src, size_t srcSize) \ + { \ + recordFingerprint_generic(fp, src, srcSize, _rate, _hSize); \ + } + +ZSTD_GEN_RECORD_FINGERPRINT(1, 10) +ZSTD_GEN_RECORD_FINGERPRINT(5, 10) +ZSTD_GEN_RECORD_FINGERPRINT(11, 9) +ZSTD_GEN_RECORD_FINGERPRINT(43, 8) + + +static U64 abs64(S64 s64) { return (U64)((s64 < 0) ? -s64 : s64); } + +static U64 fpDistance(const Fingerprint* fp1, const Fingerprint* fp2, unsigned hashLog) +{ + U64 distance = 0; + size_t n; + assert(hashLog <= HASHLOG_MAX); + for (n = 0; n < ((size_t)1 << hashLog); n++) { + distance += + abs64((S64)fp1->events[n] * (S64)fp2->nbEvents - (S64)fp2->events[n] * (S64)fp1->nbEvents); + } + return distance; +} + +/* Compare newEvents with pastEvents + * return 1 when considered "too different" + */ +static int compareFingerprints(const Fingerprint* ref, + const Fingerprint* newfp, + int penalty, + unsigned hashLog) +{ + assert(ref->nbEvents > 0); + assert(newfp->nbEvents > 0); + { U64 p50 = (U64)ref->nbEvents * (U64)newfp->nbEvents; + U64 deviation = fpDistance(ref, newfp, hashLog); + U64 threshold = p50 * (U64)(THRESHOLD_BASE + penalty) / THRESHOLD_PENALTY_RATE; + return deviation >= threshold; + } +} + +static void mergeEvents(Fingerprint* acc, const Fingerprint* newfp) +{ + size_t n; + for (n = 0; n < HASHTABLESIZE; n++) { + acc->events[n] += newfp->events[n]; + } + acc->nbEvents += newfp->nbEvents; +} + +static void flushEvents(FPStats* fpstats) +{ + size_t n; + for (n = 0; n < HASHTABLESIZE; n++) { + fpstats->pastEvents.events[n] = fpstats->newEvents.events[n]; + } + fpstats->pastEvents.nbEvents = fpstats->newEvents.nbEvents; + ZSTD_memset(&fpstats->newEvents, 0, sizeof(fpstats->newEvents)); +} + +static void removeEvents(Fingerprint* acc, const Fingerprint* slice) +{ + size_t n; + for (n = 0; n < HASHTABLESIZE; n++) { + assert(acc->events[n] >= slice->events[n]); + acc->events[n] -= slice->events[n]; + } + acc->nbEvents -= slice->nbEvents; +} + +#define CHUNKSIZE (8 << 10) +static size_t ZSTD_splitBlock_byChunks(const void* blockStart, size_t blockSize, + int level, + void* workspace, size_t wkspSize) +{ + static const RecordEvents_f records_fs[] = { + FP_RECORD(43), FP_RECORD(11), FP_RECORD(5), FP_RECORD(1) + }; + static const unsigned hashParams[] = { 8, 9, 10, 10 }; + const RecordEvents_f record_f = (assert(0<=level && level<=3), records_fs[level]); + FPStats* const fpstats = (FPStats*)workspace; + const char* p = (const char*)blockStart; + int penalty = THRESHOLD_PENALTY; + size_t pos = 0; + assert(blockSize == (128 << 10)); + assert(workspace != NULL); + assert((size_t)workspace % ZSTD_ALIGNOF(FPStats) == 0); + ZSTD_STATIC_ASSERT(ZSTD_SLIPBLOCK_WORKSPACESIZE >= sizeof(FPStats)); + assert(wkspSize >= sizeof(FPStats)); (void)wkspSize; + + initStats(fpstats); + record_f(&fpstats->pastEvents, p, CHUNKSIZE); + for (pos = CHUNKSIZE; pos <= blockSize - CHUNKSIZE; pos += CHUNKSIZE) { + record_f(&fpstats->newEvents, p + pos, CHUNKSIZE); + if (compareFingerprints(&fpstats->pastEvents, &fpstats->newEvents, penalty, hashParams[level])) { + return pos; + } else { + mergeEvents(&fpstats->pastEvents, &fpstats->newEvents); + if (penalty > 0) penalty--; + } + } + assert(pos == blockSize); + return blockSize; + (void)flushEvents; (void)removeEvents; +} + +/* ZSTD_splitBlock_fromBorders(): very fast strategy : + * compare fingerprint from beginning and end of the block, + * derive from their difference if it's preferable to split in the middle, + * repeat the process a second time, for finer grained decision. + * 3 times did not brought improvements, so I stopped at 2. + * Benefits are good enough for a cheap heuristic. + * More accurate splitting saves more, but speed impact is also more perceptible. + * For better accuracy, use more elaborate variant *_byChunks. + */ +static size_t ZSTD_splitBlock_fromBorders(const void* blockStart, size_t blockSize, + void* workspace, size_t wkspSize) +{ +#define SEGMENT_SIZE 512 + FPStats* const fpstats = (FPStats*)workspace; + Fingerprint* middleEvents = (Fingerprint*)(void*)((char*)workspace + 512 * sizeof(unsigned)); + assert(blockSize == (128 << 10)); + assert(workspace != NULL); + assert((size_t)workspace % ZSTD_ALIGNOF(FPStats) == 0); + ZSTD_STATIC_ASSERT(ZSTD_SLIPBLOCK_WORKSPACESIZE >= sizeof(FPStats)); + assert(wkspSize >= sizeof(FPStats)); (void)wkspSize; + + initStats(fpstats); + HIST_add(fpstats->pastEvents.events, blockStart, SEGMENT_SIZE); + HIST_add(fpstats->newEvents.events, (const char*)blockStart + blockSize - SEGMENT_SIZE, SEGMENT_SIZE); + fpstats->pastEvents.nbEvents = fpstats->newEvents.nbEvents = SEGMENT_SIZE; + if (!compareFingerprints(&fpstats->pastEvents, &fpstats->newEvents, 0, 8)) + return blockSize; + + HIST_add(middleEvents->events, (const char*)blockStart + blockSize/2 - SEGMENT_SIZE/2, SEGMENT_SIZE); + middleEvents->nbEvents = SEGMENT_SIZE; + { U64 const distFromBegin = fpDistance(&fpstats->pastEvents, middleEvents, 8); + U64 const distFromEnd = fpDistance(&fpstats->newEvents, middleEvents, 8); + U64 const minDistance = SEGMENT_SIZE * SEGMENT_SIZE / 3; + if (abs64((S64)distFromBegin - (S64)distFromEnd) < minDistance) + return 64 KB; + return (distFromBegin > distFromEnd) ? 32 KB : 96 KB; + } +} + +size_t ZSTD_splitBlock(const void* blockStart, size_t blockSize, + int level, + void* workspace, size_t wkspSize) +{ + DEBUGLOG(6, "ZSTD_splitBlock (level=%i)", level); + assert(0<=level && level<=4); + if (level == 0) + return ZSTD_splitBlock_fromBorders(blockStart, blockSize, workspace, wkspSize); + /* level >= 1*/ + return ZSTD_splitBlock_byChunks(blockStart, blockSize, level-1, workspace, wkspSize); +} diff --git a/src/third-party/zstd/compress/zstd_preSplit.h b/src/third-party/zstd/compress/zstd_preSplit.h new file mode 100644 index 0000000000000..b89a200dccd07 --- /dev/null +++ b/src/third-party/zstd/compress/zstd_preSplit.h @@ -0,0 +1,33 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_PRESPLIT_H +#define ZSTD_PRESPLIT_H + +#include /* size_t */ + +#define ZSTD_SLIPBLOCK_WORKSPACESIZE 8208 + +/* ZSTD_splitBlock(): + * @level must be a value between 0 and 4. + * higher levels spend more energy to detect block boundaries. + * @workspace must be aligned for size_t. + * @wkspSize must be at least >= ZSTD_SLIPBLOCK_WORKSPACESIZE + * note: + * For the time being, this function only accepts full 128 KB blocks. + * Therefore, @blockSize must be == 128 KB. + * While this could be extended to smaller sizes in the future, + * it is not yet clear if this would be useful. TBD. + */ +size_t ZSTD_splitBlock(const void* blockStart, size_t blockSize, + int level, + void* workspace, size_t wkspSize); + +#endif /* ZSTD_PRESPLIT_H */ diff --git a/src/third-party/zstd/compress/zstdmt_compress.c b/src/third-party/zstd/compress/zstdmt_compress.c new file mode 100644 index 0000000000000..e8fef5144e17f --- /dev/null +++ b/src/third-party/zstd/compress/zstdmt_compress.c @@ -0,0 +1,1882 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + +/* ====== Compiler specifics ====== */ +#if defined(_MSC_VER) +# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ +#endif + + +/* ====== Dependencies ====== */ +#include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */ +#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */ +#include "../common/mem.h" /* MEM_STATIC */ +#include "../common/pool.h" /* threadpool */ +#include "../common/threading.h" /* mutex */ +#include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */ +#include "zstd_ldm.h" +#include "zstdmt_compress.h" + +/* Guards code to support resizing the SeqPool. + * We will want to resize the SeqPool to save memory in the future. + * Until then, comment the code out since it is unused. + */ +#define ZSTD_RESIZE_SEQPOOL 0 + +/* ====== Debug ====== */ +#if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \ + && !defined(_MSC_VER) \ + && !defined(__MINGW32__) + +# include +# include +# include + +# define DEBUG_PRINTHEX(l,p,n) \ + do { \ + unsigned debug_u; \ + for (debug_u=0; debug_u<(n); debug_u++) \ + RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \ + RAWLOG(l, " \n"); \ + } while (0) + +static unsigned long long GetCurrentClockTimeMicroseconds(void) +{ + static clock_t _ticksPerSecond = 0; + if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK); + + { struct tms junk; clock_t newTicks = (clock_t) times(&junk); + return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond); +} } + +#define MUTEX_WAIT_TIME_DLEVEL 6 +#define ZSTD_PTHREAD_MUTEX_LOCK(mutex) \ + do { \ + if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) { \ + unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \ + ZSTD_pthread_mutex_lock(mutex); \ + { unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \ + unsigned long long const elapsedTime = (afterTime-beforeTime); \ + if (elapsedTime > 1000) { \ + /* or whatever threshold you like; I'm using 1 millisecond here */ \ + DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, \ + "Thread took %llu microseconds to acquire mutex %s \n", \ + elapsedTime, #mutex); \ + } } \ + } else { \ + ZSTD_pthread_mutex_lock(mutex); \ + } \ + } while (0) + +#else + +# define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m) +# define DEBUG_PRINTHEX(l,p,n) do { } while (0) + +#endif + + +/* ===== Buffer Pool ===== */ +/* a single Buffer Pool can be invoked from multiple threads in parallel */ + +typedef struct buffer_s { + void* start; + size_t capacity; +} buffer_t; + +static const buffer_t g_nullBuffer = { NULL, 0 }; + +typedef struct ZSTDMT_bufferPool_s { + ZSTD_pthread_mutex_t poolMutex; + size_t bufferSize; + unsigned totalBuffers; + unsigned nbBuffers; + ZSTD_customMem cMem; + buffer_t* buffers; +} ZSTDMT_bufferPool; + +static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool) +{ + DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool); + if (!bufPool) return; /* compatibility with free on NULL */ + if (bufPool->buffers) { + unsigned u; + for (u=0; utotalBuffers; u++) { + DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->buffers[u].start); + ZSTD_customFree(bufPool->buffers[u].start, bufPool->cMem); + } + ZSTD_customFree(bufPool->buffers, bufPool->cMem); + } + ZSTD_pthread_mutex_destroy(&bufPool->poolMutex); + ZSTD_customFree(bufPool, bufPool->cMem); +} + +static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_customMem cMem) +{ + ZSTDMT_bufferPool* const bufPool = + (ZSTDMT_bufferPool*)ZSTD_customCalloc(sizeof(ZSTDMT_bufferPool), cMem); + if (bufPool==NULL) return NULL; + if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) { + ZSTD_customFree(bufPool, cMem); + return NULL; + } + bufPool->buffers = (buffer_t*)ZSTD_customCalloc(maxNbBuffers * sizeof(buffer_t), cMem); + if (bufPool->buffers==NULL) { + ZSTDMT_freeBufferPool(bufPool); + return NULL; + } + bufPool->bufferSize = 64 KB; + bufPool->totalBuffers = maxNbBuffers; + bufPool->nbBuffers = 0; + bufPool->cMem = cMem; + return bufPool; +} + +/* only works at initialization, not during compression */ +static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool) +{ + size_t const poolSize = sizeof(*bufPool); + size_t const arraySize = bufPool->totalBuffers * sizeof(buffer_t); + unsigned u; + size_t totalBufferSize = 0; + ZSTD_pthread_mutex_lock(&bufPool->poolMutex); + for (u=0; utotalBuffers; u++) + totalBufferSize += bufPool->buffers[u].capacity; + ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); + + return poolSize + arraySize + totalBufferSize; +} + +/* ZSTDMT_setBufferSize() : + * all future buffers provided by this buffer pool will have _at least_ this size + * note : it's better for all buffers to have same size, + * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */ +static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize) +{ + ZSTD_pthread_mutex_lock(&bufPool->poolMutex); + DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize); + bufPool->bufferSize = bSize; + ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); +} + + +static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, unsigned maxNbBuffers) +{ + if (srcBufPool==NULL) return NULL; + if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */ + return srcBufPool; + /* need a larger buffer pool */ + { ZSTD_customMem const cMem = srcBufPool->cMem; + size_t const bSize = srcBufPool->bufferSize; /* forward parameters */ + ZSTDMT_bufferPool* newBufPool; + ZSTDMT_freeBufferPool(srcBufPool); + newBufPool = ZSTDMT_createBufferPool(maxNbBuffers, cMem); + if (newBufPool==NULL) return newBufPool; + ZSTDMT_setBufferSize(newBufPool, bSize); + return newBufPool; + } +} + +/** ZSTDMT_getBuffer() : + * assumption : bufPool must be valid + * @return : a buffer, with start pointer and size + * note: allocation may fail, in this case, start==NULL and size==0 */ +static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool) +{ + size_t const bSize = bufPool->bufferSize; + DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize); + ZSTD_pthread_mutex_lock(&bufPool->poolMutex); + if (bufPool->nbBuffers) { /* try to use an existing buffer */ + buffer_t const buf = bufPool->buffers[--(bufPool->nbBuffers)]; + size_t const availBufferSize = buf.capacity; + bufPool->buffers[bufPool->nbBuffers] = g_nullBuffer; + if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) { + /* large enough, but not too much */ + DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u", + bufPool->nbBuffers, (U32)buf.capacity); + ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); + return buf; + } + /* size conditions not respected : scratch this buffer, create new one */ + DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing"); + ZSTD_customFree(buf.start, bufPool->cMem); + } + ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); + /* create new buffer */ + DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer"); + { buffer_t buffer; + void* const start = ZSTD_customMalloc(bSize, bufPool->cMem); + buffer.start = start; /* note : start can be NULL if malloc fails ! */ + buffer.capacity = (start==NULL) ? 0 : bSize; + if (start==NULL) { + DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!"); + } else { + DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize); + } + return buffer; + } +} + +#if ZSTD_RESIZE_SEQPOOL +/** ZSTDMT_resizeBuffer() : + * assumption : bufPool must be valid + * @return : a buffer that is at least the buffer pool buffer size. + * If a reallocation happens, the data in the input buffer is copied. + */ +static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer) +{ + size_t const bSize = bufPool->bufferSize; + if (buffer.capacity < bSize) { + void* const start = ZSTD_customMalloc(bSize, bufPool->cMem); + buffer_t newBuffer; + newBuffer.start = start; + newBuffer.capacity = start == NULL ? 0 : bSize; + if (start != NULL) { + assert(newBuffer.capacity >= buffer.capacity); + ZSTD_memcpy(newBuffer.start, buffer.start, buffer.capacity); + DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize); + return newBuffer; + } + DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!"); + } + return buffer; +} +#endif + +/* store buffer for later re-use, up to pool capacity */ +static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf) +{ + DEBUGLOG(5, "ZSTDMT_releaseBuffer"); + if (buf.start == NULL) return; /* compatible with release on NULL */ + ZSTD_pthread_mutex_lock(&bufPool->poolMutex); + if (bufPool->nbBuffers < bufPool->totalBuffers) { + bufPool->buffers[bufPool->nbBuffers++] = buf; /* stored for later use */ + DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u", + (U32)buf.capacity, (U32)(bufPool->nbBuffers-1)); + ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); + return; + } + ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); + /* Reached bufferPool capacity (note: should not happen) */ + DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing "); + ZSTD_customFree(buf.start, bufPool->cMem); +} + +/* We need 2 output buffers per worker since each dstBuff must be flushed after it is released. + * The 3 additional buffers are as follows: + * 1 buffer for input loading + * 1 buffer for "next input" when submitting current one + * 1 buffer stuck in queue */ +#define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) (2*(nbWorkers) + 3) + +/* After a worker releases its rawSeqStore, it is immediately ready for reuse. + * So we only need one seq buffer per worker. */ +#define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) (nbWorkers) + +/* ===== Seq Pool Wrapper ====== */ + +typedef ZSTDMT_bufferPool ZSTDMT_seqPool; + +static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool) +{ + return ZSTDMT_sizeof_bufferPool(seqPool); +} + +static RawSeqStore_t bufferToSeq(buffer_t buffer) +{ + RawSeqStore_t seq = kNullRawSeqStore; + seq.seq = (rawSeq*)buffer.start; + seq.capacity = buffer.capacity / sizeof(rawSeq); + return seq; +} + +static buffer_t seqToBuffer(RawSeqStore_t seq) +{ + buffer_t buffer; + buffer.start = seq.seq; + buffer.capacity = seq.capacity * sizeof(rawSeq); + return buffer; +} + +static RawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool) +{ + if (seqPool->bufferSize == 0) { + return kNullRawSeqStore; + } + return bufferToSeq(ZSTDMT_getBuffer(seqPool)); +} + +#if ZSTD_RESIZE_SEQPOOL +static RawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, RawSeqStore_t seq) +{ + return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq))); +} +#endif + +static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, RawSeqStore_t seq) +{ + ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq)); +} + +static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq) +{ + ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq)); +} + +static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem) +{ + ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(SEQ_POOL_MAX_NB_BUFFERS(nbWorkers), cMem); + if (seqPool == NULL) return NULL; + ZSTDMT_setNbSeq(seqPool, 0); + return seqPool; +} + +static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool) +{ + ZSTDMT_freeBufferPool(seqPool); +} + +static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers) +{ + return ZSTDMT_expandBufferPool(pool, SEQ_POOL_MAX_NB_BUFFERS(nbWorkers)); +} + + +/* ===== CCtx Pool ===== */ +/* a single CCtx Pool can be invoked from multiple threads in parallel */ + +typedef struct { + ZSTD_pthread_mutex_t poolMutex; + int totalCCtx; + int availCCtx; + ZSTD_customMem cMem; + ZSTD_CCtx** cctxs; +} ZSTDMT_CCtxPool; + +/* note : all CCtx borrowed from the pool must be reverted back to the pool _before_ freeing the pool */ +static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool) +{ + if (!pool) return; + ZSTD_pthread_mutex_destroy(&pool->poolMutex); + if (pool->cctxs) { + int cid; + for (cid=0; cidtotalCCtx; cid++) + ZSTD_freeCCtx(pool->cctxs[cid]); /* free compatible with NULL */ + ZSTD_customFree(pool->cctxs, pool->cMem); + } + ZSTD_customFree(pool, pool->cMem); +} + +/* ZSTDMT_createCCtxPool() : + * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */ +static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers, + ZSTD_customMem cMem) +{ + ZSTDMT_CCtxPool* const cctxPool = + (ZSTDMT_CCtxPool*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtxPool), cMem); + assert(nbWorkers > 0); + if (!cctxPool) return NULL; + if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) { + ZSTD_customFree(cctxPool, cMem); + return NULL; + } + cctxPool->totalCCtx = nbWorkers; + cctxPool->cctxs = (ZSTD_CCtx**)ZSTD_customCalloc(nbWorkers * sizeof(ZSTD_CCtx*), cMem); + if (!cctxPool->cctxs) { + ZSTDMT_freeCCtxPool(cctxPool); + return NULL; + } + cctxPool->cMem = cMem; + cctxPool->cctxs[0] = ZSTD_createCCtx_advanced(cMem); + if (!cctxPool->cctxs[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; } + cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */ + DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers); + return cctxPool; +} + +static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool, + int nbWorkers) +{ + if (srcPool==NULL) return NULL; + if (nbWorkers <= srcPool->totalCCtx) return srcPool; /* good enough */ + /* need a larger cctx pool */ + { ZSTD_customMem const cMem = srcPool->cMem; + ZSTDMT_freeCCtxPool(srcPool); + return ZSTDMT_createCCtxPool(nbWorkers, cMem); + } +} + +/* only works during initialization phase, not during compression */ +static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool) +{ + ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); + { unsigned const nbWorkers = cctxPool->totalCCtx; + size_t const poolSize = sizeof(*cctxPool); + size_t const arraySize = cctxPool->totalCCtx * sizeof(ZSTD_CCtx*); + size_t totalCCtxSize = 0; + unsigned u; + for (u=0; ucctxs[u]); + } + ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); + assert(nbWorkers > 0); + return poolSize + arraySize + totalCCtxSize; + } +} + +static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool) +{ + DEBUGLOG(5, "ZSTDMT_getCCtx"); + ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); + if (cctxPool->availCCtx) { + cctxPool->availCCtx--; + { ZSTD_CCtx* const cctx = cctxPool->cctxs[cctxPool->availCCtx]; + ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); + return cctx; + } } + ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); + DEBUGLOG(5, "create one more CCtx"); + return ZSTD_createCCtx_advanced(cctxPool->cMem); /* note : can be NULL, when creation fails ! */ +} + +static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx) +{ + if (cctx==NULL) return; /* compatibility with release on NULL */ + ZSTD_pthread_mutex_lock(&pool->poolMutex); + if (pool->availCCtx < pool->totalCCtx) + pool->cctxs[pool->availCCtx++] = cctx; + else { + /* pool overflow : should not happen, since totalCCtx==nbWorkers */ + DEBUGLOG(4, "CCtx pool overflow : free cctx"); + ZSTD_freeCCtx(cctx); + } + ZSTD_pthread_mutex_unlock(&pool->poolMutex); +} + +/* ==== Serial State ==== */ + +typedef struct { + void const* start; + size_t size; +} range_t; + +typedef struct { + /* All variables in the struct are protected by mutex. */ + ZSTD_pthread_mutex_t mutex; + ZSTD_pthread_cond_t cond; + ZSTD_CCtx_params params; + ldmState_t ldmState; + XXH64_state_t xxhState; + unsigned nextJobID; + /* Protects ldmWindow. + * Must be acquired after the main mutex when acquiring both. + */ + ZSTD_pthread_mutex_t ldmWindowMutex; + ZSTD_pthread_cond_t ldmWindowCond; /* Signaled when ldmWindow is updated */ + ZSTD_window_t ldmWindow; /* A thread-safe copy of ldmState.window */ +} serialState_t; + +static int +ZSTDMT_serialState_reset(serialState_t* serialState, + ZSTDMT_seqPool* seqPool, + ZSTD_CCtx_params params, + size_t jobSize, + const void* dict, size_t const dictSize, + ZSTD_dictContentType_e dictContentType) +{ + /* Adjust parameters */ + if (params.ldmParams.enableLdm == ZSTD_ps_enable) { + DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10); + ZSTD_ldm_adjustParameters(¶ms.ldmParams, ¶ms.cParams); + assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog); + assert(params.ldmParams.hashRateLog < 32); + } else { + ZSTD_memset(¶ms.ldmParams, 0, sizeof(params.ldmParams)); + } + serialState->nextJobID = 0; + if (params.fParams.checksumFlag) + XXH64_reset(&serialState->xxhState, 0); + if (params.ldmParams.enableLdm == ZSTD_ps_enable) { + ZSTD_customMem cMem = params.customMem; + unsigned const hashLog = params.ldmParams.hashLog; + size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t); + unsigned const bucketLog = + params.ldmParams.hashLog - params.ldmParams.bucketSizeLog; + unsigned const prevBucketLog = + serialState->params.ldmParams.hashLog - + serialState->params.ldmParams.bucketSizeLog; + size_t const numBuckets = (size_t)1 << bucketLog; + /* Size the seq pool tables */ + ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize)); + /* Reset the window */ + ZSTD_window_init(&serialState->ldmState.window); + /* Resize tables and output space if necessary. */ + if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) { + ZSTD_customFree(serialState->ldmState.hashTable, cMem); + serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_customMalloc(hashSize, cMem); + } + if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) { + ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem); + serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(numBuckets, cMem); + } + if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets) + return 1; + /* Zero the tables */ + ZSTD_memset(serialState->ldmState.hashTable, 0, hashSize); + ZSTD_memset(serialState->ldmState.bucketOffsets, 0, numBuckets); + + /* Update window state and fill hash table with dict */ + serialState->ldmState.loadedDictEnd = 0; + if (dictSize > 0) { + if (dictContentType == ZSTD_dct_rawContent) { + BYTE const* const dictEnd = (const BYTE*)dict + dictSize; + ZSTD_window_update(&serialState->ldmState.window, dict, dictSize, /* forceNonContiguous */ 0); + ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, ¶ms.ldmParams); + serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base); + } else { + /* don't even load anything */ + } + } + + /* Initialize serialState's copy of ldmWindow. */ + serialState->ldmWindow = serialState->ldmState.window; + } + + serialState->params = params; + serialState->params.jobSize = (U32)jobSize; + return 0; +} + +static int ZSTDMT_serialState_init(serialState_t* serialState) +{ + int initError = 0; + ZSTD_memset(serialState, 0, sizeof(*serialState)); + initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL); + initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL); + initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL); + initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL); + return initError; +} + +static void ZSTDMT_serialState_free(serialState_t* serialState) +{ + ZSTD_customMem cMem = serialState->params.customMem; + ZSTD_pthread_mutex_destroy(&serialState->mutex); + ZSTD_pthread_cond_destroy(&serialState->cond); + ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex); + ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond); + ZSTD_customFree(serialState->ldmState.hashTable, cMem); + ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem); +} + +static void ZSTDMT_serialState_update(serialState_t* serialState, + ZSTD_CCtx* jobCCtx, RawSeqStore_t seqStore, + range_t src, unsigned jobID) +{ + /* Wait for our turn */ + ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); + while (serialState->nextJobID < jobID) { + DEBUGLOG(5, "wait for serialState->cond"); + ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex); + } + /* A future job may error and skip our job */ + if (serialState->nextJobID == jobID) { + /* It is now our turn, do any processing necessary */ + if (serialState->params.ldmParams.enableLdm == ZSTD_ps_enable) { + size_t error; + assert(seqStore.seq != NULL && seqStore.pos == 0 && + seqStore.size == 0 && seqStore.capacity > 0); + assert(src.size <= serialState->params.jobSize); + ZSTD_window_update(&serialState->ldmState.window, src.start, src.size, /* forceNonContiguous */ 0); + error = ZSTD_ldm_generateSequences( + &serialState->ldmState, &seqStore, + &serialState->params.ldmParams, src.start, src.size); + /* We provide a large enough buffer to never fail. */ + assert(!ZSTD_isError(error)); (void)error; + /* Update ldmWindow to match the ldmState.window and signal the main + * thread if it is waiting for a buffer. + */ + ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); + serialState->ldmWindow = serialState->ldmState.window; + ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); + ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); + } + if (serialState->params.fParams.checksumFlag && src.size > 0) + XXH64_update(&serialState->xxhState, src.start, src.size); + } + /* Now it is the next jobs turn */ + serialState->nextJobID++; + ZSTD_pthread_cond_broadcast(&serialState->cond); + ZSTD_pthread_mutex_unlock(&serialState->mutex); + + if (seqStore.size > 0) { + ZSTD_referenceExternalSequences(jobCCtx, seqStore.seq, seqStore.size); + assert(serialState->params.ldmParams.enableLdm == ZSTD_ps_enable); + } +} + +static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState, + unsigned jobID, size_t cSize) +{ + ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); + if (serialState->nextJobID <= jobID) { + assert(ZSTD_isError(cSize)); (void)cSize; + DEBUGLOG(5, "Skipping past job %u because of error", jobID); + serialState->nextJobID = jobID + 1; + ZSTD_pthread_cond_broadcast(&serialState->cond); + + ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); + ZSTD_window_clear(&serialState->ldmWindow); + ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); + ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); + } + ZSTD_pthread_mutex_unlock(&serialState->mutex); + +} + + +/* ------------------------------------------ */ +/* ===== Worker thread ===== */ +/* ------------------------------------------ */ + +static const range_t kNullRange = { NULL, 0 }; + +typedef struct { + size_t consumed; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */ + size_t cSize; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */ + ZSTD_pthread_mutex_t job_mutex; /* Thread-safe - used by mtctx and worker */ + ZSTD_pthread_cond_t job_cond; /* Thread-safe - used by mtctx and worker */ + ZSTDMT_CCtxPool* cctxPool; /* Thread-safe - used by mtctx and (all) workers */ + ZSTDMT_bufferPool* bufPool; /* Thread-safe - used by mtctx and (all) workers */ + ZSTDMT_seqPool* seqPool; /* Thread-safe - used by mtctx and (all) workers */ + serialState_t* serial; /* Thread-safe - used by mtctx and (all) workers */ + buffer_t dstBuff; /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */ + range_t prefix; /* set by mtctx, then read by worker & mtctx => no barrier */ + range_t src; /* set by mtctx, then read by worker & mtctx => no barrier */ + unsigned jobID; /* set by mtctx, then read by worker => no barrier */ + unsigned firstJob; /* set by mtctx, then read by worker => no barrier */ + unsigned lastJob; /* set by mtctx, then read by worker => no barrier */ + ZSTD_CCtx_params params; /* set by mtctx, then read by worker => no barrier */ + const ZSTD_CDict* cdict; /* set by mtctx, then read by worker => no barrier */ + unsigned long long fullFrameSize; /* set by mtctx, then read by worker => no barrier */ + size_t dstFlushed; /* used only by mtctx */ + unsigned frameChecksumNeeded; /* used only by mtctx */ +} ZSTDMT_jobDescription; + +#define JOB_ERROR(e) \ + do { \ + ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); \ + job->cSize = e; \ + ZSTD_pthread_mutex_unlock(&job->job_mutex); \ + goto _endJob; \ + } while (0) + +/* ZSTDMT_compressionJob() is a POOL_function type */ +static void ZSTDMT_compressionJob(void* jobDescription) +{ + ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription; + ZSTD_CCtx_params jobParams = job->params; /* do not modify job->params ! copy it, modify the copy */ + ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool); + RawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool); + buffer_t dstBuff = job->dstBuff; + size_t lastCBlockSize = 0; + + /* resources */ + if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation)); + if (dstBuff.start == NULL) { /* streaming job : doesn't provide a dstBuffer */ + dstBuff = ZSTDMT_getBuffer(job->bufPool); + if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation)); + job->dstBuff = dstBuff; /* this value can be read in ZSTDMT_flush, when it copies the whole job */ + } + if (jobParams.ldmParams.enableLdm == ZSTD_ps_enable && rawSeqStore.seq == NULL) + JOB_ERROR(ERROR(memory_allocation)); + + /* Don't compute the checksum for chunks, since we compute it externally, + * but write it in the header. + */ + if (job->jobID != 0) jobParams.fParams.checksumFlag = 0; + /* Don't run LDM for the chunks, since we handle it externally */ + jobParams.ldmParams.enableLdm = ZSTD_ps_disable; + /* Correct nbWorkers to 0. */ + jobParams.nbWorkers = 0; + + + /* init */ + if (job->cdict) { + size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize); + assert(job->firstJob); /* only allowed for first job */ + if (ZSTD_isError(initError)) JOB_ERROR(initError); + } else { /* srcStart points at reloaded section */ + U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size; + { size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob); + if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError); + } + if (!job->firstJob) { + size_t const err = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_deterministicRefPrefix, 0); + if (ZSTD_isError(err)) JOB_ERROR(err); + } + { size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, + job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */ + ZSTD_dtlm_fast, + NULL, /*cdict*/ + &jobParams, pledgedSrcSize); + if (ZSTD_isError(initError)) JOB_ERROR(initError); + } } + + /* Perform serial step as early as possible, but after CCtx initialization */ + ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID); + + if (!job->firstJob) { /* flush and overwrite frame header when it's not first job */ + size_t const hSize = ZSTD_compressContinue_public(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0); + if (ZSTD_isError(hSize)) JOB_ERROR(hSize); + DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize); + ZSTD_invalidateRepCodes(cctx); + } + + /* compress */ + { size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX; + int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize); + const BYTE* ip = (const BYTE*) job->src.start; + BYTE* const ostart = (BYTE*)dstBuff.start; + BYTE* op = ostart; + BYTE* oend = op + dstBuff.capacity; + int chunkNb; + if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize); /* check overflow */ + DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks); + assert(job->cSize == 0); + for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) { + size_t const cSize = ZSTD_compressContinue_public(cctx, op, oend-op, ip, chunkSize); + if (ZSTD_isError(cSize)) JOB_ERROR(cSize); + ip += chunkSize; + op += cSize; assert(op < oend); + /* stats */ + ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); + job->cSize += cSize; + job->consumed = chunkSize * chunkNb; + DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)", + (U32)cSize, (U32)job->cSize); + ZSTD_pthread_cond_signal(&job->job_cond); /* warns some more data is ready to be flushed */ + ZSTD_pthread_mutex_unlock(&job->job_mutex); + } + /* last block */ + assert(chunkSize > 0); + assert((chunkSize & (chunkSize - 1)) == 0); /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */ + if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) { + size_t const lastBlockSize1 = job->src.size & (chunkSize-1); + size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1; + size_t const cSize = (job->lastJob) ? + ZSTD_compressEnd_public(cctx, op, oend-op, ip, lastBlockSize) : + ZSTD_compressContinue_public(cctx, op, oend-op, ip, lastBlockSize); + if (ZSTD_isError(cSize)) JOB_ERROR(cSize); + lastCBlockSize = cSize; + } } + if (!job->firstJob) { + /* Double check that we don't have an ext-dict, because then our + * repcode invalidation doesn't work. + */ + assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window)); + } + ZSTD_CCtx_trace(cctx, 0); + +_endJob: + ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize); + if (job->prefix.size > 0) + DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start); + DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start); + /* release resources */ + ZSTDMT_releaseSeq(job->seqPool, rawSeqStore); + ZSTDMT_releaseCCtx(job->cctxPool, cctx); + /* report */ + ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); + if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0); + job->cSize += lastCBlockSize; + job->consumed = job->src.size; /* when job->consumed == job->src.size , compression job is presumed completed */ + ZSTD_pthread_cond_signal(&job->job_cond); + ZSTD_pthread_mutex_unlock(&job->job_mutex); +} + + +/* ------------------------------------------ */ +/* ===== Multi-threaded compression ===== */ +/* ------------------------------------------ */ + +typedef struct { + range_t prefix; /* read-only non-owned prefix buffer */ + buffer_t buffer; + size_t filled; +} inBuff_t; + +typedef struct { + BYTE* buffer; /* The round input buffer. All jobs get references + * to pieces of the buffer. ZSTDMT_tryGetInputRange() + * handles handing out job input buffers, and makes + * sure it doesn't overlap with any pieces still in use. + */ + size_t capacity; /* The capacity of buffer. */ + size_t pos; /* The position of the current inBuff in the round + * buffer. Updated past the end if the inBuff once + * the inBuff is sent to the worker thread. + * pos <= capacity. + */ +} roundBuff_t; + +static const roundBuff_t kNullRoundBuff = {NULL, 0, 0}; + +#define RSYNC_LENGTH 32 +/* Don't create chunks smaller than the zstd block size. + * This stops us from regressing compression ratio too much, + * and ensures our output fits in ZSTD_compressBound(). + * + * If this is shrunk < ZSTD_BLOCKSIZELOG_MIN then + * ZSTD_COMPRESSBOUND() will need to be updated. + */ +#define RSYNC_MIN_BLOCK_LOG ZSTD_BLOCKSIZELOG_MAX +#define RSYNC_MIN_BLOCK_SIZE (1< one job is already prepared, but pool has shortage of workers. Don't create a new job. */ + inBuff_t inBuff; + roundBuff_t roundBuff; + serialState_t serial; + rsyncState_t rsync; + unsigned jobIDMask; + unsigned doneJobID; + unsigned nextJobID; + unsigned frameEnded; + unsigned allJobsCompleted; + unsigned long long frameContentSize; + unsigned long long consumed; + unsigned long long produced; + ZSTD_customMem cMem; + ZSTD_CDict* cdictLocal; + const ZSTD_CDict* cdict; + unsigned providedFactory: 1; +}; + +static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem) +{ + U32 jobNb; + if (jobTable == NULL) return; + for (jobNb=0; jobNb mtctx->jobIDMask+1) { /* need more job capacity */ + ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); + mtctx->jobIDMask = 0; + mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem); + if (mtctx->jobs==NULL) return ERROR(memory_allocation); + assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0)); /* ensure nbJobs is a power of 2 */ + mtctx->jobIDMask = nbJobs - 1; + } + return 0; +} + + +/* ZSTDMT_CCtxParam_setNbWorkers(): + * Internal use only */ +static size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers) +{ + return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers); +} + +MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool) +{ + ZSTDMT_CCtx* mtctx; + U32 nbJobs = nbWorkers + 2; + int initError; + DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers); + + if (nbWorkers < 1) return NULL; + nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX); + if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL)) + /* invalid custom allocator */ + return NULL; + + mtctx = (ZSTDMT_CCtx*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtx), cMem); + if (!mtctx) return NULL; + ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); + mtctx->cMem = cMem; + mtctx->allJobsCompleted = 1; + if (pool != NULL) { + mtctx->factory = pool; + mtctx->providedFactory = 1; + } + else { + mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem); + mtctx->providedFactory = 0; + } + mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem); + assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0); /* ensure nbJobs is a power of 2 */ + mtctx->jobIDMask = nbJobs - 1; + mtctx->bufPool = ZSTDMT_createBufferPool(BUF_POOL_MAX_NB_BUFFERS(nbWorkers), cMem); + mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem); + mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem); + initError = ZSTDMT_serialState_init(&mtctx->serial); + mtctx->roundBuff = kNullRoundBuff; + if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) { + ZSTDMT_freeCCtx(mtctx); + return NULL; + } + DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers); + return mtctx; +} + +ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool) +{ +#ifdef ZSTD_MULTITHREAD + return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem, pool); +#else + (void)nbWorkers; + (void)cMem; + (void)pool; + return NULL; +#endif +} + + +/* ZSTDMT_releaseAllJobResources() : + * note : ensure all workers are killed first ! */ +static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx) +{ + unsigned jobID; + DEBUGLOG(3, "ZSTDMT_releaseAllJobResources"); + for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) { + /* Copy the mutex/cond out */ + ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex; + ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond; + + DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start); + ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff); + + /* Clear the job description, but keep the mutex/cond */ + ZSTD_memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID])); + mtctx->jobs[jobID].job_mutex = mutex; + mtctx->jobs[jobID].job_cond = cond; + } + mtctx->inBuff.buffer = g_nullBuffer; + mtctx->inBuff.filled = 0; + mtctx->allJobsCompleted = 1; +} + +static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx) +{ + DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted"); + while (mtctx->doneJobID < mtctx->nextJobID) { + unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask; + ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex); + while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) { + DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID); /* we want to block when waiting for data to flush */ + ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex); + } + ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex); + mtctx->doneJobID++; + } +} + +size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx) +{ + if (mtctx==NULL) return 0; /* compatible with free on NULL */ + if (!mtctx->providedFactory) + POOL_free(mtctx->factory); /* stop and free worker threads */ + ZSTDMT_releaseAllJobResources(mtctx); /* release job resources into pools first */ + ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); + ZSTDMT_freeBufferPool(mtctx->bufPool); + ZSTDMT_freeCCtxPool(mtctx->cctxPool); + ZSTDMT_freeSeqPool(mtctx->seqPool); + ZSTDMT_serialState_free(&mtctx->serial); + ZSTD_freeCDict(mtctx->cdictLocal); + if (mtctx->roundBuff.buffer) + ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem); + ZSTD_customFree(mtctx, mtctx->cMem); + return 0; +} + +size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx) +{ + if (mtctx == NULL) return 0; /* supports sizeof NULL */ + return sizeof(*mtctx) + + POOL_sizeof(mtctx->factory) + + ZSTDMT_sizeof_bufferPool(mtctx->bufPool) + + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription) + + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool) + + ZSTDMT_sizeof_seqPool(mtctx->seqPool) + + ZSTD_sizeof_CDict(mtctx->cdictLocal) + + mtctx->roundBuff.capacity; +} + + +/* ZSTDMT_resize() : + * @return : error code if fails, 0 on success */ +static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers) +{ + if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation); + FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , ""); + mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, BUF_POOL_MAX_NB_BUFFERS(nbWorkers)); + if (mtctx->bufPool == NULL) return ERROR(memory_allocation); + mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers); + if (mtctx->cctxPool == NULL) return ERROR(memory_allocation); + mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers); + if (mtctx->seqPool == NULL) return ERROR(memory_allocation); + ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); + return 0; +} + + +/*! ZSTDMT_updateCParams_whileCompressing() : + * Updates a selected set of compression parameters, remaining compatible with currently active frame. + * New parameters will be applied to next compression job. */ +void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams) +{ + U32 const saved_wlog = mtctx->params.cParams.windowLog; /* Do not modify windowLog while compressing */ + int const compressionLevel = cctxParams->compressionLevel; + DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)", + compressionLevel); + mtctx->params.compressionLevel = compressionLevel; + { ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict); + cParams.windowLog = saved_wlog; + mtctx->params.cParams = cParams; + } +} + +/* ZSTDMT_getFrameProgression(): + * tells how much data has been consumed (input) and produced (output) for current frame. + * able to count progression inside worker threads. + * Note : mutex will be acquired during statistics collection inside workers. */ +ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx) +{ + ZSTD_frameProgression fps; + DEBUGLOG(5, "ZSTDMT_getFrameProgression"); + fps.ingested = mtctx->consumed + mtctx->inBuff.filled; + fps.consumed = mtctx->consumed; + fps.produced = fps.flushed = mtctx->produced; + fps.currentJobID = mtctx->nextJobID; + fps.nbActiveWorkers = 0; + { unsigned jobNb; + unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1); + DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)", + mtctx->doneJobID, lastJobNb, mtctx->jobReady); + for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) { + unsigned const wJobID = jobNb & mtctx->jobIDMask; + ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID]; + ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); + { size_t const cResult = jobPtr->cSize; + size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; + size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; + assert(flushed <= produced); + fps.ingested += jobPtr->src.size; + fps.consumed += jobPtr->consumed; + fps.produced += produced; + fps.flushed += flushed; + fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size); + } + ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); + } + } + return fps; +} + + +size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx) +{ + size_t toFlush; + unsigned const jobID = mtctx->doneJobID; + assert(jobID <= mtctx->nextJobID); + if (jobID == mtctx->nextJobID) return 0; /* no active job => nothing to flush */ + + /* look into oldest non-fully-flushed job */ + { unsigned const wJobID = jobID & mtctx->jobIDMask; + ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID]; + ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); + { size_t const cResult = jobPtr->cSize; + size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; + size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; + assert(flushed <= produced); + assert(jobPtr->consumed <= jobPtr->src.size); + toFlush = produced - flushed; + /* if toFlush==0, nothing is available to flush. + * However, jobID is expected to still be active: + * if jobID was already completed and fully flushed, + * ZSTDMT_flushProduced() should have already moved onto next job. + * Therefore, some input has not yet been consumed. */ + if (toFlush==0) { + assert(jobPtr->consumed < jobPtr->src.size); + } + } + ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); + } + + return toFlush; +} + + +/* ------------------------------------------ */ +/* ===== Multi-threaded compression ===== */ +/* ------------------------------------------ */ + +static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params) +{ + unsigned jobLog; + if (params->ldmParams.enableLdm == ZSTD_ps_enable) { + /* In Long Range Mode, the windowLog is typically oversized. + * In which case, it's preferable to determine the jobSize + * based on cycleLog instead. */ + jobLog = MAX(21, ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy) + 3); + } else { + jobLog = MAX(20, params->cParams.windowLog + 2); + } + return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX); +} + +static int ZSTDMT_overlapLog_default(ZSTD_strategy strat) +{ + switch(strat) + { + case ZSTD_btultra2: + return 9; + case ZSTD_btultra: + case ZSTD_btopt: + return 8; + case ZSTD_btlazy2: + case ZSTD_lazy2: + return 7; + case ZSTD_lazy: + case ZSTD_greedy: + case ZSTD_dfast: + case ZSTD_fast: + default:; + } + return 6; +} + +static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat) +{ + assert(0 <= ovlog && ovlog <= 9); + if (ovlog == 0) return ZSTDMT_overlapLog_default(strat); + return ovlog; +} + +static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params) +{ + int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy); + int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog); + assert(0 <= overlapRLog && overlapRLog <= 8); + if (params->ldmParams.enableLdm == ZSTD_ps_enable) { + /* In Long Range Mode, the windowLog is typically oversized. + * In which case, it's preferable to determine the jobSize + * based on chainLog instead. + * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */ + ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2) + - overlapRLog; + } + assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX); + DEBUGLOG(4, "overlapLog : %i", params->overlapLog); + DEBUGLOG(4, "overlap size : %i", 1 << ovLog); + return (ovLog==0) ? 0 : (size_t)1 << ovLog; +} + +/* ====================================== */ +/* ======= Streaming API ======= */ +/* ====================================== */ + +size_t ZSTDMT_initCStream_internal( + ZSTDMT_CCtx* mtctx, + const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType, + const ZSTD_CDict* cdict, ZSTD_CCtx_params params, + unsigned long long pledgedSrcSize) +{ + DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)", + (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx); + + /* params supposed partially fully validated at this point */ + assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); + assert(!((dict) && (cdict))); /* either dict or cdict, not both */ + + /* init */ + if (params.nbWorkers != mtctx->params.nbWorkers) + FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) , ""); + + if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN; + if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX; + + DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers); + + if (mtctx->allJobsCompleted == 0) { /* previous compression not correctly finished */ + ZSTDMT_waitForAllJobsCompleted(mtctx); + ZSTDMT_releaseAllJobResources(mtctx); + mtctx->allJobsCompleted = 1; + } + + mtctx->params = params; + mtctx->frameContentSize = pledgedSrcSize; + if (dict) { + ZSTD_freeCDict(mtctx->cdictLocal); + mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize, + ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */ + params.cParams, mtctx->cMem); + mtctx->cdict = mtctx->cdictLocal; + if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation); + } else { + ZSTD_freeCDict(mtctx->cdictLocal); + mtctx->cdictLocal = NULL; + mtctx->cdict = cdict; + } + + mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(¶ms); + DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10)); + mtctx->targetSectionSize = params.jobSize; + if (mtctx->targetSectionSize == 0) { + mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(¶ms); + } + assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX); + + if (params.rsyncable) { + /* Aim for the targetsectionSize as the average job size. */ + U32 const jobSizeKB = (U32)(mtctx->targetSectionSize >> 10); + U32 const rsyncBits = (assert(jobSizeKB >= 1), ZSTD_highbit32(jobSizeKB) + 10); + /* We refuse to create jobs < RSYNC_MIN_BLOCK_SIZE bytes, so make sure our + * expected job size is at least 4x larger. */ + assert(rsyncBits >= RSYNC_MIN_BLOCK_LOG + 2); + DEBUGLOG(4, "rsyncLog = %u", rsyncBits); + mtctx->rsync.hash = 0; + mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1; + mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH); + } + if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize; /* job size must be >= overlap size */ + DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize); + DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10)); + ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize)); + { + /* If ldm is enabled we need windowSize space. */ + size_t const windowSize = mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable ? (1U << mtctx->params.cParams.windowLog) : 0; + /* Two buffers of slack, plus extra space for the overlap + * This is the minimum slack that LDM works with. One extra because + * flush might waste up to targetSectionSize-1 bytes. Another extra + * for the overlap (if > 0), then one to fill which doesn't overlap + * with the LDM window. + */ + size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0); + size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers; + /* Compute the total size, and always have enough slack */ + size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1); + size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers; + size_t const capacity = MAX(windowSize, sectionsSize) + slackSize; + if (mtctx->roundBuff.capacity < capacity) { + if (mtctx->roundBuff.buffer) + ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem); + mtctx->roundBuff.buffer = (BYTE*)ZSTD_customMalloc(capacity, mtctx->cMem); + if (mtctx->roundBuff.buffer == NULL) { + mtctx->roundBuff.capacity = 0; + return ERROR(memory_allocation); + } + mtctx->roundBuff.capacity = capacity; + } + } + DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10)); + mtctx->roundBuff.pos = 0; + mtctx->inBuff.buffer = g_nullBuffer; + mtctx->inBuff.filled = 0; + mtctx->inBuff.prefix = kNullRange; + mtctx->doneJobID = 0; + mtctx->nextJobID = 0; + mtctx->frameEnded = 0; + mtctx->allJobsCompleted = 0; + mtctx->consumed = 0; + mtctx->produced = 0; + if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize, + dict, dictSize, dictContentType)) + return ERROR(memory_allocation); + return 0; +} + + +/* ZSTDMT_writeLastEmptyBlock() + * Write a single empty block with an end-of-frame to finish a frame. + * Job must be created from streaming variant. + * This function is always successful if expected conditions are fulfilled. + */ +static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job) +{ + assert(job->lastJob == 1); + assert(job->src.size == 0); /* last job is empty -> will be simplified into a last empty block */ + assert(job->firstJob == 0); /* cannot be first job, as it also needs to create frame header */ + assert(job->dstBuff.start == NULL); /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */ + job->dstBuff = ZSTDMT_getBuffer(job->bufPool); + if (job->dstBuff.start == NULL) { + job->cSize = ERROR(memory_allocation); + return; + } + assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize); /* no buffer should ever be that small */ + job->src = kNullRange; + job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity); + assert(!ZSTD_isError(job->cSize)); + assert(job->consumed == 0); +} + +static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp) +{ + unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask; + int const endFrame = (endOp == ZSTD_e_end); + + if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) { + DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full"); + assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask)); + return 0; + } + + if (!mtctx->jobReady) { + BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start; + DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ", + mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size); + mtctx->jobs[jobID].src.start = src; + mtctx->jobs[jobID].src.size = srcSize; + assert(mtctx->inBuff.filled >= srcSize); + mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix; + mtctx->jobs[jobID].consumed = 0; + mtctx->jobs[jobID].cSize = 0; + mtctx->jobs[jobID].params = mtctx->params; + mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL; + mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize; + mtctx->jobs[jobID].dstBuff = g_nullBuffer; + mtctx->jobs[jobID].cctxPool = mtctx->cctxPool; + mtctx->jobs[jobID].bufPool = mtctx->bufPool; + mtctx->jobs[jobID].seqPool = mtctx->seqPool; + mtctx->jobs[jobID].serial = &mtctx->serial; + mtctx->jobs[jobID].jobID = mtctx->nextJobID; + mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0); + mtctx->jobs[jobID].lastJob = endFrame; + mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0); + mtctx->jobs[jobID].dstFlushed = 0; + + /* Update the round buffer pos and clear the input buffer to be reset */ + mtctx->roundBuff.pos += srcSize; + mtctx->inBuff.buffer = g_nullBuffer; + mtctx->inBuff.filled = 0; + /* Set the prefix */ + if (!endFrame) { + size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize); + mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize; + mtctx->inBuff.prefix.size = newPrefixSize; + } else { /* endFrame==1 => no need for another input buffer */ + mtctx->inBuff.prefix = kNullRange; + mtctx->frameEnded = endFrame; + if (mtctx->nextJobID == 0) { + /* single job exception : checksum is already calculated directly within worker thread */ + mtctx->params.fParams.checksumFlag = 0; + } } + + if ( (srcSize == 0) + && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) { + DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame"); + assert(endOp == ZSTD_e_end); /* only possible case : need to end the frame with an empty last block */ + ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID); + mtctx->nextJobID++; + return 0; + } + } + + DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes (end:%u, jobNb == %u (mod:%u))", + mtctx->nextJobID, + (U32)mtctx->jobs[jobID].src.size, + mtctx->jobs[jobID].lastJob, + mtctx->nextJobID, + jobID); + if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) { + mtctx->nextJobID++; + mtctx->jobReady = 0; + } else { + DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID); + mtctx->jobReady = 1; + } + return 0; +} + + +/*! ZSTDMT_flushProduced() : + * flush whatever data has been produced but not yet flushed in current job. + * move to next job if current one is fully flushed. + * `output` : `pos` will be updated with amount of data flushed . + * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush . + * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */ +static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end) +{ + unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask; + DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)", + blockToFlush, mtctx->doneJobID, mtctx->nextJobID); + assert(output->size >= output->pos); + + ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); + if ( blockToFlush + && (mtctx->doneJobID < mtctx->nextJobID) ) { + assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize); + while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) { /* nothing to flush */ + if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) { + DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none", + mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size); + break; + } + DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)", + mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); + ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex); /* block when nothing to flush but some to come */ + } } + + /* try to flush something */ + { size_t cSize = mtctx->jobs[wJobID].cSize; /* shared */ + size_t const srcConsumed = mtctx->jobs[wJobID].consumed; /* shared */ + size_t const srcSize = mtctx->jobs[wJobID].src.size; /* read-only, could be done after mutex lock, but no-declaration-after-statement */ + ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); + if (ZSTD_isError(cSize)) { + DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s", + mtctx->doneJobID, ZSTD_getErrorName(cSize)); + ZSTDMT_waitForAllJobsCompleted(mtctx); + ZSTDMT_releaseAllJobResources(mtctx); + return cSize; + } + /* add frame checksum if necessary (can only happen once) */ + assert(srcConsumed <= srcSize); + if ( (srcConsumed == srcSize) /* job completed -> worker no longer active */ + && mtctx->jobs[wJobID].frameChecksumNeeded ) { + U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState); + DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum); + MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum); + cSize += 4; + mtctx->jobs[wJobID].cSize += 4; /* can write this shared value, as worker is no longer active */ + mtctx->jobs[wJobID].frameChecksumNeeded = 0; + } + + if (cSize > 0) { /* compression is ongoing or completed */ + size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos); + DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)", + (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize); + assert(mtctx->doneJobID < mtctx->nextJobID); + assert(cSize >= mtctx->jobs[wJobID].dstFlushed); + assert(mtctx->jobs[wJobID].dstBuff.start != NULL); + if (toFlush > 0) { + ZSTD_memcpy((char*)output->dst + output->pos, + (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed, + toFlush); + } + output->pos += toFlush; + mtctx->jobs[wJobID].dstFlushed += toFlush; /* can write : this value is only used by mtctx */ + + if ( (srcConsumed == srcSize) /* job is completed */ + && (mtctx->jobs[wJobID].dstFlushed == cSize) ) { /* output buffer fully flushed => free this job position */ + DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one", + mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); + ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff); + DEBUGLOG(5, "dstBuffer released"); + mtctx->jobs[wJobID].dstBuff = g_nullBuffer; + mtctx->jobs[wJobID].cSize = 0; /* ensure this job slot is considered "not started" in future check */ + mtctx->consumed += srcSize; + mtctx->produced += cSize; + mtctx->doneJobID++; + } } + + /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */ + if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed); + if (srcSize > srcConsumed) return 1; /* current job not completely compressed */ + } + if (mtctx->doneJobID < mtctx->nextJobID) return 1; /* some more jobs ongoing */ + if (mtctx->jobReady) return 1; /* one job is ready to push, just not yet in the list */ + if (mtctx->inBuff.filled > 0) return 1; /* input is not empty, and still needs to be converted into a job */ + mtctx->allJobsCompleted = mtctx->frameEnded; /* all jobs are entirely flushed => if this one is last one, frame is completed */ + if (end == ZSTD_e_end) return !mtctx->frameEnded; /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */ + return 0; /* internal buffers fully flushed */ +} + +/** + * Returns the range of data used by the earliest job that is not yet complete. + * If the data of the first job is broken up into two segments, we cover both + * sections. + */ +static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx) +{ + unsigned const firstJobID = mtctx->doneJobID; + unsigned const lastJobID = mtctx->nextJobID; + unsigned jobID; + + for (jobID = firstJobID; jobID < lastJobID; ++jobID) { + unsigned const wJobID = jobID & mtctx->jobIDMask; + size_t consumed; + + ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); + consumed = mtctx->jobs[wJobID].consumed; + ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); + + if (consumed < mtctx->jobs[wJobID].src.size) { + range_t range = mtctx->jobs[wJobID].prefix; + if (range.size == 0) { + /* Empty prefix */ + range = mtctx->jobs[wJobID].src; + } + /* Job source in multiple segments not supported yet */ + assert(range.start <= mtctx->jobs[wJobID].src.start); + return range; + } + } + return kNullRange; +} + +/** + * Returns non-zero iff buffer and range overlap. + */ +static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range) +{ + BYTE const* const bufferStart = (BYTE const*)buffer.start; + BYTE const* const rangeStart = (BYTE const*)range.start; + + if (rangeStart == NULL || bufferStart == NULL) + return 0; + + { + BYTE const* const bufferEnd = bufferStart + buffer.capacity; + BYTE const* const rangeEnd = rangeStart + range.size; + + /* Empty ranges cannot overlap */ + if (bufferStart == bufferEnd || rangeStart == rangeEnd) + return 0; + + return bufferStart < rangeEnd && rangeStart < bufferEnd; + } +} + +static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window) +{ + range_t extDict; + range_t prefix; + + DEBUGLOG(5, "ZSTDMT_doesOverlapWindow"); + extDict.start = window.dictBase + window.lowLimit; + extDict.size = window.dictLimit - window.lowLimit; + + prefix.start = window.base + window.dictLimit; + prefix.size = window.nextSrc - (window.base + window.dictLimit); + DEBUGLOG(5, "extDict [0x%zx, 0x%zx)", + (size_t)extDict.start, + (size_t)extDict.start + extDict.size); + DEBUGLOG(5, "prefix [0x%zx, 0x%zx)", + (size_t)prefix.start, + (size_t)prefix.start + prefix.size); + + return ZSTDMT_isOverlapped(buffer, extDict) + || ZSTDMT_isOverlapped(buffer, prefix); +} + +static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer) +{ + if (mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable) { + ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex; + DEBUGLOG(5, "ZSTDMT_waitForLdmComplete"); + DEBUGLOG(5, "source [0x%zx, 0x%zx)", + (size_t)buffer.start, + (size_t)buffer.start + buffer.capacity); + ZSTD_PTHREAD_MUTEX_LOCK(mutex); + while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) { + DEBUGLOG(5, "Waiting for LDM to finish..."); + ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex); + } + DEBUGLOG(6, "Done waiting for LDM to finish"); + ZSTD_pthread_mutex_unlock(mutex); + } +} + +/** + * Attempts to set the inBuff to the next section to fill. + * If any part of the new section is still in use we give up. + * Returns non-zero if the buffer is filled. + */ +static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx) +{ + range_t const inUse = ZSTDMT_getInputDataInUse(mtctx); + size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos; + size_t const target = mtctx->targetSectionSize; + buffer_t buffer; + + DEBUGLOG(5, "ZSTDMT_tryGetInputRange"); + assert(mtctx->inBuff.buffer.start == NULL); + assert(mtctx->roundBuff.capacity >= target); + + if (spaceLeft < target) { + /* ZSTD_invalidateRepCodes() doesn't work for extDict variants. + * Simply copy the prefix to the beginning in that case. + */ + BYTE* const start = (BYTE*)mtctx->roundBuff.buffer; + size_t const prefixSize = mtctx->inBuff.prefix.size; + + buffer.start = start; + buffer.capacity = prefixSize; + if (ZSTDMT_isOverlapped(buffer, inUse)) { + DEBUGLOG(5, "Waiting for buffer..."); + return 0; + } + ZSTDMT_waitForLdmComplete(mtctx, buffer); + ZSTD_memmove(start, mtctx->inBuff.prefix.start, prefixSize); + mtctx->inBuff.prefix.start = start; + mtctx->roundBuff.pos = prefixSize; + } + buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos; + buffer.capacity = target; + + if (ZSTDMT_isOverlapped(buffer, inUse)) { + DEBUGLOG(5, "Waiting for buffer..."); + return 0; + } + assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix)); + + ZSTDMT_waitForLdmComplete(mtctx, buffer); + + DEBUGLOG(5, "Using prefix range [%zx, %zx)", + (size_t)mtctx->inBuff.prefix.start, + (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size); + DEBUGLOG(5, "Using source range [%zx, %zx)", + (size_t)buffer.start, + (size_t)buffer.start + buffer.capacity); + + + mtctx->inBuff.buffer = buffer; + mtctx->inBuff.filled = 0; + assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity); + return 1; +} + +typedef struct { + size_t toLoad; /* The number of bytes to load from the input. */ + int flush; /* Boolean declaring if we must flush because we found a synchronization point. */ +} syncPoint_t; + +/** + * Searches through the input for a synchronization point. If one is found, we + * will instruct the caller to flush, and return the number of bytes to load. + * Otherwise, we will load as many bytes as possible and instruct the caller + * to continue as normal. + */ +static syncPoint_t +findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input) +{ + BYTE const* const istart = (BYTE const*)input.src + input.pos; + U64 const primePower = mtctx->rsync.primePower; + U64 const hitMask = mtctx->rsync.hitMask; + + syncPoint_t syncPoint; + U64 hash; + BYTE const* prev; + size_t pos; + + syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled); + syncPoint.flush = 0; + if (!mtctx->params.rsyncable) + /* Rsync is disabled. */ + return syncPoint; + if (mtctx->inBuff.filled + input.size - input.pos < RSYNC_MIN_BLOCK_SIZE) + /* We don't emit synchronization points if it would produce too small blocks. + * We don't have enough input to find a synchronization point, so don't look. + */ + return syncPoint; + if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH) + /* Not enough to compute the hash. + * We will miss any synchronization points in this RSYNC_LENGTH byte + * window. However, since it depends only in the internal buffers, if the + * state is already synchronized, we will remain synchronized. + * Additionally, the probability that we miss a synchronization point is + * low: RSYNC_LENGTH / targetSectionSize. + */ + return syncPoint; + /* Initialize the loop variables. */ + if (mtctx->inBuff.filled < RSYNC_MIN_BLOCK_SIZE) { + /* We don't need to scan the first RSYNC_MIN_BLOCK_SIZE positions + * because they can't possibly be a sync point. So we can start + * part way through the input buffer. + */ + pos = RSYNC_MIN_BLOCK_SIZE - mtctx->inBuff.filled; + if (pos >= RSYNC_LENGTH) { + prev = istart + pos - RSYNC_LENGTH; + hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH); + } else { + assert(mtctx->inBuff.filled >= RSYNC_LENGTH); + prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH; + hash = ZSTD_rollingHash_compute(prev + pos, (RSYNC_LENGTH - pos)); + hash = ZSTD_rollingHash_append(hash, istart, pos); + } + } else { + /* We have enough bytes buffered to initialize the hash, + * and have processed enough bytes to find a sync point. + * Start scanning at the beginning of the input. + */ + assert(mtctx->inBuff.filled >= RSYNC_MIN_BLOCK_SIZE); + assert(RSYNC_MIN_BLOCK_SIZE >= RSYNC_LENGTH); + pos = 0; + prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH; + hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH); + if ((hash & hitMask) == hitMask) { + /* We're already at a sync point so don't load any more until + * we're able to flush this sync point. + * This likely happened because the job table was full so we + * couldn't add our job. + */ + syncPoint.toLoad = 0; + syncPoint.flush = 1; + return syncPoint; + } + } + /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll + * through the input. If we hit a synchronization point, then cut the + * job off, and tell the compressor to flush the job. Otherwise, load + * all the bytes and continue as normal. + * If we go too long without a synchronization point (targetSectionSize) + * then a block will be emitted anyways, but this is okay, since if we + * are already synchronized we will remain synchronized. + */ + assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); + for (; pos < syncPoint.toLoad; ++pos) { + BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH]; + /* This assert is very expensive, and Debian compiles with asserts enabled. + * So disable it for now. We can get similar coverage by checking it at the + * beginning & end of the loop. + * assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); + */ + hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower); + assert(mtctx->inBuff.filled + pos >= RSYNC_MIN_BLOCK_SIZE); + if ((hash & hitMask) == hitMask) { + syncPoint.toLoad = pos + 1; + syncPoint.flush = 1; + ++pos; /* for assert */ + break; + } + } + assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); + return syncPoint; +} + +size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx) +{ + size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled; + if (hintInSize==0) hintInSize = mtctx->targetSectionSize; + return hintInSize; +} + +/** ZSTDMT_compressStream_generic() : + * internal use only - exposed to be invoked from zstd_compress.c + * assumption : output and input are valid (pos <= size) + * @return : minimum amount of data remaining to flush, 0 if none */ +size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx, + ZSTD_outBuffer* output, + ZSTD_inBuffer* input, + ZSTD_EndDirective endOp) +{ + unsigned forwardInputProgress = 0; + DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)", + (U32)endOp, (U32)(input->size - input->pos)); + assert(output->pos <= output->size); + assert(input->pos <= input->size); + + if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) { + /* current frame being ended. Only flush/end are allowed */ + return ERROR(stage_wrong); + } + + /* fill input buffer */ + if ( (!mtctx->jobReady) + && (input->size > input->pos) ) { /* support NULL input */ + if (mtctx->inBuff.buffer.start == NULL) { + assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */ + if (!ZSTDMT_tryGetInputRange(mtctx)) { + /* It is only possible for this operation to fail if there are + * still compression jobs ongoing. + */ + DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed"); + assert(mtctx->doneJobID != mtctx->nextJobID); + } else + DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start); + } + if (mtctx->inBuff.buffer.start != NULL) { + syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input); + if (syncPoint.flush && endOp == ZSTD_e_continue) { + endOp = ZSTD_e_flush; + } + assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize); + DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u", + (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize); + ZSTD_memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad); + input->pos += syncPoint.toLoad; + mtctx->inBuff.filled += syncPoint.toLoad; + forwardInputProgress = syncPoint.toLoad>0; + } + } + if ((input->pos < input->size) && (endOp == ZSTD_e_end)) { + /* Can't end yet because the input is not fully consumed. + * We are in one of these cases: + * - mtctx->inBuff is NULL & empty: we couldn't get an input buffer so don't create a new job. + * - We filled the input buffer: flush this job but don't end the frame. + * - We hit a synchronization point: flush this job but don't end the frame. + */ + assert(mtctx->inBuff.filled == 0 || mtctx->inBuff.filled == mtctx->targetSectionSize || mtctx->params.rsyncable); + endOp = ZSTD_e_flush; + } + + if ( (mtctx->jobReady) + || (mtctx->inBuff.filled >= mtctx->targetSectionSize) /* filled enough : let's compress */ + || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0)) /* something to flush : let's go */ + || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) { /* must finish the frame with a zero-size block */ + size_t const jobSize = mtctx->inBuff.filled; + assert(mtctx->inBuff.filled <= mtctx->targetSectionSize); + FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , ""); + } + + /* check for potential compressed data ready to be flushed */ + { size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */ + if (input->pos < input->size) return MAX(remainingToFlush, 1); /* input not consumed : do not end flush yet */ + DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush); + return remainingToFlush; + } +} diff --git a/src/third-party/zstd/compress/zstdmt_compress.h b/src/third-party/zstd/compress/zstdmt_compress.h new file mode 100644 index 0000000000000..91b489b9cb4f1 --- /dev/null +++ b/src/third-party/zstd/compress/zstdmt_compress.h @@ -0,0 +1,102 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + #ifndef ZSTDMT_COMPRESS_H + #define ZSTDMT_COMPRESS_H + +/* === Dependencies === */ +#include "../common/zstd_deps.h" /* size_t */ +#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_parameters */ +#include "../zstd.h" /* ZSTD_inBuffer, ZSTD_outBuffer, ZSTDLIB_API */ + +/* Note : This is an internal API. + * These APIs used to be exposed with ZSTDLIB_API, + * because it used to be the only way to invoke MT compression. + * Now, you must use ZSTD_compress2 and ZSTD_compressStream2() instead. + * + * This API requires ZSTD_MULTITHREAD to be defined during compilation, + * otherwise ZSTDMT_createCCtx*() will fail. + */ + +/* === Constants === */ +#ifndef ZSTDMT_NBWORKERS_MAX /* a different value can be selected at compile time */ +# define ZSTDMT_NBWORKERS_MAX ((sizeof(void*)==4) /*32-bit*/ ? 64 : 256) +#endif +#ifndef ZSTDMT_JOBSIZE_MIN /* a different value can be selected at compile time */ +# define ZSTDMT_JOBSIZE_MIN (512 KB) +#endif +#define ZSTDMT_JOBLOG_MAX (MEM_32bits() ? 29 : 30) +#define ZSTDMT_JOBSIZE_MAX (MEM_32bits() ? (512 MB) : (1024 MB)) + + +/* ======================================================== + * === Private interface, for use by ZSTD_compress.c === + * === Not exposed in libzstd. Never invoke directly === + * ======================================================== */ + +/* === Memory management === */ +typedef struct ZSTDMT_CCtx_s ZSTDMT_CCtx; +/* Requires ZSTD_MULTITHREAD to be defined during compilation, otherwise it will return NULL. */ +ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, + ZSTD_customMem cMem, + ZSTD_threadPool *pool); +size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx); + +size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx); + +/* === Streaming functions === */ + +size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx); + +/*! ZSTDMT_initCStream_internal() : + * Private use only. Init streaming operation. + * expects params to be valid. + * must receive dict, or cdict, or none, but not both. + * mtctx can be freshly constructed or reused from a prior compression. + * If mtctx is reused, memory allocations from the prior compression may not be freed, + * even if they are not needed for the current compression. + * @return : 0, or an error code */ +size_t ZSTDMT_initCStream_internal(ZSTDMT_CCtx* mtctx, + const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType, + const ZSTD_CDict* cdict, + ZSTD_CCtx_params params, unsigned long long pledgedSrcSize); + +/*! ZSTDMT_compressStream_generic() : + * Combines ZSTDMT_compressStream() with optional ZSTDMT_flushStream() or ZSTDMT_endStream() + * depending on flush directive. + * @return : minimum amount of data still to be flushed + * 0 if fully flushed + * or an error code + * note : needs to be init using any ZSTD_initCStream*() variant */ +size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx, + ZSTD_outBuffer* output, + ZSTD_inBuffer* input, + ZSTD_EndDirective endOp); + + /*! ZSTDMT_toFlushNow() + * Tell how many bytes are ready to be flushed immediately. + * Probe the oldest active job (not yet entirely flushed) and check its output buffer. + * If return 0, it means there is no active job, + * or, it means oldest job is still active, but everything produced has been flushed so far, + * therefore flushing is limited by speed of oldest job. */ +size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx); + +/*! ZSTDMT_updateCParams_whileCompressing() : + * Updates only a selected set of compression parameters, to remain compatible with current frame. + * New parameters will be applied to next compression job. */ +void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams); + +/*! ZSTDMT_getFrameProgression(): + * tells how much data has been consumed (input) and produced (output) for current frame. + * able to count progression inside worker threads. + */ +ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx); + +#endif /* ZSTDMT_COMPRESS_H */ diff --git a/src/third-party/zstd/decompress/huf_decompress.c b/src/third-party/zstd/decompress/huf_decompress.c new file mode 100644 index 0000000000000..f85dd0beea060 --- /dev/null +++ b/src/third-party/zstd/decompress/huf_decompress.c @@ -0,0 +1,1944 @@ +/* ****************************************************************** + * huff0 huffman decoder, + * part of Finite State Entropy library + * Copyright (c) Meta Platforms, Inc. and affiliates. + * + * You can contact the author at : + * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. +****************************************************************** */ + +/* ************************************************************** +* Dependencies +****************************************************************/ +#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */ +#include "../common/compiler.h" +#include "../common/bitstream.h" /* BIT_* */ +#include "../common/fse.h" /* to compress headers */ +#include "../common/huf.h" +#include "../common/error_private.h" +#include "../common/zstd_internal.h" +#include "../common/bits.h" /* ZSTD_highbit32, ZSTD_countTrailingZeros64 */ + +/* ************************************************************** +* Constants +****************************************************************/ + +#define HUF_DECODER_FAST_TABLELOG 11 + +/* ************************************************************** +* Macros +****************************************************************/ + +#ifdef HUF_DISABLE_FAST_DECODE +# define HUF_ENABLE_FAST_DECODE 0 +#else +# define HUF_ENABLE_FAST_DECODE 1 +#endif + +/* These two optional macros force the use one way or another of the two + * Huffman decompression implementations. You can't force in both directions + * at the same time. + */ +#if defined(HUF_FORCE_DECOMPRESS_X1) && \ + defined(HUF_FORCE_DECOMPRESS_X2) +#error "Cannot force the use of the X1 and X2 decoders at the same time!" +#endif + +/* When DYNAMIC_BMI2 is enabled, fast decoders are only called when bmi2 is + * supported at runtime, so we can add the BMI2 target attribute. + * When it is disabled, we will still get BMI2 if it is enabled statically. + */ +#if DYNAMIC_BMI2 +# define HUF_FAST_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE +#else +# define HUF_FAST_BMI2_ATTRS +#endif + +#ifdef __cplusplus +# define HUF_EXTERN_C extern "C" +#else +# define HUF_EXTERN_C +#endif +#define HUF_ASM_DECL HUF_EXTERN_C + +#if DYNAMIC_BMI2 +# define HUF_NEED_BMI2_FUNCTION 1 +#else +# define HUF_NEED_BMI2_FUNCTION 0 +#endif + +/* ************************************************************** +* Error Management +****************************************************************/ +#define HUF_isError ERR_isError + + +/* ************************************************************** +* Byte alignment for workSpace management +****************************************************************/ +#define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1) +#define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask)) + + +/* ************************************************************** +* BMI2 Variant Wrappers +****************************************************************/ +typedef size_t (*HUF_DecompressUsingDTableFn)(void *dst, size_t dstSize, + const void *cSrc, + size_t cSrcSize, + const HUF_DTable *DTable); + +#if DYNAMIC_BMI2 + +#define HUF_DGEN(fn) \ + \ + static size_t fn##_default( \ + void* dst, size_t dstSize, \ + const void* cSrc, size_t cSrcSize, \ + const HUF_DTable* DTable) \ + { \ + return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ + } \ + \ + static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \ + void* dst, size_t dstSize, \ + const void* cSrc, size_t cSrcSize, \ + const HUF_DTable* DTable) \ + { \ + return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ + } \ + \ + static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ + size_t cSrcSize, HUF_DTable const* DTable, int flags) \ + { \ + if (flags & HUF_flags_bmi2) { \ + return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \ + } \ + return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \ + } + +#else + +#define HUF_DGEN(fn) \ + static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ + size_t cSrcSize, HUF_DTable const* DTable, int flags) \ + { \ + (void)flags; \ + return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ + } + +#endif + + +/*-***************************/ +/* generic DTableDesc */ +/*-***************************/ +typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc; + +static DTableDesc HUF_getDTableDesc(const HUF_DTable* table) +{ + DTableDesc dtd; + ZSTD_memcpy(&dtd, table, sizeof(dtd)); + return dtd; +} + +static size_t HUF_initFastDStream(BYTE const* ip) { + BYTE const lastByte = ip[7]; + size_t const bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0; + size_t const value = MEM_readLEST(ip) | 1; + assert(bitsConsumed <= 8); + assert(sizeof(size_t) == 8); + return value << bitsConsumed; +} + + +/** + * The input/output arguments to the Huffman fast decoding loop: + * + * ip [in/out] - The input pointers, must be updated to reflect what is consumed. + * op [in/out] - The output pointers, must be updated to reflect what is written. + * bits [in/out] - The bitstream containers, must be updated to reflect the current state. + * dt [in] - The decoding table. + * ilowest [in] - The beginning of the valid range of the input. Decoders may read + * down to this pointer. It may be below iend[0]. + * oend [in] - The end of the output stream. op[3] must not cross oend. + * iend [in] - The end of each input stream. ip[i] may cross iend[i], + * as long as it is above ilowest, but that indicates corruption. + */ +typedef struct { + BYTE const* ip[4]; + BYTE* op[4]; + U64 bits[4]; + void const* dt; + BYTE const* ilowest; + BYTE* oend; + BYTE const* iend[4]; +} HUF_DecompressFastArgs; + +typedef void (*HUF_DecompressFastLoopFn)(HUF_DecompressFastArgs*); + +/** + * Initializes args for the fast decoding loop. + * @returns 1 on success + * 0 if the fallback implementation should be used. + * Or an error code on failure. + */ +static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable) +{ + void const* dt = DTable + 1; + U32 const dtLog = HUF_getDTableDesc(DTable).tableLog; + + const BYTE* const istart = (const BYTE*)src; + + BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize); + + /* The fast decoding loop assumes 64-bit little-endian. + * This condition is false on x32. + */ + if (!MEM_isLittleEndian() || MEM_32bits()) + return 0; + + /* Avoid nullptr addition */ + if (dstSize == 0) + return 0; + assert(dst != NULL); + + /* strict minimum : jump table + 1 byte per stream */ + if (srcSize < 10) + return ERROR(corruption_detected); + + /* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers. + * If table log is not correct at this point, fallback to the old decoder. + * On small inputs we don't have enough data to trigger the fast loop, so use the old decoder. + */ + if (dtLog != HUF_DECODER_FAST_TABLELOG) + return 0; + + /* Read the jump table. */ + { + size_t const length1 = MEM_readLE16(istart); + size_t const length2 = MEM_readLE16(istart+2); + size_t const length3 = MEM_readLE16(istart+4); + size_t const length4 = srcSize - (length1 + length2 + length3 + 6); + args->iend[0] = istart + 6; /* jumpTable */ + args->iend[1] = args->iend[0] + length1; + args->iend[2] = args->iend[1] + length2; + args->iend[3] = args->iend[2] + length3; + + /* HUF_initFastDStream() requires this, and this small of an input + * won't benefit from the ASM loop anyways. + */ + if (length1 < 8 || length2 < 8 || length3 < 8 || length4 < 8) + return 0; + if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */ + } + /* ip[] contains the position that is currently loaded into bits[]. */ + args->ip[0] = args->iend[1] - sizeof(U64); + args->ip[1] = args->iend[2] - sizeof(U64); + args->ip[2] = args->iend[3] - sizeof(U64); + args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64); + + /* op[] contains the output pointers. */ + args->op[0] = (BYTE*)dst; + args->op[1] = args->op[0] + (dstSize+3)/4; + args->op[2] = args->op[1] + (dstSize+3)/4; + args->op[3] = args->op[2] + (dstSize+3)/4; + + /* No point to call the ASM loop for tiny outputs. */ + if (args->op[3] >= oend) + return 0; + + /* bits[] is the bit container. + * It is read from the MSB down to the LSB. + * It is shifted left as it is read, and zeros are + * shifted in. After the lowest valid bit a 1 is + * set, so that CountTrailingZeros(bits[]) can be used + * to count how many bits we've consumed. + */ + args->bits[0] = HUF_initFastDStream(args->ip[0]); + args->bits[1] = HUF_initFastDStream(args->ip[1]); + args->bits[2] = HUF_initFastDStream(args->ip[2]); + args->bits[3] = HUF_initFastDStream(args->ip[3]); + + /* The decoders must be sure to never read beyond ilowest. + * This is lower than iend[0], but allowing decoders to read + * down to ilowest can allow an extra iteration or two in the + * fast loop. + */ + args->ilowest = istart; + + args->oend = oend; + args->dt = dt; + + return 1; +} + +static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressFastArgs const* args, int stream, BYTE* segmentEnd) +{ + /* Validate that we haven't overwritten. */ + if (args->op[stream] > segmentEnd) + return ERROR(corruption_detected); + /* Validate that we haven't read beyond iend[]. + * Note that ip[] may be < iend[] because the MSB is + * the next bit to read, and we may have consumed 100% + * of the stream, so down to iend[i] - 8 is valid. + */ + if (args->ip[stream] < args->iend[stream] - 8) + return ERROR(corruption_detected); + + /* Construct the BIT_DStream_t. */ + assert(sizeof(size_t) == 8); + bit->bitContainer = MEM_readLEST(args->ip[stream]); + bit->bitsConsumed = ZSTD_countTrailingZeros64(args->bits[stream]); + bit->start = (const char*)args->ilowest; + bit->limitPtr = bit->start + sizeof(size_t); + bit->ptr = (const char*)args->ip[stream]; + + return 0; +} + +/* Calls X(N) for each stream 0, 1, 2, 3. */ +#define HUF_4X_FOR_EACH_STREAM(X) \ + do { \ + X(0); \ + X(1); \ + X(2); \ + X(3); \ + } while (0) + +/* Calls X(N, var) for each stream 0, 1, 2, 3. */ +#define HUF_4X_FOR_EACH_STREAM_WITH_VAR(X, var) \ + do { \ + X(0, (var)); \ + X(1, (var)); \ + X(2, (var)); \ + X(3, (var)); \ + } while (0) + + +#ifndef HUF_FORCE_DECOMPRESS_X2 + +/*-***************************/ +/* single-symbol decoding */ +/*-***************************/ +typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */ + +/** + * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at + * a time. + */ +static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) { + U64 D4; + if (MEM_isLittleEndian()) { + D4 = (U64)((symbol << 8) + nbBits); + } else { + D4 = (U64)(symbol + (nbBits << 8)); + } + assert(D4 < (1U << 16)); + D4 *= 0x0001000100010001ULL; + return D4; +} + +/** + * Increase the tableLog to targetTableLog and rescales the stats. + * If tableLog > targetTableLog this is a no-op. + * @returns New tableLog + */ +static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog) +{ + if (tableLog > targetTableLog) + return tableLog; + if (tableLog < targetTableLog) { + U32 const scale = targetTableLog - tableLog; + U32 s; + /* Increase the weight for all non-zero probability symbols by scale. */ + for (s = 0; s < nbSymbols; ++s) { + huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale); + } + /* Update rankVal to reflect the new weights. + * All weights except 0 get moved to weight + scale. + * Weights [1, scale] are empty. + */ + for (s = targetTableLog; s > scale; --s) { + rankVal[s] = rankVal[s - scale]; + } + for (s = scale; s > 0; --s) { + rankVal[s] = 0; + } + } + return targetTableLog; +} + +typedef struct { + U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; + U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1]; + U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; + BYTE symbols[HUF_SYMBOLVALUE_MAX + 1]; + BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; +} HUF_ReadDTableX1_Workspace; + +size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags) +{ + U32 tableLog = 0; + U32 nbSymbols = 0; + size_t iSize; + void* const dtPtr = DTable + 1; + HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr; + HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace; + + DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp)); + if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge); + + DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable)); + /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */ + + iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), flags); + if (HUF_isError(iSize)) return iSize; + + + /* Table header */ + { DTableDesc dtd = HUF_getDTableDesc(DTable); + U32 const maxTableLog = dtd.maxTableLog + 1; + U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG); + tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog); + if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */ + dtd.tableType = 0; + dtd.tableLog = (BYTE)tableLog; + ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); + } + + /* Compute symbols and rankStart given rankVal: + * + * rankVal already contains the number of values of each weight. + * + * symbols contains the symbols ordered by weight. First are the rankVal[0] + * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on. + * symbols[0] is filled (but unused) to avoid a branch. + * + * rankStart contains the offset where each rank belongs in the DTable. + * rankStart[0] is not filled because there are no entries in the table for + * weight 0. + */ + { int n; + U32 nextRankStart = 0; + int const unroll = 4; + int const nLimit = (int)nbSymbols - unroll + 1; + for (n=0; n<(int)tableLog+1; n++) { + U32 const curr = nextRankStart; + nextRankStart += wksp->rankVal[n]; + wksp->rankStart[n] = curr; + } + for (n=0; n < nLimit; n += unroll) { + int u; + for (u=0; u < unroll; ++u) { + size_t const w = wksp->huffWeight[n+u]; + wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u); + } + } + for (; n < (int)nbSymbols; ++n) { + size_t const w = wksp->huffWeight[n]; + wksp->symbols[wksp->rankStart[w]++] = (BYTE)n; + } + } + + /* fill DTable + * We fill all entries of each weight in order. + * That way length is a constant for each iteration of the outer loop. + * We can switch based on the length to a different inner loop which is + * optimized for that particular case. + */ + { U32 w; + int symbol = wksp->rankVal[0]; + int rankStart = 0; + for (w=1; wrankVal[w]; + int const length = (1 << w) >> 1; + int uStart = rankStart; + BYTE const nbBits = (BYTE)(tableLog + 1 - w); + int s; + int u; + switch (length) { + case 1: + for (s=0; ssymbols[symbol + s]; + D.nbBits = nbBits; + dt[uStart] = D; + uStart += 1; + } + break; + case 2: + for (s=0; ssymbols[symbol + s]; + D.nbBits = nbBits; + dt[uStart+0] = D; + dt[uStart+1] = D; + uStart += 2; + } + break; + case 4: + for (s=0; ssymbols[symbol + s], nbBits); + MEM_write64(dt + uStart, D4); + uStart += 4; + } + break; + case 8: + for (s=0; ssymbols[symbol + s], nbBits); + MEM_write64(dt + uStart, D4); + MEM_write64(dt + uStart + 4, D4); + uStart += 8; + } + break; + default: + for (s=0; ssymbols[symbol + s], nbBits); + for (u=0; u < length; u += 16) { + MEM_write64(dt + uStart + u + 0, D4); + MEM_write64(dt + uStart + u + 4, D4); + MEM_write64(dt + uStart + u + 8, D4); + MEM_write64(dt + uStart + u + 12, D4); + } + assert(u == length); + uStart += length; + } + break; + } + symbol += symbolCount; + rankStart += symbolCount * length; + } + } + return iSize; +} + +FORCE_INLINE_TEMPLATE BYTE +HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog) +{ + size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ + BYTE const c = dt[val].byte; + BIT_skipBits(Dstream, dt[val].nbBits); + return c; +} + +#define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \ + do { *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog); } while (0) + +#define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \ + do { \ + if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ + HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \ + } while (0) + +#define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \ + do { \ + if (MEM_64bits()) \ + HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \ + } while (0) + +HINT_INLINE size_t +HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog) +{ + BYTE* const pStart = p; + + /* up to 4 symbols at a time */ + if ((pEnd - p) > 3) { + while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) { + HUF_DECODE_SYMBOLX1_2(p, bitDPtr); + HUF_DECODE_SYMBOLX1_1(p, bitDPtr); + HUF_DECODE_SYMBOLX1_2(p, bitDPtr); + HUF_DECODE_SYMBOLX1_0(p, bitDPtr); + } + } else { + BIT_reloadDStream(bitDPtr); + } + + /* [0-3] symbols remaining */ + if (MEM_32bits()) + while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd)) + HUF_DECODE_SYMBOLX1_0(p, bitDPtr); + + /* no more data to retrieve from bitstream, no need to reload */ + while (p < pEnd) + HUF_DECODE_SYMBOLX1_0(p, bitDPtr); + + return (size_t)(pEnd-pStart); +} + +FORCE_INLINE_TEMPLATE size_t +HUF_decompress1X1_usingDTable_internal_body( + void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + const HUF_DTable* DTable) +{ + BYTE* op = (BYTE*)dst; + BYTE* const oend = ZSTD_maybeNullPtrAdd(op, dstSize); + const void* dtPtr = DTable + 1; + const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; + BIT_DStream_t bitD; + DTableDesc const dtd = HUF_getDTableDesc(DTable); + U32 const dtLog = dtd.tableLog; + + CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); + + HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog); + + if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); + + return dstSize; +} + +/* HUF_decompress4X1_usingDTable_internal_body(): + * Conditions : + * @dstSize >= 6 + */ +FORCE_INLINE_TEMPLATE size_t +HUF_decompress4X1_usingDTable_internal_body( + void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + const HUF_DTable* DTable) +{ + /* Check */ + if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ + if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */ + + { const BYTE* const istart = (const BYTE*) cSrc; + BYTE* const ostart = (BYTE*) dst; + BYTE* const oend = ostart + dstSize; + BYTE* const olimit = oend - 3; + const void* const dtPtr = DTable + 1; + const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; + + /* Init */ + BIT_DStream_t bitD1; + BIT_DStream_t bitD2; + BIT_DStream_t bitD3; + BIT_DStream_t bitD4; + size_t const length1 = MEM_readLE16(istart); + size_t const length2 = MEM_readLE16(istart+2); + size_t const length3 = MEM_readLE16(istart+4); + size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); + const BYTE* const istart1 = istart + 6; /* jumpTable */ + const BYTE* const istart2 = istart1 + length1; + const BYTE* const istart3 = istart2 + length2; + const BYTE* const istart4 = istart3 + length3; + const size_t segmentSize = (dstSize+3) / 4; + BYTE* const opStart2 = ostart + segmentSize; + BYTE* const opStart3 = opStart2 + segmentSize; + BYTE* const opStart4 = opStart3 + segmentSize; + BYTE* op1 = ostart; + BYTE* op2 = opStart2; + BYTE* op3 = opStart3; + BYTE* op4 = opStart4; + DTableDesc const dtd = HUF_getDTableDesc(DTable); + U32 const dtLog = dtd.tableLog; + U32 endSignal = 1; + + if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ + if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */ + assert(dstSize >= 6); /* validated above */ + CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); + CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); + CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); + CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); + + /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */ + if ((size_t)(oend - op4) >= sizeof(size_t)) { + for ( ; (endSignal) & (op4 < olimit) ; ) { + HUF_DECODE_SYMBOLX1_2(op1, &bitD1); + HUF_DECODE_SYMBOLX1_2(op2, &bitD2); + HUF_DECODE_SYMBOLX1_2(op3, &bitD3); + HUF_DECODE_SYMBOLX1_2(op4, &bitD4); + HUF_DECODE_SYMBOLX1_1(op1, &bitD1); + HUF_DECODE_SYMBOLX1_1(op2, &bitD2); + HUF_DECODE_SYMBOLX1_1(op3, &bitD3); + HUF_DECODE_SYMBOLX1_1(op4, &bitD4); + HUF_DECODE_SYMBOLX1_2(op1, &bitD1); + HUF_DECODE_SYMBOLX1_2(op2, &bitD2); + HUF_DECODE_SYMBOLX1_2(op3, &bitD3); + HUF_DECODE_SYMBOLX1_2(op4, &bitD4); + HUF_DECODE_SYMBOLX1_0(op1, &bitD1); + HUF_DECODE_SYMBOLX1_0(op2, &bitD2); + HUF_DECODE_SYMBOLX1_0(op3, &bitD3); + HUF_DECODE_SYMBOLX1_0(op4, &bitD4); + endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; + endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; + endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; + endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; + } + } + + /* check corruption */ + /* note : should not be necessary : op# advance in lock step, and we control op4. + * but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */ + if (op1 > opStart2) return ERROR(corruption_detected); + if (op2 > opStart3) return ERROR(corruption_detected); + if (op3 > opStart4) return ERROR(corruption_detected); + /* note : op4 supposed already verified within main loop */ + + /* finish bitStreams one by one */ + HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog); + HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog); + HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog); + HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog); + + /* check */ + { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); + if (!endCheck) return ERROR(corruption_detected); } + + /* decoded size */ + return dstSize; + } +} + +#if HUF_NEED_BMI2_FUNCTION +static BMI2_TARGET_ATTRIBUTE +size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc, + size_t cSrcSize, HUF_DTable const* DTable) { + return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); +} +#endif + +static +size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc, + size_t cSrcSize, HUF_DTable const* DTable) { + return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); +} + +#if ZSTD_ENABLE_ASM_X86_64_BMI2 + +HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN; + +#endif + +static HUF_FAST_BMI2_ATTRS +void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args) +{ + U64 bits[4]; + BYTE const* ip[4]; + BYTE* op[4]; + U16 const* const dtable = (U16 const*)args->dt; + BYTE* const oend = args->oend; + BYTE const* const ilowest = args->ilowest; + + /* Copy the arguments to local variables */ + ZSTD_memcpy(&bits, &args->bits, sizeof(bits)); + ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip)); + ZSTD_memcpy(&op, &args->op, sizeof(op)); + + assert(MEM_isLittleEndian()); + assert(!MEM_32bits()); + + for (;;) { + BYTE* olimit; + int stream; + + /* Assert loop preconditions */ +#ifndef NDEBUG + for (stream = 0; stream < 4; ++stream) { + assert(op[stream] <= (stream == 3 ? oend : op[stream + 1])); + assert(ip[stream] >= ilowest); + } +#endif + /* Compute olimit */ + { + /* Each iteration produces 5 output symbols per stream */ + size_t const oiters = (size_t)(oend - op[3]) / 5; + /* Each iteration consumes up to 11 bits * 5 = 55 bits < 7 bytes + * per stream. + */ + size_t const iiters = (size_t)(ip[0] - ilowest) / 7; + /* We can safely run iters iterations before running bounds checks */ + size_t const iters = MIN(oiters, iiters); + size_t const symbols = iters * 5; + + /* We can simply check that op[3] < olimit, instead of checking all + * of our bounds, since we can't hit the other bounds until we've run + * iters iterations, which only happens when op[3] == olimit. + */ + olimit = op[3] + symbols; + + /* Exit fast decoding loop once we reach the end. */ + if (op[3] == olimit) + break; + + /* Exit the decoding loop if any input pointer has crossed the + * previous one. This indicates corruption, and a precondition + * to our loop is that ip[i] >= ip[0]. + */ + for (stream = 1; stream < 4; ++stream) { + if (ip[stream] < ip[stream - 1]) + goto _out; + } + } + +#ifndef NDEBUG + for (stream = 1; stream < 4; ++stream) { + assert(ip[stream] >= ip[stream - 1]); + } +#endif + +#define HUF_4X1_DECODE_SYMBOL(_stream, _symbol) \ + do { \ + int const index = (int)(bits[(_stream)] >> 53); \ + int const entry = (int)dtable[index]; \ + bits[(_stream)] <<= (entry & 0x3F); \ + op[(_stream)][(_symbol)] = (BYTE)((entry >> 8) & 0xFF); \ + } while (0) + +#define HUF_4X1_RELOAD_STREAM(_stream) \ + do { \ + int const ctz = ZSTD_countTrailingZeros64(bits[(_stream)]); \ + int const nbBits = ctz & 7; \ + int const nbBytes = ctz >> 3; \ + op[(_stream)] += 5; \ + ip[(_stream)] -= nbBytes; \ + bits[(_stream)] = MEM_read64(ip[(_stream)]) | 1; \ + bits[(_stream)] <<= nbBits; \ + } while (0) + + /* Manually unroll the loop because compilers don't consistently + * unroll the inner loops, which destroys performance. + */ + do { + /* Decode 5 symbols in each of the 4 streams */ + HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 0); + HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 1); + HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 2); + HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 3); + HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 4); + + /* Reload each of the 4 the bitstreams */ + HUF_4X_FOR_EACH_STREAM(HUF_4X1_RELOAD_STREAM); + } while (op[3] < olimit); + +#undef HUF_4X1_DECODE_SYMBOL +#undef HUF_4X1_RELOAD_STREAM + } + +_out: + + /* Save the final values of each of the state variables back to args. */ + ZSTD_memcpy(&args->bits, &bits, sizeof(bits)); + ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip)); + ZSTD_memcpy(&args->op, &op, sizeof(op)); +} + +/** + * @returns @p dstSize on success (>= 6) + * 0 if the fallback implementation should be used + * An error if an error occurred + */ +static HUF_FAST_BMI2_ATTRS +size_t +HUF_decompress4X1_usingDTable_internal_fast( + void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + const HUF_DTable* DTable, + HUF_DecompressFastLoopFn loopFn) +{ + void const* dt = DTable + 1; + BYTE const* const ilowest = (BYTE const*)cSrc; + BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize); + HUF_DecompressFastArgs args; + { size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable); + FORWARD_IF_ERROR(ret, "Failed to init fast loop args"); + if (ret == 0) + return 0; + } + + assert(args.ip[0] >= args.ilowest); + loopFn(&args); + + /* Our loop guarantees that ip[] >= ilowest and that we haven't + * overwritten any op[]. + */ + assert(args.ip[0] >= ilowest); + assert(args.ip[0] >= ilowest); + assert(args.ip[1] >= ilowest); + assert(args.ip[2] >= ilowest); + assert(args.ip[3] >= ilowest); + assert(args.op[3] <= oend); + + assert(ilowest == args.ilowest); + assert(ilowest + 6 == args.iend[0]); + (void)ilowest; + + /* finish bit streams one by one. */ + { size_t const segmentSize = (dstSize+3) / 4; + BYTE* segmentEnd = (BYTE*)dst; + int i; + for (i = 0; i < 4; ++i) { + BIT_DStream_t bit; + if (segmentSize <= (size_t)(oend - segmentEnd)) + segmentEnd += segmentSize; + else + segmentEnd = oend; + FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption"); + /* Decompress and validate that we've produced exactly the expected length. */ + args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG); + if (args.op[i] != segmentEnd) return ERROR(corruption_detected); + } + } + + /* decoded size */ + assert(dstSize != 0); + return dstSize; +} + +HUF_DGEN(HUF_decompress1X1_usingDTable_internal) + +static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc, + size_t cSrcSize, HUF_DTable const* DTable, int flags) +{ + HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X1_usingDTable_internal_default; + HUF_DecompressFastLoopFn loopFn = HUF_decompress4X1_usingDTable_internal_fast_c_loop; + +#if DYNAMIC_BMI2 + if (flags & HUF_flags_bmi2) { + fallbackFn = HUF_decompress4X1_usingDTable_internal_bmi2; +# if ZSTD_ENABLE_ASM_X86_64_BMI2 + if (!(flags & HUF_flags_disableAsm)) { + loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop; + } +# endif + } else { + return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); + } +#endif + +#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__) + if (!(flags & HUF_flags_disableAsm)) { + loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop; + } +#endif + + if (HUF_ENABLE_FAST_DECODE && !(flags & HUF_flags_disableFast)) { + size_t const ret = HUF_decompress4X1_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn); + if (ret != 0) + return ret; + } + return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); +} + +static size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + void* workSpace, size_t wkspSize, int flags) +{ + const BYTE* ip = (const BYTE*) cSrc; + + size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags); + if (HUF_isError(hSize)) return hSize; + if (hSize >= cSrcSize) return ERROR(srcSize_wrong); + ip += hSize; cSrcSize -= hSize; + + return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags); +} + +#endif /* HUF_FORCE_DECOMPRESS_X2 */ + + +#ifndef HUF_FORCE_DECOMPRESS_X1 + +/* *************************/ +/* double-symbols decoding */ +/* *************************/ + +typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */ +typedef struct { BYTE symbol; } sortedSymbol_t; +typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1]; +typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX]; + +/** + * Constructs a HUF_DEltX2 in a U32. + */ +static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level) +{ + U32 seq; + DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0); + DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2); + DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3); + DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32)); + if (MEM_isLittleEndian()) { + seq = level == 1 ? symbol : (baseSeq + (symbol << 8)); + return seq + (nbBits << 16) + ((U32)level << 24); + } else { + seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol); + return (seq << 16) + (nbBits << 8) + (U32)level; + } +} + +/** + * Constructs a HUF_DEltX2. + */ +static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level) +{ + HUF_DEltX2 DElt; + U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level); + DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val)); + ZSTD_memcpy(&DElt, &val, sizeof(val)); + return DElt; +} + +/** + * Constructs 2 HUF_DEltX2s and packs them into a U64. + */ +static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level) +{ + U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level); + return (U64)DElt + ((U64)DElt << 32); +} + +/** + * Fills the DTable rank with all the symbols from [begin, end) that are each + * nbBits long. + * + * @param DTableRank The start of the rank in the DTable. + * @param begin The first symbol to fill (inclusive). + * @param end The last symbol to fill (exclusive). + * @param nbBits Each symbol is nbBits long. + * @param tableLog The table log. + * @param baseSeq If level == 1 { 0 } else { the first level symbol } + * @param level The level in the table. Must be 1 or 2. + */ +static void HUF_fillDTableX2ForWeight( + HUF_DEltX2* DTableRank, + sortedSymbol_t const* begin, sortedSymbol_t const* end, + U32 nbBits, U32 tableLog, + U16 baseSeq, int const level) +{ + U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */); + const sortedSymbol_t* ptr; + assert(level >= 1 && level <= 2); + switch (length) { + case 1: + for (ptr = begin; ptr != end; ++ptr) { + HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level); + *DTableRank++ = DElt; + } + break; + case 2: + for (ptr = begin; ptr != end; ++ptr) { + HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level); + DTableRank[0] = DElt; + DTableRank[1] = DElt; + DTableRank += 2; + } + break; + case 4: + for (ptr = begin; ptr != end; ++ptr) { + U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); + ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); + ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); + DTableRank += 4; + } + break; + case 8: + for (ptr = begin; ptr != end; ++ptr) { + U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); + ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); + ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); + ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2)); + ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2)); + DTableRank += 8; + } + break; + default: + for (ptr = begin; ptr != end; ++ptr) { + U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); + HUF_DEltX2* const DTableRankEnd = DTableRank + length; + for (; DTableRank != DTableRankEnd; DTableRank += 8) { + ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); + ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); + ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2)); + ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2)); + } + } + break; + } +} + +/* HUF_fillDTableX2Level2() : + * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */ +static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits, + const U32* rankVal, const int minWeight, const int maxWeight1, + const sortedSymbol_t* sortedSymbols, U32 const* rankStart, + U32 nbBitsBaseline, U16 baseSeq) +{ + /* Fill skipped values (all positions up to rankVal[minWeight]). + * These are positions only get a single symbol because the combined weight + * is too large. + */ + if (minWeight>1) { + U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */); + U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1); + int const skipSize = rankVal[minWeight]; + assert(length > 1); + assert((U32)skipSize < length); + switch (length) { + case 2: + assert(skipSize == 1); + ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2)); + break; + case 4: + assert(skipSize <= 4); + ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2)); + ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2)); + break; + default: + { + int i; + for (i = 0; i < skipSize; i += 8) { + ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2)); + ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2)); + ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2)); + ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2)); + } + } + } + } + + /* Fill each of the second level symbols by weight. */ + { + int w; + for (w = minWeight; w < maxWeight1; ++w) { + int const begin = rankStart[w]; + int const end = rankStart[w+1]; + U32 const nbBits = nbBitsBaseline - w; + U32 const totalBits = nbBits + consumedBits; + HUF_fillDTableX2ForWeight( + DTable + rankVal[w], + sortedSymbols + begin, sortedSymbols + end, + totalBits, targetLog, + baseSeq, /* level */ 2); + } + } +} + +static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog, + const sortedSymbol_t* sortedList, + const U32* rankStart, rankValCol_t* rankValOrigin, const U32 maxWeight, + const U32 nbBitsBaseline) +{ + U32* const rankVal = rankValOrigin[0]; + const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ + const U32 minBits = nbBitsBaseline - maxWeight; + int w; + int const wEnd = (int)maxWeight + 1; + + /* Fill DTable in order of weight. */ + for (w = 1; w < wEnd; ++w) { + int const begin = (int)rankStart[w]; + int const end = (int)rankStart[w+1]; + U32 const nbBits = nbBitsBaseline - w; + + if (targetLog-nbBits >= minBits) { + /* Enough room for a second symbol. */ + int start = rankVal[w]; + U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */); + int minWeight = nbBits + scaleLog; + int s; + if (minWeight < 1) minWeight = 1; + /* Fill the DTable for every symbol of weight w. + * These symbols get at least 1 second symbol. + */ + for (s = begin; s != end; ++s) { + HUF_fillDTableX2Level2( + DTable + start, targetLog, nbBits, + rankValOrigin[nbBits], minWeight, wEnd, + sortedList, rankStart, + nbBitsBaseline, sortedList[s].symbol); + start += length; + } + } else { + /* Only a single symbol. */ + HUF_fillDTableX2ForWeight( + DTable + rankVal[w], + sortedList + begin, sortedList + end, + nbBits, targetLog, + /* baseSeq */ 0, /* level */ 1); + } + } +} + +typedef struct { + rankValCol_t rankVal[HUF_TABLELOG_MAX]; + U32 rankStats[HUF_TABLELOG_MAX + 1]; + U32 rankStart0[HUF_TABLELOG_MAX + 3]; + sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1]; + BYTE weightList[HUF_SYMBOLVALUE_MAX + 1]; + U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; +} HUF_ReadDTableX2_Workspace; + +size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, + const void* src, size_t srcSize, + void* workSpace, size_t wkspSize, int flags) +{ + U32 tableLog, maxW, nbSymbols; + DTableDesc dtd = HUF_getDTableDesc(DTable); + U32 maxTableLog = dtd.maxTableLog; + size_t iSize; + void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */ + HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr; + U32 *rankStart; + + HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace; + + if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC); + + rankStart = wksp->rankStart0 + 1; + ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats)); + ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0)); + + DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */ + if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); + /* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */ + + iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), flags); + if (HUF_isError(iSize)) return iSize; + + /* check result */ + if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ + if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG; + + /* find maxWeight */ + for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */ + + /* Get start index of each weight */ + { U32 w, nextRankStart = 0; + for (w=1; wrankStats[w]; + rankStart[w] = curr; + } + rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ + rankStart[maxW+1] = nextRankStart; + } + + /* sort symbols by weight */ + { U32 s; + for (s=0; sweightList[s]; + U32 const r = rankStart[w]++; + wksp->sortedSymbol[r].symbol = (BYTE)s; + } + rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */ + } + + /* Build rankVal */ + { U32* const rankVal0 = wksp->rankVal[0]; + { int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */ + U32 nextRankVal = 0; + U32 w; + for (w=1; wrankStats[w] << (w+rescale); + rankVal0[w] = curr; + } } + { U32 const minBits = tableLog+1 - maxW; + U32 consumed; + for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) { + U32* const rankValPtr = wksp->rankVal[consumed]; + U32 w; + for (w = 1; w < maxW+1; w++) { + rankValPtr[w] = rankVal0[w] >> consumed; + } } } } + + HUF_fillDTableX2(dt, maxTableLog, + wksp->sortedSymbol, + wksp->rankStart0, wksp->rankVal, maxW, + tableLog+1); + + dtd.tableLog = (BYTE)maxTableLog; + dtd.tableType = 1; + ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); + return iSize; +} + + +FORCE_INLINE_TEMPLATE U32 +HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) +{ + size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ + ZSTD_memcpy(op, &dt[val].sequence, 2); + BIT_skipBits(DStream, dt[val].nbBits); + return dt[val].length; +} + +FORCE_INLINE_TEMPLATE U32 +HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) +{ + size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ + ZSTD_memcpy(op, &dt[val].sequence, 1); + if (dt[val].length==1) { + BIT_skipBits(DStream, dt[val].nbBits); + } else { + if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) { + BIT_skipBits(DStream, dt[val].nbBits); + if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) + /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ + DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); + } + } + return 1; +} + +#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \ + do { ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); } while (0) + +#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ + do { \ + if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ + ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); \ + } while (0) + +#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ + do { \ + if (MEM_64bits()) \ + ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); \ + } while (0) + +HINT_INLINE size_t +HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, + const HUF_DEltX2* const dt, const U32 dtLog) +{ + BYTE* const pStart = p; + + /* up to 8 symbols at a time */ + if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) { + if (dtLog <= 11 && MEM_64bits()) { + /* up to 10 symbols at a time */ + while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) { + HUF_DECODE_SYMBOLX2_0(p, bitDPtr); + HUF_DECODE_SYMBOLX2_0(p, bitDPtr); + HUF_DECODE_SYMBOLX2_0(p, bitDPtr); + HUF_DECODE_SYMBOLX2_0(p, bitDPtr); + HUF_DECODE_SYMBOLX2_0(p, bitDPtr); + } + } else { + /* up to 8 symbols at a time */ + while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) { + HUF_DECODE_SYMBOLX2_2(p, bitDPtr); + HUF_DECODE_SYMBOLX2_1(p, bitDPtr); + HUF_DECODE_SYMBOLX2_2(p, bitDPtr); + HUF_DECODE_SYMBOLX2_0(p, bitDPtr); + } + } + } else { + BIT_reloadDStream(bitDPtr); + } + + /* closer to end : up to 2 symbols at a time */ + if ((size_t)(pEnd - p) >= 2) { + while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2)) + HUF_DECODE_SYMBOLX2_0(p, bitDPtr); + + while (p <= pEnd-2) + HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ + } + + if (p < pEnd) + p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog); + + return p-pStart; +} + +FORCE_INLINE_TEMPLATE size_t +HUF_decompress1X2_usingDTable_internal_body( + void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + const HUF_DTable* DTable) +{ + BIT_DStream_t bitD; + + /* Init */ + CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); + + /* decode */ + { BYTE* const ostart = (BYTE*) dst; + BYTE* const oend = ZSTD_maybeNullPtrAdd(ostart, dstSize); + const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */ + const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; + DTableDesc const dtd = HUF_getDTableDesc(DTable); + HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog); + } + + /* check */ + if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); + + /* decoded size */ + return dstSize; +} + +/* HUF_decompress4X2_usingDTable_internal_body(): + * Conditions: + * @dstSize >= 6 + */ +FORCE_INLINE_TEMPLATE size_t +HUF_decompress4X2_usingDTable_internal_body( + void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + const HUF_DTable* DTable) +{ + if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ + if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */ + + { const BYTE* const istart = (const BYTE*) cSrc; + BYTE* const ostart = (BYTE*) dst; + BYTE* const oend = ostart + dstSize; + BYTE* const olimit = oend - (sizeof(size_t)-1); + const void* const dtPtr = DTable+1; + const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; + + /* Init */ + BIT_DStream_t bitD1; + BIT_DStream_t bitD2; + BIT_DStream_t bitD3; + BIT_DStream_t bitD4; + size_t const length1 = MEM_readLE16(istart); + size_t const length2 = MEM_readLE16(istart+2); + size_t const length3 = MEM_readLE16(istart+4); + size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); + const BYTE* const istart1 = istart + 6; /* jumpTable */ + const BYTE* const istart2 = istart1 + length1; + const BYTE* const istart3 = istart2 + length2; + const BYTE* const istart4 = istart3 + length3; + size_t const segmentSize = (dstSize+3) / 4; + BYTE* const opStart2 = ostart + segmentSize; + BYTE* const opStart3 = opStart2 + segmentSize; + BYTE* const opStart4 = opStart3 + segmentSize; + BYTE* op1 = ostart; + BYTE* op2 = opStart2; + BYTE* op3 = opStart3; + BYTE* op4 = opStart4; + U32 endSignal = 1; + DTableDesc const dtd = HUF_getDTableDesc(DTable); + U32 const dtLog = dtd.tableLog; + + if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ + if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */ + assert(dstSize >= 6 /* validated above */); + CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); + CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); + CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); + CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); + + /* 16-32 symbols per loop (4-8 symbols per stream) */ + if ((size_t)(oend - op4) >= sizeof(size_t)) { + for ( ; (endSignal) & (op4 < olimit); ) { +#if defined(__clang__) && (defined(__x86_64__) || defined(__i386__)) + HUF_DECODE_SYMBOLX2_2(op1, &bitD1); + HUF_DECODE_SYMBOLX2_1(op1, &bitD1); + HUF_DECODE_SYMBOLX2_2(op1, &bitD1); + HUF_DECODE_SYMBOLX2_0(op1, &bitD1); + HUF_DECODE_SYMBOLX2_2(op2, &bitD2); + HUF_DECODE_SYMBOLX2_1(op2, &bitD2); + HUF_DECODE_SYMBOLX2_2(op2, &bitD2); + HUF_DECODE_SYMBOLX2_0(op2, &bitD2); + endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; + endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; + HUF_DECODE_SYMBOLX2_2(op3, &bitD3); + HUF_DECODE_SYMBOLX2_1(op3, &bitD3); + HUF_DECODE_SYMBOLX2_2(op3, &bitD3); + HUF_DECODE_SYMBOLX2_0(op3, &bitD3); + HUF_DECODE_SYMBOLX2_2(op4, &bitD4); + HUF_DECODE_SYMBOLX2_1(op4, &bitD4); + HUF_DECODE_SYMBOLX2_2(op4, &bitD4); + HUF_DECODE_SYMBOLX2_0(op4, &bitD4); + endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; + endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; +#else + HUF_DECODE_SYMBOLX2_2(op1, &bitD1); + HUF_DECODE_SYMBOLX2_2(op2, &bitD2); + HUF_DECODE_SYMBOLX2_2(op3, &bitD3); + HUF_DECODE_SYMBOLX2_2(op4, &bitD4); + HUF_DECODE_SYMBOLX2_1(op1, &bitD1); + HUF_DECODE_SYMBOLX2_1(op2, &bitD2); + HUF_DECODE_SYMBOLX2_1(op3, &bitD3); + HUF_DECODE_SYMBOLX2_1(op4, &bitD4); + HUF_DECODE_SYMBOLX2_2(op1, &bitD1); + HUF_DECODE_SYMBOLX2_2(op2, &bitD2); + HUF_DECODE_SYMBOLX2_2(op3, &bitD3); + HUF_DECODE_SYMBOLX2_2(op4, &bitD4); + HUF_DECODE_SYMBOLX2_0(op1, &bitD1); + HUF_DECODE_SYMBOLX2_0(op2, &bitD2); + HUF_DECODE_SYMBOLX2_0(op3, &bitD3); + HUF_DECODE_SYMBOLX2_0(op4, &bitD4); + endSignal = (U32)LIKELY((U32) + (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished) + & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished) + & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished) + & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished)); +#endif + } + } + + /* check corruption */ + if (op1 > opStart2) return ERROR(corruption_detected); + if (op2 > opStart3) return ERROR(corruption_detected); + if (op3 > opStart4) return ERROR(corruption_detected); + /* note : op4 already verified within main loop */ + + /* finish bitStreams one by one */ + HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); + HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); + HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); + HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); + + /* check */ + { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); + if (!endCheck) return ERROR(corruption_detected); } + + /* decoded size */ + return dstSize; + } +} + +#if HUF_NEED_BMI2_FUNCTION +static BMI2_TARGET_ATTRIBUTE +size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc, + size_t cSrcSize, HUF_DTable const* DTable) { + return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); +} +#endif + +static +size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc, + size_t cSrcSize, HUF_DTable const* DTable) { + return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); +} + +#if ZSTD_ENABLE_ASM_X86_64_BMI2 + +HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN; + +#endif + +static HUF_FAST_BMI2_ATTRS +void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args) +{ + U64 bits[4]; + BYTE const* ip[4]; + BYTE* op[4]; + BYTE* oend[4]; + HUF_DEltX2 const* const dtable = (HUF_DEltX2 const*)args->dt; + BYTE const* const ilowest = args->ilowest; + + /* Copy the arguments to local registers. */ + ZSTD_memcpy(&bits, &args->bits, sizeof(bits)); + ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip)); + ZSTD_memcpy(&op, &args->op, sizeof(op)); + + oend[0] = op[1]; + oend[1] = op[2]; + oend[2] = op[3]; + oend[3] = args->oend; + + assert(MEM_isLittleEndian()); + assert(!MEM_32bits()); + + for (;;) { + BYTE* olimit; + int stream; + + /* Assert loop preconditions */ +#ifndef NDEBUG + for (stream = 0; stream < 4; ++stream) { + assert(op[stream] <= oend[stream]); + assert(ip[stream] >= ilowest); + } +#endif + /* Compute olimit */ + { + /* Each loop does 5 table lookups for each of the 4 streams. + * Each table lookup consumes up to 11 bits of input, and produces + * up to 2 bytes of output. + */ + /* We can consume up to 7 bytes of input per iteration per stream. + * We also know that each input pointer is >= ip[0]. So we can run + * iters loops before running out of input. + */ + size_t iters = (size_t)(ip[0] - ilowest) / 7; + /* Each iteration can produce up to 10 bytes of output per stream. + * Each output stream my advance at different rates. So take the + * minimum number of safe iterations among all the output streams. + */ + for (stream = 0; stream < 4; ++stream) { + size_t const oiters = (size_t)(oend[stream] - op[stream]) / 10; + iters = MIN(iters, oiters); + } + + /* Each iteration produces at least 5 output symbols. So until + * op[3] crosses olimit, we know we haven't executed iters + * iterations yet. This saves us maintaining an iters counter, + * at the expense of computing the remaining # of iterations + * more frequently. + */ + olimit = op[3] + (iters * 5); + + /* Exit the fast decoding loop once we reach the end. */ + if (op[3] == olimit) + break; + + /* Exit the decoding loop if any input pointer has crossed the + * previous one. This indicates corruption, and a precondition + * to our loop is that ip[i] >= ip[0]. + */ + for (stream = 1; stream < 4; ++stream) { + if (ip[stream] < ip[stream - 1]) + goto _out; + } + } + +#ifndef NDEBUG + for (stream = 1; stream < 4; ++stream) { + assert(ip[stream] >= ip[stream - 1]); + } +#endif + +#define HUF_4X2_DECODE_SYMBOL(_stream, _decode3) \ + do { \ + if ((_decode3) || (_stream) != 3) { \ + int const index = (int)(bits[(_stream)] >> 53); \ + HUF_DEltX2 const entry = dtable[index]; \ + MEM_write16(op[(_stream)], entry.sequence); \ + bits[(_stream)] <<= (entry.nbBits) & 0x3F; \ + op[(_stream)] += (entry.length); \ + } \ + } while (0) + +#define HUF_4X2_RELOAD_STREAM(_stream) \ + do { \ + HUF_4X2_DECODE_SYMBOL(3, 1); \ + { \ + int const ctz = ZSTD_countTrailingZeros64(bits[(_stream)]); \ + int const nbBits = ctz & 7; \ + int const nbBytes = ctz >> 3; \ + ip[(_stream)] -= nbBytes; \ + bits[(_stream)] = MEM_read64(ip[(_stream)]) | 1; \ + bits[(_stream)] <<= nbBits; \ + } \ + } while (0) + + /* Manually unroll the loop because compilers don't consistently + * unroll the inner loops, which destroys performance. + */ + do { + /* Decode 5 symbols from each of the first 3 streams. + * The final stream will be decoded during the reload phase + * to reduce register pressure. + */ + HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0); + HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0); + HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0); + HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0); + HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0); + + /* Decode one symbol from the final stream */ + HUF_4X2_DECODE_SYMBOL(3, 1); + + /* Decode 4 symbols from the final stream & reload bitstreams. + * The final stream is reloaded last, meaning that all 5 symbols + * are decoded from the final stream before it is reloaded. + */ + HUF_4X_FOR_EACH_STREAM(HUF_4X2_RELOAD_STREAM); + } while (op[3] < olimit); + } + +#undef HUF_4X2_DECODE_SYMBOL +#undef HUF_4X2_RELOAD_STREAM + +_out: + + /* Save the final values of each of the state variables back to args. */ + ZSTD_memcpy(&args->bits, &bits, sizeof(bits)); + ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip)); + ZSTD_memcpy(&args->op, &op, sizeof(op)); +} + + +static HUF_FAST_BMI2_ATTRS size_t +HUF_decompress4X2_usingDTable_internal_fast( + void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + const HUF_DTable* DTable, + HUF_DecompressFastLoopFn loopFn) { + void const* dt = DTable + 1; + const BYTE* const ilowest = (const BYTE*)cSrc; + BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize); + HUF_DecompressFastArgs args; + { + size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable); + FORWARD_IF_ERROR(ret, "Failed to init asm args"); + if (ret == 0) + return 0; + } + + assert(args.ip[0] >= args.ilowest); + loopFn(&args); + + /* note : op4 already verified within main loop */ + assert(args.ip[0] >= ilowest); + assert(args.ip[1] >= ilowest); + assert(args.ip[2] >= ilowest); + assert(args.ip[3] >= ilowest); + assert(args.op[3] <= oend); + + assert(ilowest == args.ilowest); + assert(ilowest + 6 == args.iend[0]); + (void)ilowest; + + /* finish bitStreams one by one */ + { + size_t const segmentSize = (dstSize+3) / 4; + BYTE* segmentEnd = (BYTE*)dst; + int i; + for (i = 0; i < 4; ++i) { + BIT_DStream_t bit; + if (segmentSize <= (size_t)(oend - segmentEnd)) + segmentEnd += segmentSize; + else + segmentEnd = oend; + FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption"); + args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG); + if (args.op[i] != segmentEnd) + return ERROR(corruption_detected); + } + } + + /* decoded size */ + return dstSize; +} + +static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc, + size_t cSrcSize, HUF_DTable const* DTable, int flags) +{ + HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X2_usingDTable_internal_default; + HUF_DecompressFastLoopFn loopFn = HUF_decompress4X2_usingDTable_internal_fast_c_loop; + +#if DYNAMIC_BMI2 + if (flags & HUF_flags_bmi2) { + fallbackFn = HUF_decompress4X2_usingDTable_internal_bmi2; +# if ZSTD_ENABLE_ASM_X86_64_BMI2 + if (!(flags & HUF_flags_disableAsm)) { + loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop; + } +# endif + } else { + return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); + } +#endif + +#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__) + if (!(flags & HUF_flags_disableAsm)) { + loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop; + } +#endif + + if (HUF_ENABLE_FAST_DECODE && !(flags & HUF_flags_disableFast)) { + size_t const ret = HUF_decompress4X2_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn); + if (ret != 0) + return ret; + } + return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); +} + +HUF_DGEN(HUF_decompress1X2_usingDTable_internal) + +size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + void* workSpace, size_t wkspSize, int flags) +{ + const BYTE* ip = (const BYTE*) cSrc; + + size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize, + workSpace, wkspSize, flags); + if (HUF_isError(hSize)) return hSize; + if (hSize >= cSrcSize) return ERROR(srcSize_wrong); + ip += hSize; cSrcSize -= hSize; + + return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, flags); +} + +static size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + void* workSpace, size_t wkspSize, int flags) +{ + const BYTE* ip = (const BYTE*) cSrc; + + size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize, + workSpace, wkspSize, flags); + if (HUF_isError(hSize)) return hSize; + if (hSize >= cSrcSize) return ERROR(srcSize_wrong); + ip += hSize; cSrcSize -= hSize; + + return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags); +} + +#endif /* HUF_FORCE_DECOMPRESS_X1 */ + + +/* ***********************************/ +/* Universal decompression selectors */ +/* ***********************************/ + + +#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2) +typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t; +static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] = +{ + /* single, double, quad */ + {{0,0}, {1,1}}, /* Q==0 : impossible */ + {{0,0}, {1,1}}, /* Q==1 : impossible */ + {{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */ + {{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */ + {{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */ + {{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */ + {{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */ + {{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */ + {{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */ + {{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */ + {{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */ + {{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */ + {{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */ + {{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */ + {{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */ + {{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */ +}; +#endif + +/** HUF_selectDecoder() : + * Tells which decoder is likely to decode faster, + * based on a set of pre-computed metrics. + * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 . + * Assumption : 0 < dstSize <= 128 KB */ +U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize) +{ + assert(dstSize > 0); + assert(dstSize <= 128*1024); +#if defined(HUF_FORCE_DECOMPRESS_X1) + (void)dstSize; + (void)cSrcSize; + return 0; +#elif defined(HUF_FORCE_DECOMPRESS_X2) + (void)dstSize; + (void)cSrcSize; + return 1; +#else + /* decoder timing evaluation */ + { U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */ + U32 const D256 = (U32)(dstSize >> 8); + U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256); + U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256); + DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */ + return DTime1 < DTime0; + } +#endif +} + +size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + void* workSpace, size_t wkspSize, int flags) +{ + /* validation checks */ + if (dstSize == 0) return ERROR(dstSize_tooSmall); + if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ + if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ + if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ + + { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); +#if defined(HUF_FORCE_DECOMPRESS_X1) + (void)algoNb; + assert(algoNb == 0); + return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, + cSrcSize, workSpace, wkspSize, flags); +#elif defined(HUF_FORCE_DECOMPRESS_X2) + (void)algoNb; + assert(algoNb == 1); + return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, + cSrcSize, workSpace, wkspSize, flags); +#else + return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, + cSrcSize, workSpace, wkspSize, flags): + HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, + cSrcSize, workSpace, wkspSize, flags); +#endif + } +} + + +size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags) +{ + DTableDesc const dtd = HUF_getDTableDesc(DTable); +#if defined(HUF_FORCE_DECOMPRESS_X1) + (void)dtd; + assert(dtd.tableType == 0); + return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); +#elif defined(HUF_FORCE_DECOMPRESS_X2) + (void)dtd; + assert(dtd.tableType == 1); + return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); +#else + return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) : + HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); +#endif +} + +#ifndef HUF_FORCE_DECOMPRESS_X2 +size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags) +{ + const BYTE* ip = (const BYTE*) cSrc; + + size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags); + if (HUF_isError(hSize)) return hSize; + if (hSize >= cSrcSize) return ERROR(srcSize_wrong); + ip += hSize; cSrcSize -= hSize; + + return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags); +} +#endif + +size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags) +{ + DTableDesc const dtd = HUF_getDTableDesc(DTable); +#if defined(HUF_FORCE_DECOMPRESS_X1) + (void)dtd; + assert(dtd.tableType == 0); + return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); +#elif defined(HUF_FORCE_DECOMPRESS_X2) + (void)dtd; + assert(dtd.tableType == 1); + return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); +#else + return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) : + HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); +#endif +} + +size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags) +{ + /* validation checks */ + if (dstSize == 0) return ERROR(dstSize_tooSmall); + if (cSrcSize == 0) return ERROR(corruption_detected); + + { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); +#if defined(HUF_FORCE_DECOMPRESS_X1) + (void)algoNb; + assert(algoNb == 0); + return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); +#elif defined(HUF_FORCE_DECOMPRESS_X2) + (void)algoNb; + assert(algoNb == 1); + return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); +#else + return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags) : + HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); +#endif + } +} diff --git a/src/third-party/zstd/decompress/huf_decompress_amd64.S b/src/third-party/zstd/decompress/huf_decompress_amd64.S new file mode 100644 index 0000000000000..78da291ee3c0d --- /dev/null +++ b/src/third-party/zstd/decompress/huf_decompress_amd64.S @@ -0,0 +1,595 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#include "../common/portability_macros.h" + +#if defined(__ELF__) && defined(__GNUC__) +/* Stack marking + * ref: https://wiki.gentoo.org/wiki/Hardened/GNU_stack_quickstart + */ +.section .note.GNU-stack,"",%progbits + +#if defined(__aarch64__) +/* Mark that this assembly supports BTI & PAC, because it is empty for aarch64. + * See: https://github.com/facebook/zstd/issues/3841 + * See: https://gcc.godbolt.org/z/sqr5T4ffK + * See: https://lore.kernel.org/linux-arm-kernel/20200429211641.9279-8-broonie@kernel.org/ + * See: https://reviews.llvm.org/D62609 + */ +.pushsection .note.gnu.property, "a" +.p2align 3 +.long 4 /* size of the name - "GNU\0" */ +.long 0x10 /* size of descriptor */ +.long 0x5 /* NT_GNU_PROPERTY_TYPE_0 */ +.asciz "GNU" +.long 0xc0000000 /* pr_type - GNU_PROPERTY_AARCH64_FEATURE_1_AND */ +.long 4 /* pr_datasz - 4 bytes */ +.long 3 /* pr_data - GNU_PROPERTY_AARCH64_FEATURE_1_BTI | GNU_PROPERTY_AARCH64_FEATURE_1_PAC */ +.p2align 3 /* pr_padding - bring everything to 8 byte alignment */ +.popsection +#endif + +#endif + +#if ZSTD_ENABLE_ASM_X86_64_BMI2 + +/* Calling convention: + * + * %rdi contains the first argument: HUF_DecompressAsmArgs*. + * %rbp isn't maintained (no frame pointer). + * %rsp contains the stack pointer that grows down. + * No red-zone is assumed, only addresses >= %rsp are used. + * All register contents are preserved. + * + * TODO: Support Windows calling convention. + */ + +ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X1_usingDTable_internal_fast_asm_loop) +ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X2_usingDTable_internal_fast_asm_loop) +ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X2_usingDTable_internal_fast_asm_loop) +ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X1_usingDTable_internal_fast_asm_loop) +.global HUF_decompress4X1_usingDTable_internal_fast_asm_loop +.global HUF_decompress4X2_usingDTable_internal_fast_asm_loop +.global _HUF_decompress4X1_usingDTable_internal_fast_asm_loop +.global _HUF_decompress4X2_usingDTable_internal_fast_asm_loop +.text + +/* Sets up register mappings for clarity. + * op[], bits[], dtable & ip[0] each get their own register. + * ip[1,2,3] & olimit alias var[]. + * %rax is a scratch register. + */ + +#define op0 rsi +#define op1 rbx +#define op2 rcx +#define op3 rdi + +#define ip0 r8 +#define ip1 r9 +#define ip2 r10 +#define ip3 r11 + +#define bits0 rbp +#define bits1 rdx +#define bits2 r12 +#define bits3 r13 +#define dtable r14 +#define olimit r15 + +/* var[] aliases ip[1,2,3] & olimit + * ip[1,2,3] are saved every iteration. + * olimit is only used in compute_olimit. + */ +#define var0 r15 +#define var1 r9 +#define var2 r10 +#define var3 r11 + +/* 32-bit var registers */ +#define vard0 r15d +#define vard1 r9d +#define vard2 r10d +#define vard3 r11d + +/* Calls X(N) for each stream 0, 1, 2, 3. */ +#define FOR_EACH_STREAM(X) \ + X(0); \ + X(1); \ + X(2); \ + X(3) + +/* Calls X(N, idx) for each stream 0, 1, 2, 3. */ +#define FOR_EACH_STREAM_WITH_INDEX(X, idx) \ + X(0, idx); \ + X(1, idx); \ + X(2, idx); \ + X(3, idx) + +/* Define both _HUF_* & HUF_* symbols because MacOS + * C symbols are prefixed with '_' & Linux symbols aren't. + */ +_HUF_decompress4X1_usingDTable_internal_fast_asm_loop: +HUF_decompress4X1_usingDTable_internal_fast_asm_loop: + ZSTD_CET_ENDBRANCH + /* Save all registers - even if they are callee saved for simplicity. */ + push %rax + push %rbx + push %rcx + push %rdx + push %rbp + push %rsi + push %rdi + push %r8 + push %r9 + push %r10 + push %r11 + push %r12 + push %r13 + push %r14 + push %r15 + + /* Read HUF_DecompressAsmArgs* args from %rax */ + movq %rdi, %rax + movq 0(%rax), %ip0 + movq 8(%rax), %ip1 + movq 16(%rax), %ip2 + movq 24(%rax), %ip3 + movq 32(%rax), %op0 + movq 40(%rax), %op1 + movq 48(%rax), %op2 + movq 56(%rax), %op3 + movq 64(%rax), %bits0 + movq 72(%rax), %bits1 + movq 80(%rax), %bits2 + movq 88(%rax), %bits3 + movq 96(%rax), %dtable + push %rax /* argument */ + push 104(%rax) /* ilowest */ + push 112(%rax) /* oend */ + push %olimit /* olimit space */ + + subq $24, %rsp + +.L_4X1_compute_olimit: + /* Computes how many iterations we can do safely + * %r15, %rax may be clobbered + * rbx, rdx must be saved + * op3 & ip0 mustn't be clobbered + */ + movq %rbx, 0(%rsp) + movq %rdx, 8(%rsp) + + movq 32(%rsp), %rax /* rax = oend */ + subq %op3, %rax /* rax = oend - op3 */ + + /* r15 = (oend - op3) / 5 */ + movabsq $-3689348814741910323, %rdx + mulq %rdx + movq %rdx, %r15 + shrq $2, %r15 + + movq %ip0, %rax /* rax = ip0 */ + movq 40(%rsp), %rdx /* rdx = ilowest */ + subq %rdx, %rax /* rax = ip0 - ilowest */ + movq %rax, %rbx /* rbx = ip0 - ilowest */ + + /* rdx = (ip0 - ilowest) / 7 */ + movabsq $2635249153387078803, %rdx + mulq %rdx + subq %rdx, %rbx + shrq %rbx + addq %rbx, %rdx + shrq $2, %rdx + + /* r15 = min(%rdx, %r15) */ + cmpq %rdx, %r15 + cmova %rdx, %r15 + + /* r15 = r15 * 5 */ + leaq (%r15, %r15, 4), %r15 + + /* olimit = op3 + r15 */ + addq %op3, %olimit + + movq 8(%rsp), %rdx + movq 0(%rsp), %rbx + + /* If (op3 + 20 > olimit) */ + movq %op3, %rax /* rax = op3 */ + cmpq %rax, %olimit /* op3 == olimit */ + je .L_4X1_exit + + /* If (ip1 < ip0) go to exit */ + cmpq %ip0, %ip1 + jb .L_4X1_exit + + /* If (ip2 < ip1) go to exit */ + cmpq %ip1, %ip2 + jb .L_4X1_exit + + /* If (ip3 < ip2) go to exit */ + cmpq %ip2, %ip3 + jb .L_4X1_exit + +/* Reads top 11 bits from bits[n] + * Loads dt[bits[n]] into var[n] + */ +#define GET_NEXT_DELT(n) \ + movq $53, %var##n; \ + shrxq %var##n, %bits##n, %var##n; \ + movzwl (%dtable,%var##n,2),%vard##n + +/* var[n] must contain the DTable entry computed with GET_NEXT_DELT + * Moves var[n] to %rax + * bits[n] <<= var[n] & 63 + * op[n][idx] = %rax >> 8 + * %ah is a way to access bits [8, 16) of %rax + */ +#define DECODE_FROM_DELT(n, idx) \ + movq %var##n, %rax; \ + shlxq %var##n, %bits##n, %bits##n; \ + movb %ah, idx(%op##n) + +/* Assumes GET_NEXT_DELT has been called. + * Calls DECODE_FROM_DELT then GET_NEXT_DELT + */ +#define DECODE_AND_GET_NEXT(n, idx) \ + DECODE_FROM_DELT(n, idx); \ + GET_NEXT_DELT(n) \ + +/* // ctz & nbBytes is stored in bits[n] + * // nbBits is stored in %rax + * ctz = CTZ[bits[n]] + * nbBits = ctz & 7 + * nbBytes = ctz >> 3 + * op[n] += 5 + * ip[n] -= nbBytes + * // Note: x86-64 is little-endian ==> no bswap + * bits[n] = MEM_readST(ip[n]) | 1 + * bits[n] <<= nbBits + */ +#define RELOAD_BITS(n) \ + bsfq %bits##n, %bits##n; \ + movq %bits##n, %rax; \ + andq $7, %rax; \ + shrq $3, %bits##n; \ + leaq 5(%op##n), %op##n; \ + subq %bits##n, %ip##n; \ + movq (%ip##n), %bits##n; \ + orq $1, %bits##n; \ + shlx %rax, %bits##n, %bits##n + + /* Store clobbered variables on the stack */ + movq %olimit, 24(%rsp) + movq %ip1, 0(%rsp) + movq %ip2, 8(%rsp) + movq %ip3, 16(%rsp) + + /* Call GET_NEXT_DELT for each stream */ + FOR_EACH_STREAM(GET_NEXT_DELT) + + .p2align 6 + +.L_4X1_loop_body: + /* Decode 5 symbols in each of the 4 streams (20 total) + * Must have called GET_NEXT_DELT for each stream + */ + FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 0) + FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 1) + FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 2) + FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 3) + FOR_EACH_STREAM_WITH_INDEX(DECODE_FROM_DELT, 4) + + /* Load ip[1,2,3] from stack (var[] aliases them) + * ip[] is needed for RELOAD_BITS + * Each will be stored back to the stack after RELOAD + */ + movq 0(%rsp), %ip1 + movq 8(%rsp), %ip2 + movq 16(%rsp), %ip3 + + /* Reload each stream & fetch the next table entry + * to prepare for the next iteration + */ + RELOAD_BITS(0) + GET_NEXT_DELT(0) + + RELOAD_BITS(1) + movq %ip1, 0(%rsp) + GET_NEXT_DELT(1) + + RELOAD_BITS(2) + movq %ip2, 8(%rsp) + GET_NEXT_DELT(2) + + RELOAD_BITS(3) + movq %ip3, 16(%rsp) + GET_NEXT_DELT(3) + + /* If op3 < olimit: continue the loop */ + cmp %op3, 24(%rsp) + ja .L_4X1_loop_body + + /* Reload ip[1,2,3] from stack */ + movq 0(%rsp), %ip1 + movq 8(%rsp), %ip2 + movq 16(%rsp), %ip3 + + /* Re-compute olimit */ + jmp .L_4X1_compute_olimit + +#undef GET_NEXT_DELT +#undef DECODE_FROM_DELT +#undef DECODE +#undef RELOAD_BITS +.L_4X1_exit: + addq $24, %rsp + + /* Restore stack (oend & olimit) */ + pop %rax /* olimit */ + pop %rax /* oend */ + pop %rax /* ilowest */ + pop %rax /* arg */ + + /* Save ip / op / bits */ + movq %ip0, 0(%rax) + movq %ip1, 8(%rax) + movq %ip2, 16(%rax) + movq %ip3, 24(%rax) + movq %op0, 32(%rax) + movq %op1, 40(%rax) + movq %op2, 48(%rax) + movq %op3, 56(%rax) + movq %bits0, 64(%rax) + movq %bits1, 72(%rax) + movq %bits2, 80(%rax) + movq %bits3, 88(%rax) + + /* Restore registers */ + pop %r15 + pop %r14 + pop %r13 + pop %r12 + pop %r11 + pop %r10 + pop %r9 + pop %r8 + pop %rdi + pop %rsi + pop %rbp + pop %rdx + pop %rcx + pop %rbx + pop %rax + ret + +_HUF_decompress4X2_usingDTable_internal_fast_asm_loop: +HUF_decompress4X2_usingDTable_internal_fast_asm_loop: + ZSTD_CET_ENDBRANCH + /* Save all registers - even if they are callee saved for simplicity. */ + push %rax + push %rbx + push %rcx + push %rdx + push %rbp + push %rsi + push %rdi + push %r8 + push %r9 + push %r10 + push %r11 + push %r12 + push %r13 + push %r14 + push %r15 + + movq %rdi, %rax + movq 0(%rax), %ip0 + movq 8(%rax), %ip1 + movq 16(%rax), %ip2 + movq 24(%rax), %ip3 + movq 32(%rax), %op0 + movq 40(%rax), %op1 + movq 48(%rax), %op2 + movq 56(%rax), %op3 + movq 64(%rax), %bits0 + movq 72(%rax), %bits1 + movq 80(%rax), %bits2 + movq 88(%rax), %bits3 + movq 96(%rax), %dtable + push %rax /* argument */ + push %rax /* olimit */ + push 104(%rax) /* ilowest */ + + movq 112(%rax), %rax + push %rax /* oend3 */ + + movq %op3, %rax + push %rax /* oend2 */ + + movq %op2, %rax + push %rax /* oend1 */ + + movq %op1, %rax + push %rax /* oend0 */ + + /* Scratch space */ + subq $8, %rsp + +.L_4X2_compute_olimit: + /* Computes how many iterations we can do safely + * %r15, %rax may be clobbered + * rdx must be saved + * op[1,2,3,4] & ip0 mustn't be clobbered + */ + movq %rdx, 0(%rsp) + + /* We can consume up to 7 input bytes each iteration. */ + movq %ip0, %rax /* rax = ip0 */ + movq 40(%rsp), %rdx /* rdx = ilowest */ + subq %rdx, %rax /* rax = ip0 - ilowest */ + movq %rax, %r15 /* r15 = ip0 - ilowest */ + + /* rdx = rax / 7 */ + movabsq $2635249153387078803, %rdx + mulq %rdx + subq %rdx, %r15 + shrq %r15 + addq %r15, %rdx + shrq $2, %rdx + + /* r15 = (ip0 - ilowest) / 7 */ + movq %rdx, %r15 + + /* r15 = min(r15, min(oend0 - op0, oend1 - op1, oend2 - op2, oend3 - op3) / 10) */ + movq 8(%rsp), %rax /* rax = oend0 */ + subq %op0, %rax /* rax = oend0 - op0 */ + movq 16(%rsp), %rdx /* rdx = oend1 */ + subq %op1, %rdx /* rdx = oend1 - op1 */ + + cmpq %rax, %rdx + cmova %rax, %rdx /* rdx = min(%rdx, %rax) */ + + movq 24(%rsp), %rax /* rax = oend2 */ + subq %op2, %rax /* rax = oend2 - op2 */ + + cmpq %rax, %rdx + cmova %rax, %rdx /* rdx = min(%rdx, %rax) */ + + movq 32(%rsp), %rax /* rax = oend3 */ + subq %op3, %rax /* rax = oend3 - op3 */ + + cmpq %rax, %rdx + cmova %rax, %rdx /* rdx = min(%rdx, %rax) */ + + movabsq $-3689348814741910323, %rax + mulq %rdx + shrq $3, %rdx /* rdx = rdx / 10 */ + + /* r15 = min(%rdx, %r15) */ + cmpq %rdx, %r15 + cmova %rdx, %r15 + + /* olimit = op3 + 5 * r15 */ + movq %r15, %rax + leaq (%op3, %rax, 4), %olimit + addq %rax, %olimit + + movq 0(%rsp), %rdx + + /* If (op3 + 10 > olimit) */ + movq %op3, %rax /* rax = op3 */ + cmpq %rax, %olimit /* op3 == olimit */ + je .L_4X2_exit + + /* If (ip1 < ip0) go to exit */ + cmpq %ip0, %ip1 + jb .L_4X2_exit + + /* If (ip2 < ip1) go to exit */ + cmpq %ip1, %ip2 + jb .L_4X2_exit + + /* If (ip3 < ip2) go to exit */ + cmpq %ip2, %ip3 + jb .L_4X2_exit + +#define DECODE(n, idx) \ + movq %bits##n, %rax; \ + shrq $53, %rax; \ + movzwl 0(%dtable,%rax,4),%r8d; \ + movzbl 2(%dtable,%rax,4),%r15d; \ + movzbl 3(%dtable,%rax,4),%eax; \ + movw %r8w, (%op##n); \ + shlxq %r15, %bits##n, %bits##n; \ + addq %rax, %op##n + +#define RELOAD_BITS(n) \ + bsfq %bits##n, %bits##n; \ + movq %bits##n, %rax; \ + shrq $3, %bits##n; \ + andq $7, %rax; \ + subq %bits##n, %ip##n; \ + movq (%ip##n), %bits##n; \ + orq $1, %bits##n; \ + shlxq %rax, %bits##n, %bits##n + + + movq %olimit, 48(%rsp) + + .p2align 6 + +.L_4X2_loop_body: + /* We clobber r8, so store it on the stack */ + movq %r8, 0(%rsp) + + /* Decode 5 symbols from each of the 4 streams (20 symbols total). */ + FOR_EACH_STREAM_WITH_INDEX(DECODE, 0) + FOR_EACH_STREAM_WITH_INDEX(DECODE, 1) + FOR_EACH_STREAM_WITH_INDEX(DECODE, 2) + FOR_EACH_STREAM_WITH_INDEX(DECODE, 3) + FOR_EACH_STREAM_WITH_INDEX(DECODE, 4) + + /* Reload r8 */ + movq 0(%rsp), %r8 + + FOR_EACH_STREAM(RELOAD_BITS) + + cmp %op3, 48(%rsp) + ja .L_4X2_loop_body + jmp .L_4X2_compute_olimit + +#undef DECODE +#undef RELOAD_BITS +.L_4X2_exit: + addq $8, %rsp + /* Restore stack (oend & olimit) */ + pop %rax /* oend0 */ + pop %rax /* oend1 */ + pop %rax /* oend2 */ + pop %rax /* oend3 */ + pop %rax /* ilowest */ + pop %rax /* olimit */ + pop %rax /* arg */ + + /* Save ip / op / bits */ + movq %ip0, 0(%rax) + movq %ip1, 8(%rax) + movq %ip2, 16(%rax) + movq %ip3, 24(%rax) + movq %op0, 32(%rax) + movq %op1, 40(%rax) + movq %op2, 48(%rax) + movq %op3, 56(%rax) + movq %bits0, 64(%rax) + movq %bits1, 72(%rax) + movq %bits2, 80(%rax) + movq %bits3, 88(%rax) + + /* Restore registers */ + pop %r15 + pop %r14 + pop %r13 + pop %r12 + pop %r11 + pop %r10 + pop %r9 + pop %r8 + pop %rdi + pop %rsi + pop %rbp + pop %rdx + pop %rcx + pop %rbx + pop %rax + ret + +#endif diff --git a/src/third-party/zstd/decompress/zstd_ddict.c b/src/third-party/zstd/decompress/zstd_ddict.c new file mode 100644 index 0000000000000..309ec0d03642a --- /dev/null +++ b/src/third-party/zstd/decompress/zstd_ddict.c @@ -0,0 +1,244 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/* zstd_ddict.c : + * concentrates all logic that needs to know the internals of ZSTD_DDict object */ + +/*-******************************************************* +* Dependencies +*********************************************************/ +#include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customFree */ +#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */ +#include "../common/cpu.h" /* bmi2 */ +#include "../common/mem.h" /* low level memory routines */ +#define FSE_STATIC_LINKING_ONLY +#include "../common/fse.h" +#include "../common/huf.h" +#include "zstd_decompress_internal.h" +#include "zstd_ddict.h" + +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) +# include "../legacy/zstd_legacy.h" +#endif + + + +/*-******************************************************* +* Types +*********************************************************/ +struct ZSTD_DDict_s { + void* dictBuffer; + const void* dictContent; + size_t dictSize; + ZSTD_entropyDTables_t entropy; + U32 dictID; + U32 entropyPresent; + ZSTD_customMem cMem; +}; /* typedef'd to ZSTD_DDict within "zstd.h" */ + +const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict) +{ + assert(ddict != NULL); + return ddict->dictContent; +} + +size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict) +{ + assert(ddict != NULL); + return ddict->dictSize; +} + +void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict) +{ + DEBUGLOG(4, "ZSTD_copyDDictParameters"); + assert(dctx != NULL); + assert(ddict != NULL); + dctx->dictID = ddict->dictID; + dctx->prefixStart = ddict->dictContent; + dctx->virtualStart = ddict->dictContent; + dctx->dictEnd = (const BYTE*)ddict->dictContent + ddict->dictSize; + dctx->previousDstEnd = dctx->dictEnd; +#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION + dctx->dictContentBeginForFuzzing = dctx->prefixStart; + dctx->dictContentEndForFuzzing = dctx->previousDstEnd; +#endif + if (ddict->entropyPresent) { + dctx->litEntropy = 1; + dctx->fseEntropy = 1; + dctx->LLTptr = ddict->entropy.LLTable; + dctx->MLTptr = ddict->entropy.MLTable; + dctx->OFTptr = ddict->entropy.OFTable; + dctx->HUFptr = ddict->entropy.hufTable; + dctx->entropy.rep[0] = ddict->entropy.rep[0]; + dctx->entropy.rep[1] = ddict->entropy.rep[1]; + dctx->entropy.rep[2] = ddict->entropy.rep[2]; + } else { + dctx->litEntropy = 0; + dctx->fseEntropy = 0; + } +} + + +static size_t +ZSTD_loadEntropy_intoDDict(ZSTD_DDict* ddict, + ZSTD_dictContentType_e dictContentType) +{ + ddict->dictID = 0; + ddict->entropyPresent = 0; + if (dictContentType == ZSTD_dct_rawContent) return 0; + + if (ddict->dictSize < 8) { + if (dictContentType == ZSTD_dct_fullDict) + return ERROR(dictionary_corrupted); /* only accept specified dictionaries */ + return 0; /* pure content mode */ + } + { U32 const magic = MEM_readLE32(ddict->dictContent); + if (magic != ZSTD_MAGIC_DICTIONARY) { + if (dictContentType == ZSTD_dct_fullDict) + return ERROR(dictionary_corrupted); /* only accept specified dictionaries */ + return 0; /* pure content mode */ + } + } + ddict->dictID = MEM_readLE32((const char*)ddict->dictContent + ZSTD_FRAMEIDSIZE); + + /* load entropy tables */ + RETURN_ERROR_IF(ZSTD_isError(ZSTD_loadDEntropy( + &ddict->entropy, ddict->dictContent, ddict->dictSize)), + dictionary_corrupted, ""); + ddict->entropyPresent = 1; + return 0; +} + + +static size_t ZSTD_initDDict_internal(ZSTD_DDict* ddict, + const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType) +{ + if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dict) || (!dictSize)) { + ddict->dictBuffer = NULL; + ddict->dictContent = dict; + if (!dict) dictSize = 0; + } else { + void* const internalBuffer = ZSTD_customMalloc(dictSize, ddict->cMem); + ddict->dictBuffer = internalBuffer; + ddict->dictContent = internalBuffer; + if (!internalBuffer) return ERROR(memory_allocation); + ZSTD_memcpy(internalBuffer, dict, dictSize); + } + ddict->dictSize = dictSize; + ddict->entropy.hufTable[0] = (HUF_DTable)((ZSTD_HUFFDTABLE_CAPACITY_LOG)*0x1000001); /* cover both little and big endian */ + + /* parse dictionary content */ + FORWARD_IF_ERROR( ZSTD_loadEntropy_intoDDict(ddict, dictContentType) , ""); + + return 0; +} + +ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType, + ZSTD_customMem customMem) +{ + if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL; + + { ZSTD_DDict* const ddict = (ZSTD_DDict*) ZSTD_customMalloc(sizeof(ZSTD_DDict), customMem); + if (ddict == NULL) return NULL; + ddict->cMem = customMem; + { size_t const initResult = ZSTD_initDDict_internal(ddict, + dict, dictSize, + dictLoadMethod, dictContentType); + if (ZSTD_isError(initResult)) { + ZSTD_freeDDict(ddict); + return NULL; + } } + return ddict; + } +} + +/*! ZSTD_createDDict() : +* Create a digested dictionary, to start decompression without startup delay. +* `dict` content is copied inside DDict. +* Consequently, `dict` can be released after `ZSTD_DDict` creation */ +ZSTD_DDict* ZSTD_createDDict(const void* dict, size_t dictSize) +{ + ZSTD_customMem const allocator = { NULL, NULL, NULL }; + return ZSTD_createDDict_advanced(dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto, allocator); +} + +/*! ZSTD_createDDict_byReference() : + * Create a digested dictionary, to start decompression without startup delay. + * Dictionary content is simply referenced, it will be accessed during decompression. + * Warning : dictBuffer must outlive DDict (DDict must be freed before dictBuffer) */ +ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize) +{ + ZSTD_customMem const allocator = { NULL, NULL, NULL }; + return ZSTD_createDDict_advanced(dictBuffer, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto, allocator); +} + + +const ZSTD_DDict* ZSTD_initStaticDDict( + void* sBuffer, size_t sBufferSize, + const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType) +{ + size_t const neededSpace = sizeof(ZSTD_DDict) + + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize); + ZSTD_DDict* const ddict = (ZSTD_DDict*)sBuffer; + assert(sBuffer != NULL); + assert(dict != NULL); + if ((size_t)sBuffer & 7) return NULL; /* 8-aligned */ + if (sBufferSize < neededSpace) return NULL; + if (dictLoadMethod == ZSTD_dlm_byCopy) { + ZSTD_memcpy(ddict+1, dict, dictSize); /* local copy */ + dict = ddict+1; + } + if (ZSTD_isError( ZSTD_initDDict_internal(ddict, + dict, dictSize, + ZSTD_dlm_byRef, dictContentType) )) + return NULL; + return ddict; +} + + +size_t ZSTD_freeDDict(ZSTD_DDict* ddict) +{ + if (ddict==NULL) return 0; /* support free on NULL */ + { ZSTD_customMem const cMem = ddict->cMem; + ZSTD_customFree(ddict->dictBuffer, cMem); + ZSTD_customFree(ddict, cMem); + return 0; + } +} + +/*! ZSTD_estimateDDictSize() : + * Estimate amount of memory that will be needed to create a dictionary for decompression. + * Note : dictionary created by reference using ZSTD_dlm_byRef are smaller */ +size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod) +{ + return sizeof(ZSTD_DDict) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize); +} + +size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict) +{ + if (ddict==NULL) return 0; /* support sizeof on NULL */ + return sizeof(*ddict) + (ddict->dictBuffer ? ddict->dictSize : 0) ; +} + +/*! ZSTD_getDictID_fromDDict() : + * Provides the dictID of the dictionary loaded into `ddict`. + * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty. + * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */ +unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict) +{ + if (ddict==NULL) return 0; + return ddict->dictID; +} diff --git a/src/third-party/zstd/decompress/zstd_ddict.h b/src/third-party/zstd/decompress/zstd_ddict.h new file mode 100644 index 0000000000000..c4ca8877a077c --- /dev/null +++ b/src/third-party/zstd/decompress/zstd_ddict.h @@ -0,0 +1,44 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + +#ifndef ZSTD_DDICT_H +#define ZSTD_DDICT_H + +/*-******************************************************* + * Dependencies + *********************************************************/ +#include "../common/zstd_deps.h" /* size_t */ +#include "../zstd.h" /* ZSTD_DDict, and several public functions */ + + +/*-******************************************************* + * Interface + *********************************************************/ + +/* note: several prototypes are already published in `zstd.h` : + * ZSTD_createDDict() + * ZSTD_createDDict_byReference() + * ZSTD_createDDict_advanced() + * ZSTD_freeDDict() + * ZSTD_initStaticDDict() + * ZSTD_sizeof_DDict() + * ZSTD_estimateDDictSize() + * ZSTD_getDictID_fromDict() + */ + +const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict); +size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict); + +void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict); + + + +#endif /* ZSTD_DDICT_H */ diff --git a/src/third-party/zstd/decompress/zstd_decompress.c b/src/third-party/zstd/decompress/zstd_decompress.c new file mode 100644 index 0000000000000..402d753490d27 --- /dev/null +++ b/src/third-party/zstd/decompress/zstd_decompress.c @@ -0,0 +1,2409 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + +/* *************************************************************** +* Tuning parameters +*****************************************************************/ +/*! + * HEAPMODE : + * Select how default decompression function ZSTD_decompress() allocates its context, + * on stack (0), or into heap (1, default; requires malloc()). + * Note that functions with explicit context such as ZSTD_decompressDCtx() are unaffected. + */ +#ifndef ZSTD_HEAPMODE +# define ZSTD_HEAPMODE 1 +#endif + +/*! +* LEGACY_SUPPORT : +* if set to 1+, ZSTD_decompress() can decode older formats (v0.1+) +*/ +#ifndef ZSTD_LEGACY_SUPPORT +# define ZSTD_LEGACY_SUPPORT 0 +#endif + +/*! + * MAXWINDOWSIZE_DEFAULT : + * maximum window size accepted by DStream __by default__. + * Frames requiring more memory will be rejected. + * It's possible to set a different limit using ZSTD_DCtx_setMaxWindowSize(). + */ +#ifndef ZSTD_MAXWINDOWSIZE_DEFAULT +# define ZSTD_MAXWINDOWSIZE_DEFAULT (((U32)1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT) + 1) +#endif + +/*! + * NO_FORWARD_PROGRESS_MAX : + * maximum allowed nb of calls to ZSTD_decompressStream() + * without any forward progress + * (defined as: no byte read from input, and no byte flushed to output) + * before triggering an error. + */ +#ifndef ZSTD_NO_FORWARD_PROGRESS_MAX +# define ZSTD_NO_FORWARD_PROGRESS_MAX 16 +#endif + + +/*-******************************************************* +* Dependencies +*********************************************************/ +#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */ +#include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */ +#include "../common/error_private.h" +#include "../common/zstd_internal.h" /* blockProperties_t */ +#include "../common/mem.h" /* low level memory routines */ +#include "../common/bits.h" /* ZSTD_highbit32 */ +#define FSE_STATIC_LINKING_ONLY +#include "../common/fse.h" +#include "../common/huf.h" +#include "../common/xxhash.h" /* XXH64_reset, XXH64_update, XXH64_digest, XXH64 */ +#include "zstd_decompress_internal.h" /* ZSTD_DCtx */ +#include "zstd_ddict.h" /* ZSTD_DDictDictContent */ +#include "zstd_decompress_block.h" /* ZSTD_decompressBlock_internal */ + +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) +# include "../legacy/zstd_legacy.h" +#endif + + + +/************************************* + * Multiple DDicts Hashset internals * + *************************************/ + +#define DDICT_HASHSET_MAX_LOAD_FACTOR_COUNT_MULT 4 +#define DDICT_HASHSET_MAX_LOAD_FACTOR_SIZE_MULT 3 /* These two constants represent SIZE_MULT/COUNT_MULT load factor without using a float. + * Currently, that means a 0.75 load factor. + * So, if count * COUNT_MULT / size * SIZE_MULT != 0, then we've exceeded + * the load factor of the ddict hash set. + */ + +#define DDICT_HASHSET_TABLE_BASE_SIZE 64 +#define DDICT_HASHSET_RESIZE_FACTOR 2 + +/* Hash function to determine starting position of dict insertion within the table + * Returns an index between [0, hashSet->ddictPtrTableSize] + */ +static size_t ZSTD_DDictHashSet_getIndex(const ZSTD_DDictHashSet* hashSet, U32 dictID) { + const U64 hash = XXH64(&dictID, sizeof(U32), 0); + /* DDict ptr table size is a multiple of 2, use size - 1 as mask to get index within [0, hashSet->ddictPtrTableSize) */ + return hash & (hashSet->ddictPtrTableSize - 1); +} + +/* Adds DDict to a hashset without resizing it. + * If inserting a DDict with a dictID that already exists in the set, replaces the one in the set. + * Returns 0 if successful, or a zstd error code if something went wrong. + */ +static size_t ZSTD_DDictHashSet_emplaceDDict(ZSTD_DDictHashSet* hashSet, const ZSTD_DDict* ddict) { + const U32 dictID = ZSTD_getDictID_fromDDict(ddict); + size_t idx = ZSTD_DDictHashSet_getIndex(hashSet, dictID); + const size_t idxRangeMask = hashSet->ddictPtrTableSize - 1; + RETURN_ERROR_IF(hashSet->ddictPtrCount == hashSet->ddictPtrTableSize, GENERIC, "Hash set is full!"); + DEBUGLOG(4, "Hashed index: for dictID: %u is %zu", dictID, idx); + while (hashSet->ddictPtrTable[idx] != NULL) { + /* Replace existing ddict if inserting ddict with same dictID */ + if (ZSTD_getDictID_fromDDict(hashSet->ddictPtrTable[idx]) == dictID) { + DEBUGLOG(4, "DictID already exists, replacing rather than adding"); + hashSet->ddictPtrTable[idx] = ddict; + return 0; + } + idx &= idxRangeMask; + idx++; + } + DEBUGLOG(4, "Final idx after probing for dictID %u is: %zu", dictID, idx); + hashSet->ddictPtrTable[idx] = ddict; + hashSet->ddictPtrCount++; + return 0; +} + +/* Expands hash table by factor of DDICT_HASHSET_RESIZE_FACTOR and + * rehashes all values, allocates new table, frees old table. + * Returns 0 on success, otherwise a zstd error code. + */ +static size_t ZSTD_DDictHashSet_expand(ZSTD_DDictHashSet* hashSet, ZSTD_customMem customMem) { + size_t newTableSize = hashSet->ddictPtrTableSize * DDICT_HASHSET_RESIZE_FACTOR; + const ZSTD_DDict** newTable = (const ZSTD_DDict**)ZSTD_customCalloc(sizeof(ZSTD_DDict*) * newTableSize, customMem); + const ZSTD_DDict** oldTable = hashSet->ddictPtrTable; + size_t oldTableSize = hashSet->ddictPtrTableSize; + size_t i; + + DEBUGLOG(4, "Expanding DDict hash table! Old size: %zu new size: %zu", oldTableSize, newTableSize); + RETURN_ERROR_IF(!newTable, memory_allocation, "Expanded hashset allocation failed!"); + hashSet->ddictPtrTable = newTable; + hashSet->ddictPtrTableSize = newTableSize; + hashSet->ddictPtrCount = 0; + for (i = 0; i < oldTableSize; ++i) { + if (oldTable[i] != NULL) { + FORWARD_IF_ERROR(ZSTD_DDictHashSet_emplaceDDict(hashSet, oldTable[i]), ""); + } + } + ZSTD_customFree((void*)oldTable, customMem); + DEBUGLOG(4, "Finished re-hash"); + return 0; +} + +/* Fetches a DDict with the given dictID + * Returns the ZSTD_DDict* with the requested dictID. If it doesn't exist, then returns NULL. + */ +static const ZSTD_DDict* ZSTD_DDictHashSet_getDDict(ZSTD_DDictHashSet* hashSet, U32 dictID) { + size_t idx = ZSTD_DDictHashSet_getIndex(hashSet, dictID); + const size_t idxRangeMask = hashSet->ddictPtrTableSize - 1; + DEBUGLOG(4, "Hashed index: for dictID: %u is %zu", dictID, idx); + for (;;) { + size_t currDictID = ZSTD_getDictID_fromDDict(hashSet->ddictPtrTable[idx]); + if (currDictID == dictID || currDictID == 0) { + /* currDictID == 0 implies a NULL ddict entry */ + break; + } else { + idx &= idxRangeMask; /* Goes to start of table when we reach the end */ + idx++; + } + } + DEBUGLOG(4, "Final idx after probing for dictID %u is: %zu", dictID, idx); + return hashSet->ddictPtrTable[idx]; +} + +/* Allocates space for and returns a ddict hash set + * The hash set's ZSTD_DDict* table has all values automatically set to NULL to begin with. + * Returns NULL if allocation failed. + */ +static ZSTD_DDictHashSet* ZSTD_createDDictHashSet(ZSTD_customMem customMem) { + ZSTD_DDictHashSet* ret = (ZSTD_DDictHashSet*)ZSTD_customMalloc(sizeof(ZSTD_DDictHashSet), customMem); + DEBUGLOG(4, "Allocating new hash set"); + if (!ret) + return NULL; + ret->ddictPtrTable = (const ZSTD_DDict**)ZSTD_customCalloc(DDICT_HASHSET_TABLE_BASE_SIZE * sizeof(ZSTD_DDict*), customMem); + if (!ret->ddictPtrTable) { + ZSTD_customFree(ret, customMem); + return NULL; + } + ret->ddictPtrTableSize = DDICT_HASHSET_TABLE_BASE_SIZE; + ret->ddictPtrCount = 0; + return ret; +} + +/* Frees the table of ZSTD_DDict* within a hashset, then frees the hashset itself. + * Note: The ZSTD_DDict* within the table are NOT freed. + */ +static void ZSTD_freeDDictHashSet(ZSTD_DDictHashSet* hashSet, ZSTD_customMem customMem) { + DEBUGLOG(4, "Freeing ddict hash set"); + if (hashSet && hashSet->ddictPtrTable) { + ZSTD_customFree((void*)hashSet->ddictPtrTable, customMem); + } + if (hashSet) { + ZSTD_customFree(hashSet, customMem); + } +} + +/* Public function: Adds a DDict into the ZSTD_DDictHashSet, possibly triggering a resize of the hash set. + * Returns 0 on success, or a ZSTD error. + */ +static size_t ZSTD_DDictHashSet_addDDict(ZSTD_DDictHashSet* hashSet, const ZSTD_DDict* ddict, ZSTD_customMem customMem) { + DEBUGLOG(4, "Adding dict ID: %u to hashset with - Count: %zu Tablesize: %zu", ZSTD_getDictID_fromDDict(ddict), hashSet->ddictPtrCount, hashSet->ddictPtrTableSize); + if (hashSet->ddictPtrCount * DDICT_HASHSET_MAX_LOAD_FACTOR_COUNT_MULT / hashSet->ddictPtrTableSize * DDICT_HASHSET_MAX_LOAD_FACTOR_SIZE_MULT != 0) { + FORWARD_IF_ERROR(ZSTD_DDictHashSet_expand(hashSet, customMem), ""); + } + FORWARD_IF_ERROR(ZSTD_DDictHashSet_emplaceDDict(hashSet, ddict), ""); + return 0; +} + +/*-************************************************************* +* Context management +***************************************************************/ +size_t ZSTD_sizeof_DCtx (const ZSTD_DCtx* dctx) +{ + if (dctx==NULL) return 0; /* support sizeof NULL */ + return sizeof(*dctx) + + ZSTD_sizeof_DDict(dctx->ddictLocal) + + dctx->inBuffSize + dctx->outBuffSize; +} + +size_t ZSTD_estimateDCtxSize(void) { return sizeof(ZSTD_DCtx); } + + +static size_t ZSTD_startingInputLength(ZSTD_format_e format) +{ + size_t const startingInputLength = ZSTD_FRAMEHEADERSIZE_PREFIX(format); + /* only supports formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless */ + assert( (format == ZSTD_f_zstd1) || (format == ZSTD_f_zstd1_magicless) ); + return startingInputLength; +} + +static void ZSTD_DCtx_resetParameters(ZSTD_DCtx* dctx) +{ + assert(dctx->streamStage == zdss_init); + dctx->format = ZSTD_f_zstd1; + dctx->maxWindowSize = ZSTD_MAXWINDOWSIZE_DEFAULT; + dctx->outBufferMode = ZSTD_bm_buffered; + dctx->forceIgnoreChecksum = ZSTD_d_validateChecksum; + dctx->refMultipleDDicts = ZSTD_rmd_refSingleDDict; + dctx->disableHufAsm = 0; + dctx->maxBlockSizeParam = 0; +} + +static void ZSTD_initDCtx_internal(ZSTD_DCtx* dctx) +{ + dctx->staticSize = 0; + dctx->ddict = NULL; + dctx->ddictLocal = NULL; + dctx->dictEnd = NULL; + dctx->ddictIsCold = 0; + dctx->dictUses = ZSTD_dont_use; + dctx->inBuff = NULL; + dctx->inBuffSize = 0; + dctx->outBuffSize = 0; + dctx->streamStage = zdss_init; +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) + dctx->legacyContext = NULL; + dctx->previousLegacyVersion = 0; +#endif + dctx->noForwardProgress = 0; + dctx->oversizedDuration = 0; + dctx->isFrameDecompression = 1; +#if DYNAMIC_BMI2 + dctx->bmi2 = ZSTD_cpuSupportsBmi2(); +#endif + dctx->ddictSet = NULL; + ZSTD_DCtx_resetParameters(dctx); +#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION + dctx->dictContentEndForFuzzing = NULL; +#endif +} + +ZSTD_DCtx* ZSTD_initStaticDCtx(void *workspace, size_t workspaceSize) +{ + ZSTD_DCtx* const dctx = (ZSTD_DCtx*) workspace; + + if ((size_t)workspace & 7) return NULL; /* 8-aligned */ + if (workspaceSize < sizeof(ZSTD_DCtx)) return NULL; /* minimum size */ + + ZSTD_initDCtx_internal(dctx); + dctx->staticSize = workspaceSize; + dctx->inBuff = (char*)(dctx+1); + return dctx; +} + +static ZSTD_DCtx* ZSTD_createDCtx_internal(ZSTD_customMem customMem) { + if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL; + + { ZSTD_DCtx* const dctx = (ZSTD_DCtx*)ZSTD_customMalloc(sizeof(*dctx), customMem); + if (!dctx) return NULL; + dctx->customMem = customMem; + ZSTD_initDCtx_internal(dctx); + return dctx; + } +} + +ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem) +{ + return ZSTD_createDCtx_internal(customMem); +} + +ZSTD_DCtx* ZSTD_createDCtx(void) +{ + DEBUGLOG(3, "ZSTD_createDCtx"); + return ZSTD_createDCtx_internal(ZSTD_defaultCMem); +} + +static void ZSTD_clearDict(ZSTD_DCtx* dctx) +{ + ZSTD_freeDDict(dctx->ddictLocal); + dctx->ddictLocal = NULL; + dctx->ddict = NULL; + dctx->dictUses = ZSTD_dont_use; +} + +size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx) +{ + if (dctx==NULL) return 0; /* support free on NULL */ + RETURN_ERROR_IF(dctx->staticSize, memory_allocation, "not compatible with static DCtx"); + { ZSTD_customMem const cMem = dctx->customMem; + ZSTD_clearDict(dctx); + ZSTD_customFree(dctx->inBuff, cMem); + dctx->inBuff = NULL; +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) + if (dctx->legacyContext) + ZSTD_freeLegacyStreamContext(dctx->legacyContext, dctx->previousLegacyVersion); +#endif + if (dctx->ddictSet) { + ZSTD_freeDDictHashSet(dctx->ddictSet, cMem); + dctx->ddictSet = NULL; + } + ZSTD_customFree(dctx, cMem); + return 0; + } +} + +/* no longer useful */ +void ZSTD_copyDCtx(ZSTD_DCtx* dstDCtx, const ZSTD_DCtx* srcDCtx) +{ + size_t const toCopy = (size_t)((char*)(&dstDCtx->inBuff) - (char*)dstDCtx); + ZSTD_memcpy(dstDCtx, srcDCtx, toCopy); /* no need to copy workspace */ +} + +/* Given a dctx with a digested frame params, re-selects the correct ZSTD_DDict based on + * the requested dict ID from the frame. If there exists a reference to the correct ZSTD_DDict, then + * accordingly sets the ddict to be used to decompress the frame. + * + * If no DDict is found, then no action is taken, and the ZSTD_DCtx::ddict remains as-is. + * + * ZSTD_d_refMultipleDDicts must be enabled for this function to be called. + */ +static void ZSTD_DCtx_selectFrameDDict(ZSTD_DCtx* dctx) { + assert(dctx->refMultipleDDicts && dctx->ddictSet); + DEBUGLOG(4, "Adjusting DDict based on requested dict ID from frame"); + if (dctx->ddict) { + const ZSTD_DDict* frameDDict = ZSTD_DDictHashSet_getDDict(dctx->ddictSet, dctx->fParams.dictID); + if (frameDDict) { + DEBUGLOG(4, "DDict found!"); + ZSTD_clearDict(dctx); + dctx->dictID = dctx->fParams.dictID; + dctx->ddict = frameDDict; + dctx->dictUses = ZSTD_use_indefinitely; + } + } +} + + +/*-************************************************************* + * Frame header decoding + ***************************************************************/ + +/*! ZSTD_isFrame() : + * Tells if the content of `buffer` starts with a valid Frame Identifier. + * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0. + * Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled. + * Note 3 : Skippable Frame Identifiers are considered valid. */ +unsigned ZSTD_isFrame(const void* buffer, size_t size) +{ + if (size < ZSTD_FRAMEIDSIZE) return 0; + { U32 const magic = MEM_readLE32(buffer); + if (magic == ZSTD_MAGICNUMBER) return 1; + if ((magic & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) return 1; + } +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) + if (ZSTD_isLegacy(buffer, size)) return 1; +#endif + return 0; +} + +/*! ZSTD_isSkippableFrame() : + * Tells if the content of `buffer` starts with a valid Frame Identifier for a skippable frame. + * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0. + */ +unsigned ZSTD_isSkippableFrame(const void* buffer, size_t size) +{ + if (size < ZSTD_FRAMEIDSIZE) return 0; + { U32 const magic = MEM_readLE32(buffer); + if ((magic & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) return 1; + } + return 0; +} + +/** ZSTD_frameHeaderSize_internal() : + * srcSize must be large enough to reach header size fields. + * note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless. + * @return : size of the Frame Header + * or an error code, which can be tested with ZSTD_isError() */ +static size_t ZSTD_frameHeaderSize_internal(const void* src, size_t srcSize, ZSTD_format_e format) +{ + size_t const minInputSize = ZSTD_startingInputLength(format); + RETURN_ERROR_IF(srcSize < minInputSize, srcSize_wrong, ""); + + { BYTE const fhd = ((const BYTE*)src)[minInputSize-1]; + U32 const dictID= fhd & 3; + U32 const singleSegment = (fhd >> 5) & 1; + U32 const fcsId = fhd >> 6; + return minInputSize + !singleSegment + + ZSTD_did_fieldSize[dictID] + ZSTD_fcs_fieldSize[fcsId] + + (singleSegment && !fcsId); + } +} + +/** ZSTD_frameHeaderSize() : + * srcSize must be >= ZSTD_frameHeaderSize_prefix. + * @return : size of the Frame Header, + * or an error code (if srcSize is too small) */ +size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize) +{ + return ZSTD_frameHeaderSize_internal(src, srcSize, ZSTD_f_zstd1); +} + + +/** ZSTD_getFrameHeader_advanced() : + * decode Frame Header, or require larger `srcSize`. + * note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless + * @return : 0, `zfhPtr` is correctly filled, + * >0, `srcSize` is too small, value is wanted `srcSize` amount, +** or an error code, which can be tested using ZSTD_isError() */ +size_t ZSTD_getFrameHeader_advanced(ZSTD_FrameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format) +{ + const BYTE* ip = (const BYTE*)src; + size_t const minInputSize = ZSTD_startingInputLength(format); + + DEBUGLOG(5, "ZSTD_getFrameHeader_advanced: minInputSize = %zu, srcSize = %zu", minInputSize, srcSize); + + if (srcSize > 0) { + /* note : technically could be considered an assert(), since it's an invalid entry */ + RETURN_ERROR_IF(src==NULL, GENERIC, "invalid parameter : src==NULL, but srcSize>0"); + } + if (srcSize < minInputSize) { + if (srcSize > 0 && format != ZSTD_f_zstd1_magicless) { + /* when receiving less than @minInputSize bytes, + * control these bytes at least correspond to a supported magic number + * in order to error out early if they don't. + **/ + size_t const toCopy = MIN(4, srcSize); + unsigned char hbuf[4]; MEM_writeLE32(hbuf, ZSTD_MAGICNUMBER); + assert(src != NULL); + ZSTD_memcpy(hbuf, src, toCopy); + if ( MEM_readLE32(hbuf) != ZSTD_MAGICNUMBER ) { + /* not a zstd frame : let's check if it's a skippable frame */ + MEM_writeLE32(hbuf, ZSTD_MAGIC_SKIPPABLE_START); + ZSTD_memcpy(hbuf, src, toCopy); + if ((MEM_readLE32(hbuf) & ZSTD_MAGIC_SKIPPABLE_MASK) != ZSTD_MAGIC_SKIPPABLE_START) { + RETURN_ERROR(prefix_unknown, + "first bytes don't correspond to any supported magic number"); + } } } + return minInputSize; + } + + ZSTD_memset(zfhPtr, 0, sizeof(*zfhPtr)); /* not strictly necessary, but static analyzers may not understand that zfhPtr will be read only if return value is zero, since they are 2 different signals */ + if ( (format != ZSTD_f_zstd1_magicless) + && (MEM_readLE32(src) != ZSTD_MAGICNUMBER) ) { + if ((MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { + /* skippable frame */ + if (srcSize < ZSTD_SKIPPABLEHEADERSIZE) + return ZSTD_SKIPPABLEHEADERSIZE; /* magic number + frame length */ + ZSTD_memset(zfhPtr, 0, sizeof(*zfhPtr)); + zfhPtr->frameType = ZSTD_skippableFrame; + zfhPtr->dictID = MEM_readLE32(src) - ZSTD_MAGIC_SKIPPABLE_START; + zfhPtr->headerSize = ZSTD_SKIPPABLEHEADERSIZE; + zfhPtr->frameContentSize = MEM_readLE32((const char *)src + ZSTD_FRAMEIDSIZE); + return 0; + } + RETURN_ERROR(prefix_unknown, ""); + } + + /* ensure there is enough `srcSize` to fully read/decode frame header */ + { size_t const fhsize = ZSTD_frameHeaderSize_internal(src, srcSize, format); + if (srcSize < fhsize) return fhsize; + zfhPtr->headerSize = (U32)fhsize; + } + + { BYTE const fhdByte = ip[minInputSize-1]; + size_t pos = minInputSize; + U32 const dictIDSizeCode = fhdByte&3; + U32 const checksumFlag = (fhdByte>>2)&1; + U32 const singleSegment = (fhdByte>>5)&1; + U32 const fcsID = fhdByte>>6; + U64 windowSize = 0; + U32 dictID = 0; + U64 frameContentSize = ZSTD_CONTENTSIZE_UNKNOWN; + RETURN_ERROR_IF((fhdByte & 0x08) != 0, frameParameter_unsupported, + "reserved bits, must be zero"); + + if (!singleSegment) { + BYTE const wlByte = ip[pos++]; + U32 const windowLog = (wlByte >> 3) + ZSTD_WINDOWLOG_ABSOLUTEMIN; + RETURN_ERROR_IF(windowLog > ZSTD_WINDOWLOG_MAX, frameParameter_windowTooLarge, ""); + windowSize = (1ULL << windowLog); + windowSize += (windowSize >> 3) * (wlByte&7); + } + switch(dictIDSizeCode) + { + default: + assert(0); /* impossible */ + ZSTD_FALLTHROUGH; + case 0 : break; + case 1 : dictID = ip[pos]; pos++; break; + case 2 : dictID = MEM_readLE16(ip+pos); pos+=2; break; + case 3 : dictID = MEM_readLE32(ip+pos); pos+=4; break; + } + switch(fcsID) + { + default: + assert(0); /* impossible */ + ZSTD_FALLTHROUGH; + case 0 : if (singleSegment) frameContentSize = ip[pos]; break; + case 1 : frameContentSize = MEM_readLE16(ip+pos)+256; break; + case 2 : frameContentSize = MEM_readLE32(ip+pos); break; + case 3 : frameContentSize = MEM_readLE64(ip+pos); break; + } + if (singleSegment) windowSize = frameContentSize; + + zfhPtr->frameType = ZSTD_frame; + zfhPtr->frameContentSize = frameContentSize; + zfhPtr->windowSize = windowSize; + zfhPtr->blockSizeMax = (unsigned) MIN(windowSize, ZSTD_BLOCKSIZE_MAX); + zfhPtr->dictID = dictID; + zfhPtr->checksumFlag = checksumFlag; + } + return 0; +} + +/** ZSTD_getFrameHeader() : + * decode Frame Header, or require larger `srcSize`. + * note : this function does not consume input, it only reads it. + * @return : 0, `zfhPtr` is correctly filled, + * >0, `srcSize` is too small, value is wanted `srcSize` amount, + * or an error code, which can be tested using ZSTD_isError() */ +size_t ZSTD_getFrameHeader(ZSTD_FrameHeader* zfhPtr, const void* src, size_t srcSize) +{ + return ZSTD_getFrameHeader_advanced(zfhPtr, src, srcSize, ZSTD_f_zstd1); +} + +/** ZSTD_getFrameContentSize() : + * compatible with legacy mode + * @return : decompressed size of the single frame pointed to be `src` if known, otherwise + * - ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined + * - ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small) */ +unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize) +{ +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) + if (ZSTD_isLegacy(src, srcSize)) { + unsigned long long const ret = ZSTD_getDecompressedSize_legacy(src, srcSize); + return ret == 0 ? ZSTD_CONTENTSIZE_UNKNOWN : ret; + } +#endif + { ZSTD_FrameHeader zfh; + if (ZSTD_getFrameHeader(&zfh, src, srcSize) != 0) + return ZSTD_CONTENTSIZE_ERROR; + if (zfh.frameType == ZSTD_skippableFrame) { + return 0; + } else { + return zfh.frameContentSize; + } } +} + +static size_t readSkippableFrameSize(void const* src, size_t srcSize) +{ + size_t const skippableHeaderSize = ZSTD_SKIPPABLEHEADERSIZE; + U32 sizeU32; + + RETURN_ERROR_IF(srcSize < ZSTD_SKIPPABLEHEADERSIZE, srcSize_wrong, ""); + + sizeU32 = MEM_readLE32((BYTE const*)src + ZSTD_FRAMEIDSIZE); + RETURN_ERROR_IF((U32)(sizeU32 + ZSTD_SKIPPABLEHEADERSIZE) < sizeU32, + frameParameter_unsupported, ""); + { size_t const skippableSize = skippableHeaderSize + sizeU32; + RETURN_ERROR_IF(skippableSize > srcSize, srcSize_wrong, ""); + return skippableSize; + } +} + +/*! ZSTD_readSkippableFrame() : + * Retrieves content of a skippable frame, and writes it to dst buffer. + * + * The parameter magicVariant will receive the magicVariant that was supplied when the frame was written, + * i.e. magicNumber - ZSTD_MAGIC_SKIPPABLE_START. This can be NULL if the caller is not interested + * in the magicVariant. + * + * Returns an error if destination buffer is not large enough, or if this is not a valid skippable frame. + * + * @return : number of bytes written or a ZSTD error. + */ +size_t ZSTD_readSkippableFrame(void* dst, size_t dstCapacity, + unsigned* magicVariant, /* optional, can be NULL */ + const void* src, size_t srcSize) +{ + RETURN_ERROR_IF(srcSize < ZSTD_SKIPPABLEHEADERSIZE, srcSize_wrong, ""); + + { U32 const magicNumber = MEM_readLE32(src); + size_t skippableFrameSize = readSkippableFrameSize(src, srcSize); + size_t skippableContentSize = skippableFrameSize - ZSTD_SKIPPABLEHEADERSIZE; + + /* check input validity */ + RETURN_ERROR_IF(!ZSTD_isSkippableFrame(src, srcSize), frameParameter_unsupported, ""); + RETURN_ERROR_IF(skippableFrameSize < ZSTD_SKIPPABLEHEADERSIZE || skippableFrameSize > srcSize, srcSize_wrong, ""); + RETURN_ERROR_IF(skippableContentSize > dstCapacity, dstSize_tooSmall, ""); + + /* deliver payload */ + if (skippableContentSize > 0 && dst != NULL) + ZSTD_memcpy(dst, (const BYTE *)src + ZSTD_SKIPPABLEHEADERSIZE, skippableContentSize); + if (magicVariant != NULL) + *magicVariant = magicNumber - ZSTD_MAGIC_SKIPPABLE_START; + return skippableContentSize; + } +} + +/** ZSTD_findDecompressedSize() : + * `srcSize` must be the exact length of some number of ZSTD compressed and/or + * skippable frames + * note: compatible with legacy mode + * @return : decompressed size of the frames contained */ +unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize) +{ + unsigned long long totalDstSize = 0; + + while (srcSize >= ZSTD_startingInputLength(ZSTD_f_zstd1)) { + U32 const magicNumber = MEM_readLE32(src); + + if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { + size_t const skippableSize = readSkippableFrameSize(src, srcSize); + if (ZSTD_isError(skippableSize)) return ZSTD_CONTENTSIZE_ERROR; + assert(skippableSize <= srcSize); + + src = (const BYTE *)src + skippableSize; + srcSize -= skippableSize; + continue; + } + + { unsigned long long const fcs = ZSTD_getFrameContentSize(src, srcSize); + if (fcs >= ZSTD_CONTENTSIZE_ERROR) return fcs; + + if (totalDstSize + fcs < totalDstSize) + return ZSTD_CONTENTSIZE_ERROR; /* check for overflow */ + totalDstSize += fcs; + } + /* skip to next frame */ + { size_t const frameSrcSize = ZSTD_findFrameCompressedSize(src, srcSize); + if (ZSTD_isError(frameSrcSize)) return ZSTD_CONTENTSIZE_ERROR; + assert(frameSrcSize <= srcSize); + + src = (const BYTE *)src + frameSrcSize; + srcSize -= frameSrcSize; + } + } /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */ + + if (srcSize) return ZSTD_CONTENTSIZE_ERROR; + + return totalDstSize; +} + +/** ZSTD_getDecompressedSize() : + * compatible with legacy mode + * @return : decompressed size if known, 0 otherwise + note : 0 can mean any of the following : + - frame content is empty + - decompressed size field is not present in frame header + - frame header unknown / not supported + - frame header not complete (`srcSize` too small) */ +unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize) +{ + unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize); + ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_ERROR < ZSTD_CONTENTSIZE_UNKNOWN); + return (ret >= ZSTD_CONTENTSIZE_ERROR) ? 0 : ret; +} + + +/** ZSTD_decodeFrameHeader() : + * `headerSize` must be the size provided by ZSTD_frameHeaderSize(). + * If multiple DDict references are enabled, also will choose the correct DDict to use. + * @return : 0 if success, or an error code, which can be tested using ZSTD_isError() */ +static size_t ZSTD_decodeFrameHeader(ZSTD_DCtx* dctx, const void* src, size_t headerSize) +{ + size_t const result = ZSTD_getFrameHeader_advanced(&(dctx->fParams), src, headerSize, dctx->format); + if (ZSTD_isError(result)) return result; /* invalid header */ + RETURN_ERROR_IF(result>0, srcSize_wrong, "headerSize too small"); + + /* Reference DDict requested by frame if dctx references multiple ddicts */ + if (dctx->refMultipleDDicts == ZSTD_rmd_refMultipleDDicts && dctx->ddictSet) { + ZSTD_DCtx_selectFrameDDict(dctx); + } + +#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION + /* Skip the dictID check in fuzzing mode, because it makes the search + * harder. + */ + RETURN_ERROR_IF(dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID), + dictionary_wrong, ""); +#endif + dctx->validateChecksum = (dctx->fParams.checksumFlag && !dctx->forceIgnoreChecksum) ? 1 : 0; + if (dctx->validateChecksum) XXH64_reset(&dctx->xxhState, 0); + dctx->processedCSize += headerSize; + return 0; +} + +static ZSTD_frameSizeInfo ZSTD_errorFrameSizeInfo(size_t ret) +{ + ZSTD_frameSizeInfo frameSizeInfo; + frameSizeInfo.compressedSize = ret; + frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR; + return frameSizeInfo; +} + +static ZSTD_frameSizeInfo ZSTD_findFrameSizeInfo(const void* src, size_t srcSize, ZSTD_format_e format) +{ + ZSTD_frameSizeInfo frameSizeInfo; + ZSTD_memset(&frameSizeInfo, 0, sizeof(ZSTD_frameSizeInfo)); + +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) + if (format == ZSTD_f_zstd1 && ZSTD_isLegacy(src, srcSize)) + return ZSTD_findFrameSizeInfoLegacy(src, srcSize); +#endif + + if (format == ZSTD_f_zstd1 && (srcSize >= ZSTD_SKIPPABLEHEADERSIZE) + && (MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { + frameSizeInfo.compressedSize = readSkippableFrameSize(src, srcSize); + assert(ZSTD_isError(frameSizeInfo.compressedSize) || + frameSizeInfo.compressedSize <= srcSize); + return frameSizeInfo; + } else { + const BYTE* ip = (const BYTE*)src; + const BYTE* const ipstart = ip; + size_t remainingSize = srcSize; + size_t nbBlocks = 0; + ZSTD_FrameHeader zfh; + + /* Extract Frame Header */ + { size_t const ret = ZSTD_getFrameHeader_advanced(&zfh, src, srcSize, format); + if (ZSTD_isError(ret)) + return ZSTD_errorFrameSizeInfo(ret); + if (ret > 0) + return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong)); + } + + ip += zfh.headerSize; + remainingSize -= zfh.headerSize; + + /* Iterate over each block */ + while (1) { + blockProperties_t blockProperties; + size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties); + if (ZSTD_isError(cBlockSize)) + return ZSTD_errorFrameSizeInfo(cBlockSize); + + if (ZSTD_blockHeaderSize + cBlockSize > remainingSize) + return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong)); + + ip += ZSTD_blockHeaderSize + cBlockSize; + remainingSize -= ZSTD_blockHeaderSize + cBlockSize; + nbBlocks++; + + if (blockProperties.lastBlock) break; + } + + /* Final frame content checksum */ + if (zfh.checksumFlag) { + if (remainingSize < 4) + return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong)); + ip += 4; + } + + frameSizeInfo.nbBlocks = nbBlocks; + frameSizeInfo.compressedSize = (size_t)(ip - ipstart); + frameSizeInfo.decompressedBound = (zfh.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) + ? zfh.frameContentSize + : (unsigned long long)nbBlocks * zfh.blockSizeMax; + return frameSizeInfo; + } +} + +static size_t ZSTD_findFrameCompressedSize_advanced(const void *src, size_t srcSize, ZSTD_format_e format) { + ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize, format); + return frameSizeInfo.compressedSize; +} + +/** ZSTD_findFrameCompressedSize() : + * See docs in zstd.h + * Note: compatible with legacy mode */ +size_t ZSTD_findFrameCompressedSize(const void *src, size_t srcSize) +{ + return ZSTD_findFrameCompressedSize_advanced(src, srcSize, ZSTD_f_zstd1); +} + +/** ZSTD_decompressBound() : + * compatible with legacy mode + * `src` must point to the start of a ZSTD frame or a skippable frame + * `srcSize` must be at least as large as the frame contained + * @return : the maximum decompressed size of the compressed source + */ +unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize) +{ + unsigned long long bound = 0; + /* Iterate over each frame */ + while (srcSize > 0) { + ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize, ZSTD_f_zstd1); + size_t const compressedSize = frameSizeInfo.compressedSize; + unsigned long long const decompressedBound = frameSizeInfo.decompressedBound; + if (ZSTD_isError(compressedSize) || decompressedBound == ZSTD_CONTENTSIZE_ERROR) + return ZSTD_CONTENTSIZE_ERROR; + assert(srcSize >= compressedSize); + src = (const BYTE*)src + compressedSize; + srcSize -= compressedSize; + bound += decompressedBound; + } + return bound; +} + +size_t ZSTD_decompressionMargin(void const* src, size_t srcSize) +{ + size_t margin = 0; + unsigned maxBlockSize = 0; + + /* Iterate over each frame */ + while (srcSize > 0) { + ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize, ZSTD_f_zstd1); + size_t const compressedSize = frameSizeInfo.compressedSize; + unsigned long long const decompressedBound = frameSizeInfo.decompressedBound; + ZSTD_FrameHeader zfh; + + FORWARD_IF_ERROR(ZSTD_getFrameHeader(&zfh, src, srcSize), ""); + if (ZSTD_isError(compressedSize) || decompressedBound == ZSTD_CONTENTSIZE_ERROR) + return ERROR(corruption_detected); + + if (zfh.frameType == ZSTD_frame) { + /* Add the frame header to our margin */ + margin += zfh.headerSize; + /* Add the checksum to our margin */ + margin += zfh.checksumFlag ? 4 : 0; + /* Add 3 bytes per block */ + margin += 3 * frameSizeInfo.nbBlocks; + + /* Compute the max block size */ + maxBlockSize = MAX(maxBlockSize, zfh.blockSizeMax); + } else { + assert(zfh.frameType == ZSTD_skippableFrame); + /* Add the entire skippable frame size to our margin. */ + margin += compressedSize; + } + + assert(srcSize >= compressedSize); + src = (const BYTE*)src + compressedSize; + srcSize -= compressedSize; + } + + /* Add the max block size back to the margin. */ + margin += maxBlockSize; + + return margin; +} + +/*-************************************************************* + * Frame decoding + ***************************************************************/ + +/** ZSTD_insertBlock() : + * insert `src` block into `dctx` history. Useful to track uncompressed blocks. */ +size_t ZSTD_insertBlock(ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize) +{ + DEBUGLOG(5, "ZSTD_insertBlock: %u bytes", (unsigned)blockSize); + ZSTD_checkContinuity(dctx, blockStart, blockSize); + dctx->previousDstEnd = (const char*)blockStart + blockSize; + return blockSize; +} + + +static size_t ZSTD_copyRawBlock(void* dst, size_t dstCapacity, + const void* src, size_t srcSize) +{ + DEBUGLOG(5, "ZSTD_copyRawBlock"); + RETURN_ERROR_IF(srcSize > dstCapacity, dstSize_tooSmall, ""); + if (dst == NULL) { + if (srcSize == 0) return 0; + RETURN_ERROR(dstBuffer_null, ""); + } + ZSTD_memmove(dst, src, srcSize); + return srcSize; +} + +static size_t ZSTD_setRleBlock(void* dst, size_t dstCapacity, + BYTE b, + size_t regenSize) +{ + RETURN_ERROR_IF(regenSize > dstCapacity, dstSize_tooSmall, ""); + if (dst == NULL) { + if (regenSize == 0) return 0; + RETURN_ERROR(dstBuffer_null, ""); + } + ZSTD_memset(dst, b, regenSize); + return regenSize; +} + +static void ZSTD_DCtx_trace_end(ZSTD_DCtx const* dctx, U64 uncompressedSize, U64 compressedSize, int streaming) +{ +#if ZSTD_TRACE + if (dctx->traceCtx && ZSTD_trace_decompress_end != NULL) { + ZSTD_Trace trace; + ZSTD_memset(&trace, 0, sizeof(trace)); + trace.version = ZSTD_VERSION_NUMBER; + trace.streaming = streaming; + if (dctx->ddict) { + trace.dictionaryID = ZSTD_getDictID_fromDDict(dctx->ddict); + trace.dictionarySize = ZSTD_DDict_dictSize(dctx->ddict); + trace.dictionaryIsCold = dctx->ddictIsCold; + } + trace.uncompressedSize = (size_t)uncompressedSize; + trace.compressedSize = (size_t)compressedSize; + trace.dctx = dctx; + ZSTD_trace_decompress_end(dctx->traceCtx, &trace); + } +#else + (void)dctx; + (void)uncompressedSize; + (void)compressedSize; + (void)streaming; +#endif +} + + +/*! ZSTD_decompressFrame() : + * @dctx must be properly initialized + * will update *srcPtr and *srcSizePtr, + * to make *srcPtr progress by one frame. */ +static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void** srcPtr, size_t *srcSizePtr) +{ + const BYTE* const istart = (const BYTE*)(*srcPtr); + const BYTE* ip = istart; + BYTE* const ostart = (BYTE*)dst; + BYTE* const oend = dstCapacity != 0 ? ostart + dstCapacity : ostart; + BYTE* op = ostart; + size_t remainingSrcSize = *srcSizePtr; + + DEBUGLOG(4, "ZSTD_decompressFrame (srcSize:%i)", (int)*srcSizePtr); + + /* check */ + RETURN_ERROR_IF( + remainingSrcSize < ZSTD_FRAMEHEADERSIZE_MIN(dctx->format)+ZSTD_blockHeaderSize, + srcSize_wrong, ""); + + /* Frame Header */ + { size_t const frameHeaderSize = ZSTD_frameHeaderSize_internal( + ip, ZSTD_FRAMEHEADERSIZE_PREFIX(dctx->format), dctx->format); + if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize; + RETURN_ERROR_IF(remainingSrcSize < frameHeaderSize+ZSTD_blockHeaderSize, + srcSize_wrong, ""); + FORWARD_IF_ERROR( ZSTD_decodeFrameHeader(dctx, ip, frameHeaderSize) , ""); + ip += frameHeaderSize; remainingSrcSize -= frameHeaderSize; + } + + /* Shrink the blockSizeMax if enabled */ + if (dctx->maxBlockSizeParam != 0) + dctx->fParams.blockSizeMax = MIN(dctx->fParams.blockSizeMax, (unsigned)dctx->maxBlockSizeParam); + + /* Loop on each block */ + while (1) { + BYTE* oBlockEnd = oend; + size_t decodedSize; + blockProperties_t blockProperties; + size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSrcSize, &blockProperties); + if (ZSTD_isError(cBlockSize)) return cBlockSize; + + ip += ZSTD_blockHeaderSize; + remainingSrcSize -= ZSTD_blockHeaderSize; + RETURN_ERROR_IF(cBlockSize > remainingSrcSize, srcSize_wrong, ""); + + if (ip >= op && ip < oBlockEnd) { + /* We are decompressing in-place. Limit the output pointer so that we + * don't overwrite the block that we are currently reading. This will + * fail decompression if the input & output pointers aren't spaced + * far enough apart. + * + * This is important to set, even when the pointers are far enough + * apart, because ZSTD_decompressBlock_internal() can decide to store + * literals in the output buffer, after the block it is decompressing. + * Since we don't want anything to overwrite our input, we have to tell + * ZSTD_decompressBlock_internal to never write past ip. + * + * See ZSTD_allocateLiteralsBuffer() for reference. + */ + oBlockEnd = op + (ip - op); + } + + switch(blockProperties.blockType) + { + case bt_compressed: + assert(dctx->isFrameDecompression == 1); + decodedSize = ZSTD_decompressBlock_internal(dctx, op, (size_t)(oBlockEnd-op), ip, cBlockSize, not_streaming); + break; + case bt_raw : + /* Use oend instead of oBlockEnd because this function is safe to overlap. It uses memmove. */ + decodedSize = ZSTD_copyRawBlock(op, (size_t)(oend-op), ip, cBlockSize); + break; + case bt_rle : + decodedSize = ZSTD_setRleBlock(op, (size_t)(oBlockEnd-op), *ip, blockProperties.origSize); + break; + case bt_reserved : + default: + RETURN_ERROR(corruption_detected, "invalid block type"); + } + FORWARD_IF_ERROR(decodedSize, "Block decompression failure"); + DEBUGLOG(5, "Decompressed block of dSize = %u", (unsigned)decodedSize); + if (dctx->validateChecksum) { + XXH64_update(&dctx->xxhState, op, decodedSize); + } + if (decodedSize) /* support dst = NULL,0 */ { + op += decodedSize; + } + assert(ip != NULL); + ip += cBlockSize; + remainingSrcSize -= cBlockSize; + if (blockProperties.lastBlock) break; + } + + if (dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) { + RETURN_ERROR_IF((U64)(op-ostart) != dctx->fParams.frameContentSize, + corruption_detected, ""); + } + if (dctx->fParams.checksumFlag) { /* Frame content checksum verification */ + RETURN_ERROR_IF(remainingSrcSize<4, checksum_wrong, ""); + if (!dctx->forceIgnoreChecksum) { + U32 const checkCalc = (U32)XXH64_digest(&dctx->xxhState); + U32 checkRead; + checkRead = MEM_readLE32(ip); + RETURN_ERROR_IF(checkRead != checkCalc, checksum_wrong, ""); + } + ip += 4; + remainingSrcSize -= 4; + } + ZSTD_DCtx_trace_end(dctx, (U64)(op-ostart), (U64)(ip-istart), /* streaming */ 0); + /* Allow caller to get size read */ + DEBUGLOG(4, "ZSTD_decompressFrame: decompressed frame of size %i, consuming %i bytes of input", (int)(op-ostart), (int)(ip - (const BYTE*)*srcPtr)); + *srcPtr = ip; + *srcSizePtr = remainingSrcSize; + return (size_t)(op-ostart); +} + +static +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict, size_t dictSize, + const ZSTD_DDict* ddict) +{ + void* const dststart = dst; + int moreThan1Frame = 0; + + DEBUGLOG(5, "ZSTD_decompressMultiFrame"); + assert(dict==NULL || ddict==NULL); /* either dict or ddict set, not both */ + + if (ddict) { + dict = ZSTD_DDict_dictContent(ddict); + dictSize = ZSTD_DDict_dictSize(ddict); + } + + while (srcSize >= ZSTD_startingInputLength(dctx->format)) { + +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) + if (dctx->format == ZSTD_f_zstd1 && ZSTD_isLegacy(src, srcSize)) { + size_t decodedSize; + size_t const frameSize = ZSTD_findFrameCompressedSizeLegacy(src, srcSize); + if (ZSTD_isError(frameSize)) return frameSize; + RETURN_ERROR_IF(dctx->staticSize, memory_allocation, + "legacy support is not compatible with static dctx"); + + decodedSize = ZSTD_decompressLegacy(dst, dstCapacity, src, frameSize, dict, dictSize); + if (ZSTD_isError(decodedSize)) return decodedSize; + + { + unsigned long long const expectedSize = ZSTD_getFrameContentSize(src, srcSize); + RETURN_ERROR_IF(expectedSize == ZSTD_CONTENTSIZE_ERROR, corruption_detected, "Corrupted frame header!"); + if (expectedSize != ZSTD_CONTENTSIZE_UNKNOWN) { + RETURN_ERROR_IF(expectedSize != decodedSize, corruption_detected, + "Frame header size does not match decoded size!"); + } + } + + assert(decodedSize <= dstCapacity); + dst = (BYTE*)dst + decodedSize; + dstCapacity -= decodedSize; + + src = (const BYTE*)src + frameSize; + srcSize -= frameSize; + + continue; + } +#endif + + if (dctx->format == ZSTD_f_zstd1 && srcSize >= 4) { + U32 const magicNumber = MEM_readLE32(src); + DEBUGLOG(5, "reading magic number %08X", (unsigned)magicNumber); + if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { + /* skippable frame detected : skip it */ + size_t const skippableSize = readSkippableFrameSize(src, srcSize); + FORWARD_IF_ERROR(skippableSize, "invalid skippable frame"); + assert(skippableSize <= srcSize); + + src = (const BYTE *)src + skippableSize; + srcSize -= skippableSize; + continue; /* check next frame */ + } } + + if (ddict) { + /* we were called from ZSTD_decompress_usingDDict */ + FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(dctx, ddict), ""); + } else { + /* this will initialize correctly with no dict if dict == NULL, so + * use this in all cases but ddict */ + FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDict(dctx, dict, dictSize), ""); + } + ZSTD_checkContinuity(dctx, dst, dstCapacity); + + { const size_t res = ZSTD_decompressFrame(dctx, dst, dstCapacity, + &src, &srcSize); + RETURN_ERROR_IF( + (ZSTD_getErrorCode(res) == ZSTD_error_prefix_unknown) + && (moreThan1Frame==1), + srcSize_wrong, + "At least one frame successfully completed, " + "but following bytes are garbage: " + "it's more likely to be a srcSize error, " + "specifying more input bytes than size of frame(s). " + "Note: one could be unlucky, it might be a corruption error instead, " + "happening right at the place where we expect zstd magic bytes. " + "But this is _much_ less likely than a srcSize field error."); + if (ZSTD_isError(res)) return res; + assert(res <= dstCapacity); + if (res != 0) + dst = (BYTE*)dst + res; + dstCapacity -= res; + } + moreThan1Frame = 1; + } /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */ + + RETURN_ERROR_IF(srcSize, srcSize_wrong, "input not entirely consumed"); + + return (size_t)((BYTE*)dst - (BYTE*)dststart); +} + +size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict, size_t dictSize) +{ + return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, dict, dictSize, NULL); +} + + +static ZSTD_DDict const* ZSTD_getDDict(ZSTD_DCtx* dctx) +{ + switch (dctx->dictUses) { + default: + assert(0 /* Impossible */); + ZSTD_FALLTHROUGH; + case ZSTD_dont_use: + ZSTD_clearDict(dctx); + return NULL; + case ZSTD_use_indefinitely: + return dctx->ddict; + case ZSTD_use_once: + dctx->dictUses = ZSTD_dont_use; + return dctx->ddict; + } +} + +size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) +{ + return ZSTD_decompress_usingDDict(dctx, dst, dstCapacity, src, srcSize, ZSTD_getDDict(dctx)); +} + + +size_t ZSTD_decompress(void* dst, size_t dstCapacity, const void* src, size_t srcSize) +{ +#if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE>=1) + size_t regenSize; + ZSTD_DCtx* const dctx = ZSTD_createDCtx_internal(ZSTD_defaultCMem); + RETURN_ERROR_IF(dctx==NULL, memory_allocation, "NULL pointer!"); + regenSize = ZSTD_decompressDCtx(dctx, dst, dstCapacity, src, srcSize); + ZSTD_freeDCtx(dctx); + return regenSize; +#else /* stack mode */ + ZSTD_DCtx dctx; + ZSTD_initDCtx_internal(&dctx); + return ZSTD_decompressDCtx(&dctx, dst, dstCapacity, src, srcSize); +#endif +} + + +/*-************************************** +* Advanced Streaming Decompression API +* Bufferless and synchronous +****************************************/ +size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx) { return dctx->expected; } + +/** + * Similar to ZSTD_nextSrcSizeToDecompress(), but when a block input can be streamed, we + * allow taking a partial block as the input. Currently only raw uncompressed blocks can + * be streamed. + * + * For blocks that can be streamed, this allows us to reduce the latency until we produce + * output, and avoid copying the input. + * + * @param inputSize - The total amount of input that the caller currently has. + */ +static size_t ZSTD_nextSrcSizeToDecompressWithInputSize(ZSTD_DCtx* dctx, size_t inputSize) { + if (!(dctx->stage == ZSTDds_decompressBlock || dctx->stage == ZSTDds_decompressLastBlock)) + return dctx->expected; + if (dctx->bType != bt_raw) + return dctx->expected; + return BOUNDED(1, inputSize, dctx->expected); +} + +ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx) { + switch(dctx->stage) + { + default: /* should not happen */ + assert(0); + ZSTD_FALLTHROUGH; + case ZSTDds_getFrameHeaderSize: + ZSTD_FALLTHROUGH; + case ZSTDds_decodeFrameHeader: + return ZSTDnit_frameHeader; + case ZSTDds_decodeBlockHeader: + return ZSTDnit_blockHeader; + case ZSTDds_decompressBlock: + return ZSTDnit_block; + case ZSTDds_decompressLastBlock: + return ZSTDnit_lastBlock; + case ZSTDds_checkChecksum: + return ZSTDnit_checksum; + case ZSTDds_decodeSkippableHeader: + ZSTD_FALLTHROUGH; + case ZSTDds_skipFrame: + return ZSTDnit_skippableFrame; + } +} + +static int ZSTD_isSkipFrame(ZSTD_DCtx* dctx) { return dctx->stage == ZSTDds_skipFrame; } + +/** ZSTD_decompressContinue() : + * srcSize : must be the exact nb of bytes expected (see ZSTD_nextSrcSizeToDecompress()) + * @return : nb of bytes generated into `dst` (necessarily <= `dstCapacity) + * or an error code, which can be tested using ZSTD_isError() */ +size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) +{ + DEBUGLOG(5, "ZSTD_decompressContinue (srcSize:%u)", (unsigned)srcSize); + /* Sanity check */ + RETURN_ERROR_IF(srcSize != ZSTD_nextSrcSizeToDecompressWithInputSize(dctx, srcSize), srcSize_wrong, "not allowed"); + ZSTD_checkContinuity(dctx, dst, dstCapacity); + + dctx->processedCSize += srcSize; + + switch (dctx->stage) + { + case ZSTDds_getFrameHeaderSize : + assert(src != NULL); + if (dctx->format == ZSTD_f_zstd1) { /* allows header */ + assert(srcSize >= ZSTD_FRAMEIDSIZE); /* to read skippable magic number */ + if ((MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */ + ZSTD_memcpy(dctx->headerBuffer, src, srcSize); + dctx->expected = ZSTD_SKIPPABLEHEADERSIZE - srcSize; /* remaining to load to get full skippable frame header */ + dctx->stage = ZSTDds_decodeSkippableHeader; + return 0; + } } + dctx->headerSize = ZSTD_frameHeaderSize_internal(src, srcSize, dctx->format); + if (ZSTD_isError(dctx->headerSize)) return dctx->headerSize; + ZSTD_memcpy(dctx->headerBuffer, src, srcSize); + dctx->expected = dctx->headerSize - srcSize; + dctx->stage = ZSTDds_decodeFrameHeader; + return 0; + + case ZSTDds_decodeFrameHeader: + assert(src != NULL); + ZSTD_memcpy(dctx->headerBuffer + (dctx->headerSize - srcSize), src, srcSize); + FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize), ""); + dctx->expected = ZSTD_blockHeaderSize; + dctx->stage = ZSTDds_decodeBlockHeader; + return 0; + + case ZSTDds_decodeBlockHeader: + { blockProperties_t bp; + size_t const cBlockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp); + if (ZSTD_isError(cBlockSize)) return cBlockSize; + RETURN_ERROR_IF(cBlockSize > dctx->fParams.blockSizeMax, corruption_detected, "Block Size Exceeds Maximum"); + dctx->expected = cBlockSize; + dctx->bType = bp.blockType; + dctx->rleSize = bp.origSize; + if (cBlockSize) { + dctx->stage = bp.lastBlock ? ZSTDds_decompressLastBlock : ZSTDds_decompressBlock; + return 0; + } + /* empty block */ + if (bp.lastBlock) { + if (dctx->fParams.checksumFlag) { + dctx->expected = 4; + dctx->stage = ZSTDds_checkChecksum; + } else { + dctx->expected = 0; /* end of frame */ + dctx->stage = ZSTDds_getFrameHeaderSize; + } + } else { + dctx->expected = ZSTD_blockHeaderSize; /* jump to next header */ + dctx->stage = ZSTDds_decodeBlockHeader; + } + return 0; + } + + case ZSTDds_decompressLastBlock: + case ZSTDds_decompressBlock: + DEBUGLOG(5, "ZSTD_decompressContinue: case ZSTDds_decompressBlock"); + { size_t rSize; + switch(dctx->bType) + { + case bt_compressed: + DEBUGLOG(5, "ZSTD_decompressContinue: case bt_compressed"); + assert(dctx->isFrameDecompression == 1); + rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, is_streaming); + dctx->expected = 0; /* Streaming not supported */ + break; + case bt_raw : + assert(srcSize <= dctx->expected); + rSize = ZSTD_copyRawBlock(dst, dstCapacity, src, srcSize); + FORWARD_IF_ERROR(rSize, "ZSTD_copyRawBlock failed"); + assert(rSize == srcSize); + dctx->expected -= rSize; + break; + case bt_rle : + rSize = ZSTD_setRleBlock(dst, dstCapacity, *(const BYTE*)src, dctx->rleSize); + dctx->expected = 0; /* Streaming not supported */ + break; + case bt_reserved : /* should never happen */ + default: + RETURN_ERROR(corruption_detected, "invalid block type"); + } + FORWARD_IF_ERROR(rSize, ""); + RETURN_ERROR_IF(rSize > dctx->fParams.blockSizeMax, corruption_detected, "Decompressed Block Size Exceeds Maximum"); + DEBUGLOG(5, "ZSTD_decompressContinue: decoded size from block : %u", (unsigned)rSize); + dctx->decodedSize += rSize; + if (dctx->validateChecksum) XXH64_update(&dctx->xxhState, dst, rSize); + dctx->previousDstEnd = (char*)dst + rSize; + + /* Stay on the same stage until we are finished streaming the block. */ + if (dctx->expected > 0) { + return rSize; + } + + if (dctx->stage == ZSTDds_decompressLastBlock) { /* end of frame */ + DEBUGLOG(4, "ZSTD_decompressContinue: decoded size from frame : %u", (unsigned)dctx->decodedSize); + RETURN_ERROR_IF( + dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN + && dctx->decodedSize != dctx->fParams.frameContentSize, + corruption_detected, ""); + if (dctx->fParams.checksumFlag) { /* another round for frame checksum */ + dctx->expected = 4; + dctx->stage = ZSTDds_checkChecksum; + } else { + ZSTD_DCtx_trace_end(dctx, dctx->decodedSize, dctx->processedCSize, /* streaming */ 1); + dctx->expected = 0; /* ends here */ + dctx->stage = ZSTDds_getFrameHeaderSize; + } + } else { + dctx->stage = ZSTDds_decodeBlockHeader; + dctx->expected = ZSTD_blockHeaderSize; + } + return rSize; + } + + case ZSTDds_checkChecksum: + assert(srcSize == 4); /* guaranteed by dctx->expected */ + { + if (dctx->validateChecksum) { + U32 const h32 = (U32)XXH64_digest(&dctx->xxhState); + U32 const check32 = MEM_readLE32(src); + DEBUGLOG(4, "ZSTD_decompressContinue: checksum : calculated %08X :: %08X read", (unsigned)h32, (unsigned)check32); + RETURN_ERROR_IF(check32 != h32, checksum_wrong, ""); + } + ZSTD_DCtx_trace_end(dctx, dctx->decodedSize, dctx->processedCSize, /* streaming */ 1); + dctx->expected = 0; + dctx->stage = ZSTDds_getFrameHeaderSize; + return 0; + } + + case ZSTDds_decodeSkippableHeader: + assert(src != NULL); + assert(srcSize <= ZSTD_SKIPPABLEHEADERSIZE); + assert(dctx->format != ZSTD_f_zstd1_magicless); + ZSTD_memcpy(dctx->headerBuffer + (ZSTD_SKIPPABLEHEADERSIZE - srcSize), src, srcSize); /* complete skippable header */ + dctx->expected = MEM_readLE32(dctx->headerBuffer + ZSTD_FRAMEIDSIZE); /* note : dctx->expected can grow seriously large, beyond local buffer size */ + dctx->stage = ZSTDds_skipFrame; + return 0; + + case ZSTDds_skipFrame: + dctx->expected = 0; + dctx->stage = ZSTDds_getFrameHeaderSize; + return 0; + + default: + assert(0); /* impossible */ + RETURN_ERROR(GENERIC, "impossible to reach"); /* some compilers require default to do something */ + } +} + + +static size_t ZSTD_refDictContent(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) +{ + dctx->dictEnd = dctx->previousDstEnd; + dctx->virtualStart = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart)); + dctx->prefixStart = dict; + dctx->previousDstEnd = (const char*)dict + dictSize; +#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION + dctx->dictContentBeginForFuzzing = dctx->prefixStart; + dctx->dictContentEndForFuzzing = dctx->previousDstEnd; +#endif + return 0; +} + +/*! ZSTD_loadDEntropy() : + * dict : must point at beginning of a valid zstd dictionary. + * @return : size of entropy tables read */ +size_t +ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy, + const void* const dict, size_t const dictSize) +{ + const BYTE* dictPtr = (const BYTE*)dict; + const BYTE* const dictEnd = dictPtr + dictSize; + + RETURN_ERROR_IF(dictSize <= 8, dictionary_corrupted, "dict is too small"); + assert(MEM_readLE32(dict) == ZSTD_MAGIC_DICTIONARY); /* dict must be valid */ + dictPtr += 8; /* skip header = magic + dictID */ + + ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, OFTable) == offsetof(ZSTD_entropyDTables_t, LLTable) + sizeof(entropy->LLTable)); + ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, MLTable) == offsetof(ZSTD_entropyDTables_t, OFTable) + sizeof(entropy->OFTable)); + ZSTD_STATIC_ASSERT(sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable) >= HUF_DECOMPRESS_WORKSPACE_SIZE); + { void* const workspace = &entropy->LLTable; /* use fse tables as temporary workspace; implies fse tables are grouped together */ + size_t const workspaceSize = sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable); +#ifdef HUF_FORCE_DECOMPRESS_X1 + /* in minimal huffman, we always use X1 variants */ + size_t const hSize = HUF_readDTableX1_wksp(entropy->hufTable, + dictPtr, dictEnd - dictPtr, + workspace, workspaceSize, /* flags */ 0); +#else + size_t const hSize = HUF_readDTableX2_wksp(entropy->hufTable, + dictPtr, (size_t)(dictEnd - dictPtr), + workspace, workspaceSize, /* flags */ 0); +#endif + RETURN_ERROR_IF(HUF_isError(hSize), dictionary_corrupted, ""); + dictPtr += hSize; + } + + { short offcodeNCount[MaxOff+1]; + unsigned offcodeMaxValue = MaxOff, offcodeLog; + size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, (size_t)(dictEnd-dictPtr)); + RETURN_ERROR_IF(FSE_isError(offcodeHeaderSize), dictionary_corrupted, ""); + RETURN_ERROR_IF(offcodeMaxValue > MaxOff, dictionary_corrupted, ""); + RETURN_ERROR_IF(offcodeLog > OffFSELog, dictionary_corrupted, ""); + ZSTD_buildFSETable( entropy->OFTable, + offcodeNCount, offcodeMaxValue, + OF_base, OF_bits, + offcodeLog, + entropy->workspace, sizeof(entropy->workspace), + /* bmi2 */0); + dictPtr += offcodeHeaderSize; + } + + { short matchlengthNCount[MaxML+1]; + unsigned matchlengthMaxValue = MaxML, matchlengthLog; + size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, (size_t)(dictEnd-dictPtr)); + RETURN_ERROR_IF(FSE_isError(matchlengthHeaderSize), dictionary_corrupted, ""); + RETURN_ERROR_IF(matchlengthMaxValue > MaxML, dictionary_corrupted, ""); + RETURN_ERROR_IF(matchlengthLog > MLFSELog, dictionary_corrupted, ""); + ZSTD_buildFSETable( entropy->MLTable, + matchlengthNCount, matchlengthMaxValue, + ML_base, ML_bits, + matchlengthLog, + entropy->workspace, sizeof(entropy->workspace), + /* bmi2 */ 0); + dictPtr += matchlengthHeaderSize; + } + + { short litlengthNCount[MaxLL+1]; + unsigned litlengthMaxValue = MaxLL, litlengthLog; + size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, (size_t)(dictEnd-dictPtr)); + RETURN_ERROR_IF(FSE_isError(litlengthHeaderSize), dictionary_corrupted, ""); + RETURN_ERROR_IF(litlengthMaxValue > MaxLL, dictionary_corrupted, ""); + RETURN_ERROR_IF(litlengthLog > LLFSELog, dictionary_corrupted, ""); + ZSTD_buildFSETable( entropy->LLTable, + litlengthNCount, litlengthMaxValue, + LL_base, LL_bits, + litlengthLog, + entropy->workspace, sizeof(entropy->workspace), + /* bmi2 */ 0); + dictPtr += litlengthHeaderSize; + } + + RETURN_ERROR_IF(dictPtr+12 > dictEnd, dictionary_corrupted, ""); + { int i; + size_t const dictContentSize = (size_t)(dictEnd - (dictPtr+12)); + for (i=0; i<3; i++) { + U32 const rep = MEM_readLE32(dictPtr); dictPtr += 4; + RETURN_ERROR_IF(rep==0 || rep > dictContentSize, + dictionary_corrupted, ""); + entropy->rep[i] = rep; + } } + + return (size_t)(dictPtr - (const BYTE*)dict); +} + +static size_t ZSTD_decompress_insertDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) +{ + if (dictSize < 8) return ZSTD_refDictContent(dctx, dict, dictSize); + { U32 const magic = MEM_readLE32(dict); + if (magic != ZSTD_MAGIC_DICTIONARY) { + return ZSTD_refDictContent(dctx, dict, dictSize); /* pure content mode */ + } } + dctx->dictID = MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE); + + /* load entropy tables */ + { size_t const eSize = ZSTD_loadDEntropy(&dctx->entropy, dict, dictSize); + RETURN_ERROR_IF(ZSTD_isError(eSize), dictionary_corrupted, ""); + dict = (const char*)dict + eSize; + dictSize -= eSize; + } + dctx->litEntropy = dctx->fseEntropy = 1; + + /* reference dictionary content */ + return ZSTD_refDictContent(dctx, dict, dictSize); +} + +size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx) +{ + assert(dctx != NULL); +#if ZSTD_TRACE + dctx->traceCtx = (ZSTD_trace_decompress_begin != NULL) ? ZSTD_trace_decompress_begin(dctx) : 0; +#endif + dctx->expected = ZSTD_startingInputLength(dctx->format); /* dctx->format must be properly set */ + dctx->stage = ZSTDds_getFrameHeaderSize; + dctx->processedCSize = 0; + dctx->decodedSize = 0; + dctx->previousDstEnd = NULL; + dctx->prefixStart = NULL; + dctx->virtualStart = NULL; + dctx->dictEnd = NULL; + dctx->entropy.hufTable[0] = (HUF_DTable)((ZSTD_HUFFDTABLE_CAPACITY_LOG)*0x1000001); /* cover both little and big endian */ + dctx->litEntropy = dctx->fseEntropy = 0; + dctx->dictID = 0; + dctx->bType = bt_reserved; + dctx->isFrameDecompression = 1; + ZSTD_STATIC_ASSERT(sizeof(dctx->entropy.rep) == sizeof(repStartValue)); + ZSTD_memcpy(dctx->entropy.rep, repStartValue, sizeof(repStartValue)); /* initial repcodes */ + dctx->LLTptr = dctx->entropy.LLTable; + dctx->MLTptr = dctx->entropy.MLTable; + dctx->OFTptr = dctx->entropy.OFTable; + dctx->HUFptr = dctx->entropy.hufTable; + return 0; +} + +size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) +{ + FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) , ""); + if (dict && dictSize) + RETURN_ERROR_IF( + ZSTD_isError(ZSTD_decompress_insertDictionary(dctx, dict, dictSize)), + dictionary_corrupted, ""); + return 0; +} + + +/* ====== ZSTD_DDict ====== */ + +size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict) +{ + DEBUGLOG(4, "ZSTD_decompressBegin_usingDDict"); + assert(dctx != NULL); + if (ddict) { + const char* const dictStart = (const char*)ZSTD_DDict_dictContent(ddict); + size_t const dictSize = ZSTD_DDict_dictSize(ddict); + const void* const dictEnd = dictStart + dictSize; + dctx->ddictIsCold = (dctx->dictEnd != dictEnd); + DEBUGLOG(4, "DDict is %s", + dctx->ddictIsCold ? "~cold~" : "hot!"); + } + FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) , ""); + if (ddict) { /* NULL ddict is equivalent to no dictionary */ + ZSTD_copyDDictParameters(dctx, ddict); + } + return 0; +} + +/*! ZSTD_getDictID_fromDict() : + * Provides the dictID stored within dictionary. + * if @return == 0, the dictionary is not conformant with Zstandard specification. + * It can still be loaded, but as a content-only dictionary. */ +unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize) +{ + if (dictSize < 8) return 0; + if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) return 0; + return MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE); +} + +/*! ZSTD_getDictID_fromFrame() : + * Provides the dictID required to decompress frame stored within `src`. + * If @return == 0, the dictID could not be decoded. + * This could for one of the following reasons : + * - The frame does not require a dictionary (most common case). + * - The frame was built with dictID intentionally removed. + * Needed dictionary is a hidden piece of information. + * Note : this use case also happens when using a non-conformant dictionary. + * - `srcSize` is too small, and as a result, frame header could not be decoded. + * Note : possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`. + * - This is not a Zstandard frame. + * When identifying the exact failure cause, it's possible to use + * ZSTD_getFrameHeader(), which will provide a more precise error code. */ +unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize) +{ + ZSTD_FrameHeader zfp = { 0, 0, 0, ZSTD_frame, 0, 0, 0, 0, 0 }; + size_t const hError = ZSTD_getFrameHeader(&zfp, src, srcSize); + if (ZSTD_isError(hError)) return 0; + return zfp.dictID; +} + + +/*! ZSTD_decompress_usingDDict() : +* Decompression using a pre-digested Dictionary +* Use dictionary without significant overhead. */ +size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const ZSTD_DDict* ddict) +{ + /* pass content and size in case legacy frames are encountered */ + return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, + NULL, 0, + ddict); +} + + +/*===================================== +* Streaming decompression +*====================================*/ + +ZSTD_DStream* ZSTD_createDStream(void) +{ + DEBUGLOG(3, "ZSTD_createDStream"); + return ZSTD_createDCtx_internal(ZSTD_defaultCMem); +} + +ZSTD_DStream* ZSTD_initStaticDStream(void *workspace, size_t workspaceSize) +{ + return ZSTD_initStaticDCtx(workspace, workspaceSize); +} + +ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem) +{ + return ZSTD_createDCtx_internal(customMem); +} + +size_t ZSTD_freeDStream(ZSTD_DStream* zds) +{ + return ZSTD_freeDCtx(zds); +} + + +/* *** Initialization *** */ + +size_t ZSTD_DStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX + ZSTD_blockHeaderSize; } +size_t ZSTD_DStreamOutSize(void) { return ZSTD_BLOCKSIZE_MAX; } + +size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, + const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType) +{ + RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); + ZSTD_clearDict(dctx); + if (dict && dictSize != 0) { + dctx->ddictLocal = ZSTD_createDDict_advanced(dict, dictSize, dictLoadMethod, dictContentType, dctx->customMem); + RETURN_ERROR_IF(dctx->ddictLocal == NULL, memory_allocation, "NULL pointer!"); + dctx->ddict = dctx->ddictLocal; + dctx->dictUses = ZSTD_use_indefinitely; + } + return 0; +} + +size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) +{ + return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto); +} + +size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) +{ + return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto); +} + +size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType) +{ + FORWARD_IF_ERROR(ZSTD_DCtx_loadDictionary_advanced(dctx, prefix, prefixSize, ZSTD_dlm_byRef, dictContentType), ""); + dctx->dictUses = ZSTD_use_once; + return 0; +} + +size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize) +{ + return ZSTD_DCtx_refPrefix_advanced(dctx, prefix, prefixSize, ZSTD_dct_rawContent); +} + + +/* ZSTD_initDStream_usingDict() : + * return : expected size, aka ZSTD_startingInputLength(). + * this function cannot fail */ +size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize) +{ + DEBUGLOG(4, "ZSTD_initDStream_usingDict"); + FORWARD_IF_ERROR( ZSTD_DCtx_reset(zds, ZSTD_reset_session_only) , ""); + FORWARD_IF_ERROR( ZSTD_DCtx_loadDictionary(zds, dict, dictSize) , ""); + return ZSTD_startingInputLength(zds->format); +} + +/* note : this variant can't fail */ +size_t ZSTD_initDStream(ZSTD_DStream* zds) +{ + DEBUGLOG(4, "ZSTD_initDStream"); + FORWARD_IF_ERROR(ZSTD_DCtx_reset(zds, ZSTD_reset_session_only), ""); + FORWARD_IF_ERROR(ZSTD_DCtx_refDDict(zds, NULL), ""); + return ZSTD_startingInputLength(zds->format); +} + +/* ZSTD_initDStream_usingDDict() : + * ddict will just be referenced, and must outlive decompression session + * this function cannot fail */ +size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* dctx, const ZSTD_DDict* ddict) +{ + DEBUGLOG(4, "ZSTD_initDStream_usingDDict"); + FORWARD_IF_ERROR( ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only) , ""); + FORWARD_IF_ERROR( ZSTD_DCtx_refDDict(dctx, ddict) , ""); + return ZSTD_startingInputLength(dctx->format); +} + +/* ZSTD_resetDStream() : + * return : expected size, aka ZSTD_startingInputLength(). + * this function cannot fail */ +size_t ZSTD_resetDStream(ZSTD_DStream* dctx) +{ + DEBUGLOG(4, "ZSTD_resetDStream"); + FORWARD_IF_ERROR(ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only), ""); + return ZSTD_startingInputLength(dctx->format); +} + + +size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict) +{ + RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); + ZSTD_clearDict(dctx); + if (ddict) { + dctx->ddict = ddict; + dctx->dictUses = ZSTD_use_indefinitely; + if (dctx->refMultipleDDicts == ZSTD_rmd_refMultipleDDicts) { + if (dctx->ddictSet == NULL) { + dctx->ddictSet = ZSTD_createDDictHashSet(dctx->customMem); + if (!dctx->ddictSet) { + RETURN_ERROR(memory_allocation, "Failed to allocate memory for hash set!"); + } + } + assert(!dctx->staticSize); /* Impossible: ddictSet cannot have been allocated if static dctx */ + FORWARD_IF_ERROR(ZSTD_DDictHashSet_addDDict(dctx->ddictSet, ddict, dctx->customMem), ""); + } + } + return 0; +} + +/* ZSTD_DCtx_setMaxWindowSize() : + * note : no direct equivalence in ZSTD_DCtx_setParameter, + * since this version sets windowSize, and the other sets windowLog */ +size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize) +{ + ZSTD_bounds const bounds = ZSTD_dParam_getBounds(ZSTD_d_windowLogMax); + size_t const min = (size_t)1 << bounds.lowerBound; + size_t const max = (size_t)1 << bounds.upperBound; + RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); + RETURN_ERROR_IF(maxWindowSize < min, parameter_outOfBound, ""); + RETURN_ERROR_IF(maxWindowSize > max, parameter_outOfBound, ""); + dctx->maxWindowSize = maxWindowSize; + return 0; +} + +size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format) +{ + return ZSTD_DCtx_setParameter(dctx, ZSTD_d_format, (int)format); +} + +ZSTD_bounds ZSTD_dParam_getBounds(ZSTD_dParameter dParam) +{ + ZSTD_bounds bounds = { 0, 0, 0 }; + switch(dParam) { + case ZSTD_d_windowLogMax: + bounds.lowerBound = ZSTD_WINDOWLOG_ABSOLUTEMIN; + bounds.upperBound = ZSTD_WINDOWLOG_MAX; + return bounds; + case ZSTD_d_format: + bounds.lowerBound = (int)ZSTD_f_zstd1; + bounds.upperBound = (int)ZSTD_f_zstd1_magicless; + ZSTD_STATIC_ASSERT(ZSTD_f_zstd1 < ZSTD_f_zstd1_magicless); + return bounds; + case ZSTD_d_stableOutBuffer: + bounds.lowerBound = (int)ZSTD_bm_buffered; + bounds.upperBound = (int)ZSTD_bm_stable; + return bounds; + case ZSTD_d_forceIgnoreChecksum: + bounds.lowerBound = (int)ZSTD_d_validateChecksum; + bounds.upperBound = (int)ZSTD_d_ignoreChecksum; + return bounds; + case ZSTD_d_refMultipleDDicts: + bounds.lowerBound = (int)ZSTD_rmd_refSingleDDict; + bounds.upperBound = (int)ZSTD_rmd_refMultipleDDicts; + return bounds; + case ZSTD_d_disableHuffmanAssembly: + bounds.lowerBound = 0; + bounds.upperBound = 1; + return bounds; + case ZSTD_d_maxBlockSize: + bounds.lowerBound = ZSTD_BLOCKSIZE_MAX_MIN; + bounds.upperBound = ZSTD_BLOCKSIZE_MAX; + return bounds; + + default:; + } + bounds.error = ERROR(parameter_unsupported); + return bounds; +} + +/* ZSTD_dParam_withinBounds: + * @return 1 if value is within dParam bounds, + * 0 otherwise */ +static int ZSTD_dParam_withinBounds(ZSTD_dParameter dParam, int value) +{ + ZSTD_bounds const bounds = ZSTD_dParam_getBounds(dParam); + if (ZSTD_isError(bounds.error)) return 0; + if (value < bounds.lowerBound) return 0; + if (value > bounds.upperBound) return 0; + return 1; +} + +#define CHECK_DBOUNDS(p,v) { \ + RETURN_ERROR_IF(!ZSTD_dParam_withinBounds(p, v), parameter_outOfBound, ""); \ +} + +size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int* value) +{ + switch (param) { + case ZSTD_d_windowLogMax: + *value = (int)ZSTD_highbit32((U32)dctx->maxWindowSize); + return 0; + case ZSTD_d_format: + *value = (int)dctx->format; + return 0; + case ZSTD_d_stableOutBuffer: + *value = (int)dctx->outBufferMode; + return 0; + case ZSTD_d_forceIgnoreChecksum: + *value = (int)dctx->forceIgnoreChecksum; + return 0; + case ZSTD_d_refMultipleDDicts: + *value = (int)dctx->refMultipleDDicts; + return 0; + case ZSTD_d_disableHuffmanAssembly: + *value = (int)dctx->disableHufAsm; + return 0; + case ZSTD_d_maxBlockSize: + *value = dctx->maxBlockSizeParam; + return 0; + default:; + } + RETURN_ERROR(parameter_unsupported, ""); +} + +size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter dParam, int value) +{ + RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); + switch(dParam) { + case ZSTD_d_windowLogMax: + if (value == 0) value = ZSTD_WINDOWLOG_LIMIT_DEFAULT; + CHECK_DBOUNDS(ZSTD_d_windowLogMax, value); + dctx->maxWindowSize = ((size_t)1) << value; + return 0; + case ZSTD_d_format: + CHECK_DBOUNDS(ZSTD_d_format, value); + dctx->format = (ZSTD_format_e)value; + return 0; + case ZSTD_d_stableOutBuffer: + CHECK_DBOUNDS(ZSTD_d_stableOutBuffer, value); + dctx->outBufferMode = (ZSTD_bufferMode_e)value; + return 0; + case ZSTD_d_forceIgnoreChecksum: + CHECK_DBOUNDS(ZSTD_d_forceIgnoreChecksum, value); + dctx->forceIgnoreChecksum = (ZSTD_forceIgnoreChecksum_e)value; + return 0; + case ZSTD_d_refMultipleDDicts: + CHECK_DBOUNDS(ZSTD_d_refMultipleDDicts, value); + if (dctx->staticSize != 0) { + RETURN_ERROR(parameter_unsupported, "Static dctx does not support multiple DDicts!"); + } + dctx->refMultipleDDicts = (ZSTD_refMultipleDDicts_e)value; + return 0; + case ZSTD_d_disableHuffmanAssembly: + CHECK_DBOUNDS(ZSTD_d_disableHuffmanAssembly, value); + dctx->disableHufAsm = value != 0; + return 0; + case ZSTD_d_maxBlockSize: + if (value != 0) CHECK_DBOUNDS(ZSTD_d_maxBlockSize, value); + dctx->maxBlockSizeParam = value; + return 0; + default:; + } + RETURN_ERROR(parameter_unsupported, ""); +} + +size_t ZSTD_DCtx_reset(ZSTD_DCtx* dctx, ZSTD_ResetDirective reset) +{ + if ( (reset == ZSTD_reset_session_only) + || (reset == ZSTD_reset_session_and_parameters) ) { + dctx->streamStage = zdss_init; + dctx->noForwardProgress = 0; + dctx->isFrameDecompression = 1; + } + if ( (reset == ZSTD_reset_parameters) + || (reset == ZSTD_reset_session_and_parameters) ) { + RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); + ZSTD_clearDict(dctx); + ZSTD_DCtx_resetParameters(dctx); + } + return 0; +} + + +size_t ZSTD_sizeof_DStream(const ZSTD_DStream* dctx) +{ + return ZSTD_sizeof_DCtx(dctx); +} + +static size_t ZSTD_decodingBufferSize_internal(unsigned long long windowSize, unsigned long long frameContentSize, size_t blockSizeMax) +{ + size_t const blockSize = MIN((size_t)MIN(windowSize, ZSTD_BLOCKSIZE_MAX), blockSizeMax); + /* We need blockSize + WILDCOPY_OVERLENGTH worth of buffer so that if a block + * ends at windowSize + WILDCOPY_OVERLENGTH + 1 bytes, we can start writing + * the block at the beginning of the output buffer, and maintain a full window. + * + * We need another blockSize worth of buffer so that we can store split + * literals at the end of the block without overwriting the extDict window. + */ + unsigned long long const neededRBSize = windowSize + (blockSize * 2) + (WILDCOPY_OVERLENGTH * 2); + unsigned long long const neededSize = MIN(frameContentSize, neededRBSize); + size_t const minRBSize = (size_t) neededSize; + RETURN_ERROR_IF((unsigned long long)minRBSize != neededSize, + frameParameter_windowTooLarge, ""); + return minRBSize; +} + +size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize) +{ + return ZSTD_decodingBufferSize_internal(windowSize, frameContentSize, ZSTD_BLOCKSIZE_MAX); +} + +size_t ZSTD_estimateDStreamSize(size_t windowSize) +{ + size_t const blockSize = MIN(windowSize, ZSTD_BLOCKSIZE_MAX); + size_t const inBuffSize = blockSize; /* no block can be larger */ + size_t const outBuffSize = ZSTD_decodingBufferSize_min(windowSize, ZSTD_CONTENTSIZE_UNKNOWN); + return ZSTD_estimateDCtxSize() + inBuffSize + outBuffSize; +} + +size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize) +{ + U32 const windowSizeMax = 1U << ZSTD_WINDOWLOG_MAX; /* note : should be user-selectable, but requires an additional parameter (or a dctx) */ + ZSTD_FrameHeader zfh; + size_t const err = ZSTD_getFrameHeader(&zfh, src, srcSize); + if (ZSTD_isError(err)) return err; + RETURN_ERROR_IF(err>0, srcSize_wrong, ""); + RETURN_ERROR_IF(zfh.windowSize > windowSizeMax, + frameParameter_windowTooLarge, ""); + return ZSTD_estimateDStreamSize((size_t)zfh.windowSize); +} + + +/* ***** Decompression ***** */ + +static int ZSTD_DCtx_isOverflow(ZSTD_DStream* zds, size_t const neededInBuffSize, size_t const neededOutBuffSize) +{ + return (zds->inBuffSize + zds->outBuffSize) >= (neededInBuffSize + neededOutBuffSize) * ZSTD_WORKSPACETOOLARGE_FACTOR; +} + +static void ZSTD_DCtx_updateOversizedDuration(ZSTD_DStream* zds, size_t const neededInBuffSize, size_t const neededOutBuffSize) +{ + if (ZSTD_DCtx_isOverflow(zds, neededInBuffSize, neededOutBuffSize)) + zds->oversizedDuration++; + else + zds->oversizedDuration = 0; +} + +static int ZSTD_DCtx_isOversizedTooLong(ZSTD_DStream* zds) +{ + return zds->oversizedDuration >= ZSTD_WORKSPACETOOLARGE_MAXDURATION; +} + +/* Checks that the output buffer hasn't changed if ZSTD_obm_stable is used. */ +static size_t ZSTD_checkOutBuffer(ZSTD_DStream const* zds, ZSTD_outBuffer const* output) +{ + ZSTD_outBuffer const expect = zds->expectedOutBuffer; + /* No requirement when ZSTD_obm_stable is not enabled. */ + if (zds->outBufferMode != ZSTD_bm_stable) + return 0; + /* Any buffer is allowed in zdss_init, this must be the same for every other call until + * the context is reset. + */ + if (zds->streamStage == zdss_init) + return 0; + /* The buffer must match our expectation exactly. */ + if (expect.dst == output->dst && expect.pos == output->pos && expect.size == output->size) + return 0; + RETURN_ERROR(dstBuffer_wrong, "ZSTD_d_stableOutBuffer enabled but output differs!"); +} + +/* Calls ZSTD_decompressContinue() with the right parameters for ZSTD_decompressStream() + * and updates the stage and the output buffer state. This call is extracted so it can be + * used both when reading directly from the ZSTD_inBuffer, and in buffered input mode. + * NOTE: You must break after calling this function since the streamStage is modified. + */ +static size_t ZSTD_decompressContinueStream( + ZSTD_DStream* zds, char** op, char* oend, + void const* src, size_t srcSize) { + int const isSkipFrame = ZSTD_isSkipFrame(zds); + if (zds->outBufferMode == ZSTD_bm_buffered) { + size_t const dstSize = isSkipFrame ? 0 : zds->outBuffSize - zds->outStart; + size_t const decodedSize = ZSTD_decompressContinue(zds, + zds->outBuff + zds->outStart, dstSize, src, srcSize); + FORWARD_IF_ERROR(decodedSize, ""); + if (!decodedSize && !isSkipFrame) { + zds->streamStage = zdss_read; + } else { + zds->outEnd = zds->outStart + decodedSize; + zds->streamStage = zdss_flush; + } + } else { + /* Write directly into the output buffer */ + size_t const dstSize = isSkipFrame ? 0 : (size_t)(oend - *op); + size_t const decodedSize = ZSTD_decompressContinue(zds, *op, dstSize, src, srcSize); + FORWARD_IF_ERROR(decodedSize, ""); + *op += decodedSize; + /* Flushing is not needed. */ + zds->streamStage = zdss_read; + assert(*op <= oend); + assert(zds->outBufferMode == ZSTD_bm_stable); + } + return 0; +} + +size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input) +{ + const char* const src = (const char*)input->src; + const char* const istart = input->pos != 0 ? src + input->pos : src; + const char* const iend = input->size != 0 ? src + input->size : src; + const char* ip = istart; + char* const dst = (char*)output->dst; + char* const ostart = output->pos != 0 ? dst + output->pos : dst; + char* const oend = output->size != 0 ? dst + output->size : dst; + char* op = ostart; + U32 someMoreWork = 1; + + DEBUGLOG(5, "ZSTD_decompressStream"); + RETURN_ERROR_IF( + input->pos > input->size, + srcSize_wrong, + "forbidden. in: pos: %u vs size: %u", + (U32)input->pos, (U32)input->size); + RETURN_ERROR_IF( + output->pos > output->size, + dstSize_tooSmall, + "forbidden. out: pos: %u vs size: %u", + (U32)output->pos, (U32)output->size); + DEBUGLOG(5, "input size : %u", (U32)(input->size - input->pos)); + FORWARD_IF_ERROR(ZSTD_checkOutBuffer(zds, output), ""); + + while (someMoreWork) { + switch(zds->streamStage) + { + case zdss_init : + DEBUGLOG(5, "stage zdss_init => transparent reset "); + zds->streamStage = zdss_loadHeader; + zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0; +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) + zds->legacyVersion = 0; +#endif + zds->hostageByte = 0; + zds->expectedOutBuffer = *output; + ZSTD_FALLTHROUGH; + + case zdss_loadHeader : + DEBUGLOG(5, "stage zdss_loadHeader (srcSize : %u)", (U32)(iend - ip)); +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) + if (zds->legacyVersion) { + RETURN_ERROR_IF(zds->staticSize, memory_allocation, + "legacy support is incompatible with static dctx"); + { size_t const hint = ZSTD_decompressLegacyStream(zds->legacyContext, zds->legacyVersion, output, input); + if (hint==0) zds->streamStage = zdss_init; + return hint; + } } +#endif + { size_t const hSize = ZSTD_getFrameHeader_advanced(&zds->fParams, zds->headerBuffer, zds->lhSize, zds->format); + if (zds->refMultipleDDicts && zds->ddictSet) { + ZSTD_DCtx_selectFrameDDict(zds); + } + if (ZSTD_isError(hSize)) { +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) + U32 const legacyVersion = ZSTD_isLegacy(istart, iend-istart); + if (legacyVersion) { + ZSTD_DDict const* const ddict = ZSTD_getDDict(zds); + const void* const dict = ddict ? ZSTD_DDict_dictContent(ddict) : NULL; + size_t const dictSize = ddict ? ZSTD_DDict_dictSize(ddict) : 0; + DEBUGLOG(5, "ZSTD_decompressStream: detected legacy version v0.%u", legacyVersion); + RETURN_ERROR_IF(zds->staticSize, memory_allocation, + "legacy support is incompatible with static dctx"); + FORWARD_IF_ERROR(ZSTD_initLegacyStream(&zds->legacyContext, + zds->previousLegacyVersion, legacyVersion, + dict, dictSize), ""); + zds->legacyVersion = zds->previousLegacyVersion = legacyVersion; + { size_t const hint = ZSTD_decompressLegacyStream(zds->legacyContext, legacyVersion, output, input); + if (hint==0) zds->streamStage = zdss_init; /* or stay in stage zdss_loadHeader */ + return hint; + } } +#endif + return hSize; /* error */ + } + if (hSize != 0) { /* need more input */ + size_t const toLoad = hSize - zds->lhSize; /* if hSize!=0, hSize > zds->lhSize */ + size_t const remainingInput = (size_t)(iend-ip); + assert(iend >= ip); + if (toLoad > remainingInput) { /* not enough input to load full header */ + if (remainingInput > 0) { + ZSTD_memcpy(zds->headerBuffer + zds->lhSize, ip, remainingInput); + zds->lhSize += remainingInput; + } + input->pos = input->size; + /* check first few bytes */ + FORWARD_IF_ERROR( + ZSTD_getFrameHeader_advanced(&zds->fParams, zds->headerBuffer, zds->lhSize, zds->format), + "First few bytes detected incorrect" ); + /* return hint input size */ + return (MAX((size_t)ZSTD_FRAMEHEADERSIZE_MIN(zds->format), hSize) - zds->lhSize) + ZSTD_blockHeaderSize; /* remaining header bytes + next block header */ + } + assert(ip != NULL); + ZSTD_memcpy(zds->headerBuffer + zds->lhSize, ip, toLoad); zds->lhSize = hSize; ip += toLoad; + break; + } } + + /* check for single-pass mode opportunity */ + if (zds->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN + && zds->fParams.frameType != ZSTD_skippableFrame + && (U64)(size_t)(oend-op) >= zds->fParams.frameContentSize) { + size_t const cSize = ZSTD_findFrameCompressedSize_advanced(istart, (size_t)(iend-istart), zds->format); + if (cSize <= (size_t)(iend-istart)) { + /* shortcut : using single-pass mode */ + size_t const decompressedSize = ZSTD_decompress_usingDDict(zds, op, (size_t)(oend-op), istart, cSize, ZSTD_getDDict(zds)); + if (ZSTD_isError(decompressedSize)) return decompressedSize; + DEBUGLOG(4, "shortcut to single-pass ZSTD_decompress_usingDDict()"); + assert(istart != NULL); + ip = istart + cSize; + op = op ? op + decompressedSize : op; /* can occur if frameContentSize = 0 (empty frame) */ + zds->expected = 0; + zds->streamStage = zdss_init; + someMoreWork = 0; + break; + } } + + /* Check output buffer is large enough for ZSTD_odm_stable. */ + if (zds->outBufferMode == ZSTD_bm_stable + && zds->fParams.frameType != ZSTD_skippableFrame + && zds->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN + && (U64)(size_t)(oend-op) < zds->fParams.frameContentSize) { + RETURN_ERROR(dstSize_tooSmall, "ZSTD_obm_stable passed but ZSTD_outBuffer is too small"); + } + + /* Consume header (see ZSTDds_decodeFrameHeader) */ + DEBUGLOG(4, "Consume header"); + FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(zds, ZSTD_getDDict(zds)), ""); + + if (zds->format == ZSTD_f_zstd1 + && (MEM_readLE32(zds->headerBuffer) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */ + zds->expected = MEM_readLE32(zds->headerBuffer + ZSTD_FRAMEIDSIZE); + zds->stage = ZSTDds_skipFrame; + } else { + FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(zds, zds->headerBuffer, zds->lhSize), ""); + zds->expected = ZSTD_blockHeaderSize; + zds->stage = ZSTDds_decodeBlockHeader; + } + + /* control buffer memory usage */ + DEBUGLOG(4, "Control max memory usage (%u KB <= max %u KB)", + (U32)(zds->fParams.windowSize >>10), + (U32)(zds->maxWindowSize >> 10) ); + zds->fParams.windowSize = MAX(zds->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN); + RETURN_ERROR_IF(zds->fParams.windowSize > zds->maxWindowSize, + frameParameter_windowTooLarge, ""); + if (zds->maxBlockSizeParam != 0) + zds->fParams.blockSizeMax = MIN(zds->fParams.blockSizeMax, (unsigned)zds->maxBlockSizeParam); + + /* Adapt buffer sizes to frame header instructions */ + { size_t const neededInBuffSize = MAX(zds->fParams.blockSizeMax, 4 /* frame checksum */); + size_t const neededOutBuffSize = zds->outBufferMode == ZSTD_bm_buffered + ? ZSTD_decodingBufferSize_internal(zds->fParams.windowSize, zds->fParams.frameContentSize, zds->fParams.blockSizeMax) + : 0; + + ZSTD_DCtx_updateOversizedDuration(zds, neededInBuffSize, neededOutBuffSize); + + { int const tooSmall = (zds->inBuffSize < neededInBuffSize) || (zds->outBuffSize < neededOutBuffSize); + int const tooLarge = ZSTD_DCtx_isOversizedTooLong(zds); + + if (tooSmall || tooLarge) { + size_t const bufferSize = neededInBuffSize + neededOutBuffSize; + DEBUGLOG(4, "inBuff : from %u to %u", + (U32)zds->inBuffSize, (U32)neededInBuffSize); + DEBUGLOG(4, "outBuff : from %u to %u", + (U32)zds->outBuffSize, (U32)neededOutBuffSize); + if (zds->staticSize) { /* static DCtx */ + DEBUGLOG(4, "staticSize : %u", (U32)zds->staticSize); + assert(zds->staticSize >= sizeof(ZSTD_DCtx)); /* controlled at init */ + RETURN_ERROR_IF( + bufferSize > zds->staticSize - sizeof(ZSTD_DCtx), + memory_allocation, ""); + } else { + ZSTD_customFree(zds->inBuff, zds->customMem); + zds->inBuffSize = 0; + zds->outBuffSize = 0; + zds->inBuff = (char*)ZSTD_customMalloc(bufferSize, zds->customMem); + RETURN_ERROR_IF(zds->inBuff == NULL, memory_allocation, ""); + } + zds->inBuffSize = neededInBuffSize; + zds->outBuff = zds->inBuff + zds->inBuffSize; + zds->outBuffSize = neededOutBuffSize; + } } } + zds->streamStage = zdss_read; + ZSTD_FALLTHROUGH; + + case zdss_read: + DEBUGLOG(5, "stage zdss_read"); + { size_t const neededInSize = ZSTD_nextSrcSizeToDecompressWithInputSize(zds, (size_t)(iend - ip)); + DEBUGLOG(5, "neededInSize = %u", (U32)neededInSize); + if (neededInSize==0) { /* end of frame */ + zds->streamStage = zdss_init; + someMoreWork = 0; + break; + } + if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */ + FORWARD_IF_ERROR(ZSTD_decompressContinueStream(zds, &op, oend, ip, neededInSize), ""); + assert(ip != NULL); + ip += neededInSize; + /* Function modifies the stage so we must break */ + break; + } } + if (ip==iend) { someMoreWork = 0; break; } /* no more input */ + zds->streamStage = zdss_load; + ZSTD_FALLTHROUGH; + + case zdss_load: + { size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds); + size_t const toLoad = neededInSize - zds->inPos; + int const isSkipFrame = ZSTD_isSkipFrame(zds); + size_t loadedSize; + /* At this point we shouldn't be decompressing a block that we can stream. */ + assert(neededInSize == ZSTD_nextSrcSizeToDecompressWithInputSize(zds, (size_t)(iend - ip))); + if (isSkipFrame) { + loadedSize = MIN(toLoad, (size_t)(iend-ip)); + } else { + RETURN_ERROR_IF(toLoad > zds->inBuffSize - zds->inPos, + corruption_detected, + "should never happen"); + loadedSize = ZSTD_limitCopy(zds->inBuff + zds->inPos, toLoad, ip, (size_t)(iend-ip)); + } + if (loadedSize != 0) { + /* ip may be NULL */ + ip += loadedSize; + zds->inPos += loadedSize; + } + if (loadedSize < toLoad) { someMoreWork = 0; break; } /* not enough input, wait for more */ + + /* decode loaded input */ + zds->inPos = 0; /* input is consumed */ + FORWARD_IF_ERROR(ZSTD_decompressContinueStream(zds, &op, oend, zds->inBuff, neededInSize), ""); + /* Function modifies the stage so we must break */ + break; + } + case zdss_flush: + { + size_t const toFlushSize = zds->outEnd - zds->outStart; + size_t const flushedSize = ZSTD_limitCopy(op, (size_t)(oend-op), zds->outBuff + zds->outStart, toFlushSize); + + op = op ? op + flushedSize : op; + + zds->outStart += flushedSize; + if (flushedSize == toFlushSize) { /* flush completed */ + zds->streamStage = zdss_read; + if ( (zds->outBuffSize < zds->fParams.frameContentSize) + && (zds->outStart + zds->fParams.blockSizeMax > zds->outBuffSize) ) { + DEBUGLOG(5, "restart filling outBuff from beginning (left:%i, needed:%u)", + (int)(zds->outBuffSize - zds->outStart), + (U32)zds->fParams.blockSizeMax); + zds->outStart = zds->outEnd = 0; + } + break; + } } + /* cannot complete flush */ + someMoreWork = 0; + break; + + default: + assert(0); /* impossible */ + RETURN_ERROR(GENERIC, "impossible to reach"); /* some compilers require default to do something */ + } } + + /* result */ + input->pos = (size_t)(ip - (const char*)(input->src)); + output->pos = (size_t)(op - (char*)(output->dst)); + + /* Update the expected output buffer for ZSTD_obm_stable. */ + zds->expectedOutBuffer = *output; + + if ((ip==istart) && (op==ostart)) { /* no forward progress */ + zds->noForwardProgress ++; + if (zds->noForwardProgress >= ZSTD_NO_FORWARD_PROGRESS_MAX) { + RETURN_ERROR_IF(op==oend, noForwardProgress_destFull, ""); + RETURN_ERROR_IF(ip==iend, noForwardProgress_inputEmpty, ""); + assert(0); + } + } else { + zds->noForwardProgress = 0; + } + { size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zds); + if (!nextSrcSizeHint) { /* frame fully decoded */ + if (zds->outEnd == zds->outStart) { /* output fully flushed */ + if (zds->hostageByte) { + if (input->pos >= input->size) { + /* can't release hostage (not present) */ + zds->streamStage = zdss_read; + return 1; + } + input->pos++; /* release hostage */ + } /* zds->hostageByte */ + return 0; + } /* zds->outEnd == zds->outStart */ + if (!zds->hostageByte) { /* output not fully flushed; keep last byte as hostage; will be released when all output is flushed */ + input->pos--; /* note : pos > 0, otherwise, impossible to finish reading last block */ + zds->hostageByte=1; + } + return 1; + } /* nextSrcSizeHint==0 */ + nextSrcSizeHint += ZSTD_blockHeaderSize * (ZSTD_nextInputType(zds) == ZSTDnit_block); /* preload header of next block */ + assert(zds->inPos <= nextSrcSizeHint); + nextSrcSizeHint -= zds->inPos; /* part already loaded*/ + return nextSrcSizeHint; + } +} + +size_t ZSTD_decompressStream_simpleArgs ( + ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, size_t* dstPos, + const void* src, size_t srcSize, size_t* srcPos) +{ + ZSTD_outBuffer output; + ZSTD_inBuffer input; + output.dst = dst; + output.size = dstCapacity; + output.pos = *dstPos; + input.src = src; + input.size = srcSize; + input.pos = *srcPos; + { size_t const cErr = ZSTD_decompressStream(dctx, &output, &input); + *dstPos = output.pos; + *srcPos = input.pos; + return cErr; + } +} diff --git a/src/third-party/zstd/decompress/zstd_decompress_block.c b/src/third-party/zstd/decompress/zstd_decompress_block.c new file mode 100644 index 0000000000000..ca504437676ab --- /dev/null +++ b/src/third-party/zstd/decompress/zstd_decompress_block.c @@ -0,0 +1,2215 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/* zstd_decompress_block : + * this module takes care of decompressing _compressed_ block */ + +/*-******************************************************* +* Dependencies +*********************************************************/ +#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */ +#include "../common/compiler.h" /* prefetch */ +#include "../common/cpu.h" /* bmi2 */ +#include "../common/mem.h" /* low level memory routines */ +#define FSE_STATIC_LINKING_ONLY +#include "../common/fse.h" +#include "../common/huf.h" +#include "../common/zstd_internal.h" +#include "zstd_decompress_internal.h" /* ZSTD_DCtx */ +#include "zstd_ddict.h" /* ZSTD_DDictDictContent */ +#include "zstd_decompress_block.h" +#include "../common/bits.h" /* ZSTD_highbit32 */ + +/*_******************************************************* +* Macros +**********************************************************/ + +/* These two optional macros force the use one way or another of the two + * ZSTD_decompressSequences implementations. You can't force in both directions + * at the same time. + */ +#if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \ + defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG) +#error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!" +#endif + + +/*_******************************************************* +* Memory operations +**********************************************************/ +static void ZSTD_copy4(void* dst, const void* src) { ZSTD_memcpy(dst, src, 4); } + + +/*-************************************************************* + * Block decoding + ***************************************************************/ + +static size_t ZSTD_blockSizeMax(ZSTD_DCtx const* dctx) +{ + size_t const blockSizeMax = dctx->isFrameDecompression ? dctx->fParams.blockSizeMax : ZSTD_BLOCKSIZE_MAX; + assert(blockSizeMax <= ZSTD_BLOCKSIZE_MAX); + return blockSizeMax; +} + +/*! ZSTD_getcBlockSize() : + * Provides the size of compressed block from block header `src` */ +size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, + blockProperties_t* bpPtr) +{ + RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong, ""); + + { U32 const cBlockHeader = MEM_readLE24(src); + U32 const cSize = cBlockHeader >> 3; + bpPtr->lastBlock = cBlockHeader & 1; + bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3); + bpPtr->origSize = cSize; /* only useful for RLE */ + if (bpPtr->blockType == bt_rle) return 1; + RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected, ""); + return cSize; + } +} + +/* Allocate buffer for literals, either overlapping current dst, or split between dst and litExtraBuffer, or stored entirely within litExtraBuffer */ +static void ZSTD_allocateLiteralsBuffer(ZSTD_DCtx* dctx, void* const dst, const size_t dstCapacity, const size_t litSize, + const streaming_operation streaming, const size_t expectedWriteSize, const unsigned splitImmediately) +{ + size_t const blockSizeMax = ZSTD_blockSizeMax(dctx); + assert(litSize <= blockSizeMax); + assert(dctx->isFrameDecompression || streaming == not_streaming); + assert(expectedWriteSize <= blockSizeMax); + if (streaming == not_streaming && dstCapacity > blockSizeMax + WILDCOPY_OVERLENGTH + litSize + WILDCOPY_OVERLENGTH) { + /* If we aren't streaming, we can just put the literals after the output + * of the current block. We don't need to worry about overwriting the + * extDict of our window, because it doesn't exist. + * So if we have space after the end of the block, just put it there. + */ + dctx->litBuffer = (BYTE*)dst + blockSizeMax + WILDCOPY_OVERLENGTH; + dctx->litBufferEnd = dctx->litBuffer + litSize; + dctx->litBufferLocation = ZSTD_in_dst; + } else if (litSize <= ZSTD_LITBUFFEREXTRASIZE) { + /* Literals fit entirely within the extra buffer, put them there to avoid + * having to split the literals. + */ + dctx->litBuffer = dctx->litExtraBuffer; + dctx->litBufferEnd = dctx->litBuffer + litSize; + dctx->litBufferLocation = ZSTD_not_in_dst; + } else { + assert(blockSizeMax > ZSTD_LITBUFFEREXTRASIZE); + /* Literals must be split between the output block and the extra lit + * buffer. We fill the extra lit buffer with the tail of the literals, + * and put the rest of the literals at the end of the block, with + * WILDCOPY_OVERLENGTH of buffer room to allow for overreads. + * This MUST not write more than our maxBlockSize beyond dst, because in + * streaming mode, that could overwrite part of our extDict window. + */ + if (splitImmediately) { + /* won't fit in litExtraBuffer, so it will be split between end of dst and extra buffer */ + dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH; + dctx->litBufferEnd = dctx->litBuffer + litSize - ZSTD_LITBUFFEREXTRASIZE; + } else { + /* initially this will be stored entirely in dst during huffman decoding, it will partially be shifted to litExtraBuffer after */ + dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize; + dctx->litBufferEnd = (BYTE*)dst + expectedWriteSize; + } + dctx->litBufferLocation = ZSTD_split; + assert(dctx->litBufferEnd <= (BYTE*)dst + expectedWriteSize); + } +} + +/*! ZSTD_decodeLiteralsBlock() : + * Where it is possible to do so without being stomped by the output during decompression, the literals block will be stored + * in the dstBuffer. If there is room to do so, it will be stored in full in the excess dst space after where the current + * block will be output. Otherwise it will be stored at the end of the current dst blockspace, with a small portion being + * stored in dctx->litExtraBuffer to help keep it "ahead" of the current output write. + * + * @return : nb of bytes read from src (< srcSize ) + * note : symbol not declared but exposed for fullbench */ +static size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx, + const void* src, size_t srcSize, /* note : srcSize < BLOCKSIZE */ + void* dst, size_t dstCapacity, const streaming_operation streaming) +{ + DEBUGLOG(5, "ZSTD_decodeLiteralsBlock"); + RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected, ""); + + { const BYTE* const istart = (const BYTE*) src; + SymbolEncodingType_e const litEncType = (SymbolEncodingType_e)(istart[0] & 3); + size_t const blockSizeMax = ZSTD_blockSizeMax(dctx); + + switch(litEncType) + { + case set_repeat: + DEBUGLOG(5, "set_repeat flag : re-using stats from previous compressed literals block"); + RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted, ""); + ZSTD_FALLTHROUGH; + + case set_compressed: + RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need up to 5 for case 3"); + { size_t lhSize, litSize, litCSize; + U32 singleStream=0; + U32 const lhlCode = (istart[0] >> 2) & 3; + U32 const lhc = MEM_readLE32(istart); + size_t hufSuccess; + size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity); + int const flags = 0 + | (ZSTD_DCtx_get_bmi2(dctx) ? HUF_flags_bmi2 : 0) + | (dctx->disableHufAsm ? HUF_flags_disableAsm : 0); + switch(lhlCode) + { + case 0: case 1: default: /* note : default is impossible, since lhlCode into [0..3] */ + /* 2 - 2 - 10 - 10 */ + singleStream = !lhlCode; + lhSize = 3; + litSize = (lhc >> 4) & 0x3FF; + litCSize = (lhc >> 14) & 0x3FF; + break; + case 2: + /* 2 - 2 - 14 - 14 */ + lhSize = 4; + litSize = (lhc >> 4) & 0x3FFF; + litCSize = lhc >> 18; + break; + case 3: + /* 2 - 2 - 18 - 18 */ + lhSize = 5; + litSize = (lhc >> 4) & 0x3FFFF; + litCSize = (lhc >> 22) + ((size_t)istart[4] << 10); + break; + } + RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled"); + RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, ""); + if (!singleStream) + RETURN_ERROR_IF(litSize < MIN_LITERALS_FOR_4_STREAMS, literals_headerWrong, + "Not enough literals (%zu) for the 4-streams mode (min %u)", + litSize, MIN_LITERALS_FOR_4_STREAMS); + RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, ""); + RETURN_ERROR_IF(expectedWriteSize < litSize , dstSize_tooSmall, ""); + ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 0); + + /* prefetch huffman table if cold */ + if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) { + PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable)); + } + + if (litEncType==set_repeat) { + if (singleStream) { + hufSuccess = HUF_decompress1X_usingDTable( + dctx->litBuffer, litSize, istart+lhSize, litCSize, + dctx->HUFptr, flags); + } else { + assert(litSize >= MIN_LITERALS_FOR_4_STREAMS); + hufSuccess = HUF_decompress4X_usingDTable( + dctx->litBuffer, litSize, istart+lhSize, litCSize, + dctx->HUFptr, flags); + } + } else { + if (singleStream) { +#if defined(HUF_FORCE_DECOMPRESS_X2) + hufSuccess = HUF_decompress1X_DCtx_wksp( + dctx->entropy.hufTable, dctx->litBuffer, litSize, + istart+lhSize, litCSize, dctx->workspace, + sizeof(dctx->workspace), flags); +#else + hufSuccess = HUF_decompress1X1_DCtx_wksp( + dctx->entropy.hufTable, dctx->litBuffer, litSize, + istart+lhSize, litCSize, dctx->workspace, + sizeof(dctx->workspace), flags); +#endif + } else { + hufSuccess = HUF_decompress4X_hufOnly_wksp( + dctx->entropy.hufTable, dctx->litBuffer, litSize, + istart+lhSize, litCSize, dctx->workspace, + sizeof(dctx->workspace), flags); + } + } + if (dctx->litBufferLocation == ZSTD_split) + { + assert(litSize > ZSTD_LITBUFFEREXTRASIZE); + ZSTD_memcpy(dctx->litExtraBuffer, dctx->litBufferEnd - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE); + ZSTD_memmove(dctx->litBuffer + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH, dctx->litBuffer, litSize - ZSTD_LITBUFFEREXTRASIZE); + dctx->litBuffer += ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH; + dctx->litBufferEnd -= WILDCOPY_OVERLENGTH; + assert(dctx->litBufferEnd <= (BYTE*)dst + blockSizeMax); + } + + RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected, ""); + + dctx->litPtr = dctx->litBuffer; + dctx->litSize = litSize; + dctx->litEntropy = 1; + if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable; + return litCSize + lhSize; + } + + case set_basic: + { size_t litSize, lhSize; + U32 const lhlCode = ((istart[0]) >> 2) & 3; + size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity); + switch(lhlCode) + { + case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */ + lhSize = 1; + litSize = istart[0] >> 3; + break; + case 1: + lhSize = 2; + litSize = MEM_readLE16(istart) >> 4; + break; + case 3: + lhSize = 3; + RETURN_ERROR_IF(srcSize<3, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize = 3"); + litSize = MEM_readLE24(istart) >> 4; + break; + } + + RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled"); + RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, ""); + RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, ""); + ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1); + if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */ + RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected, ""); + if (dctx->litBufferLocation == ZSTD_split) + { + ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize - ZSTD_LITBUFFEREXTRASIZE); + ZSTD_memcpy(dctx->litExtraBuffer, istart + lhSize + litSize - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE); + } + else + { + ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize); + } + dctx->litPtr = dctx->litBuffer; + dctx->litSize = litSize; + return lhSize+litSize; + } + /* direct reference into compressed stream */ + dctx->litPtr = istart+lhSize; + dctx->litSize = litSize; + dctx->litBufferEnd = dctx->litPtr + litSize; + dctx->litBufferLocation = ZSTD_not_in_dst; + return lhSize+litSize; + } + + case set_rle: + { U32 const lhlCode = ((istart[0]) >> 2) & 3; + size_t litSize, lhSize; + size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity); + switch(lhlCode) + { + case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */ + lhSize = 1; + litSize = istart[0] >> 3; + break; + case 1: + lhSize = 2; + RETURN_ERROR_IF(srcSize<3, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize+1 = 3"); + litSize = MEM_readLE16(istart) >> 4; + break; + case 3: + lhSize = 3; + RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize+1 = 4"); + litSize = MEM_readLE24(istart) >> 4; + break; + } + RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled"); + RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, ""); + RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, ""); + ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1); + if (dctx->litBufferLocation == ZSTD_split) + { + ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize - ZSTD_LITBUFFEREXTRASIZE); + ZSTD_memset(dctx->litExtraBuffer, istart[lhSize], ZSTD_LITBUFFEREXTRASIZE); + } + else + { + ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize); + } + dctx->litPtr = dctx->litBuffer; + dctx->litSize = litSize; + return lhSize+1; + } + default: + RETURN_ERROR(corruption_detected, "impossible"); + } + } +} + +/* Hidden declaration for fullbench */ +size_t ZSTD_decodeLiteralsBlock_wrapper(ZSTD_DCtx* dctx, + const void* src, size_t srcSize, + void* dst, size_t dstCapacity); +size_t ZSTD_decodeLiteralsBlock_wrapper(ZSTD_DCtx* dctx, + const void* src, size_t srcSize, + void* dst, size_t dstCapacity) +{ + dctx->isFrameDecompression = 0; + return ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, not_streaming); +} + +/* Default FSE distribution tables. + * These are pre-calculated FSE decoding tables using default distributions as defined in specification : + * https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#default-distributions + * They were generated programmatically with following method : + * - start from default distributions, present in /lib/common/zstd_internal.h + * - generate tables normally, using ZSTD_buildFSETable() + * - printout the content of tables + * - prettify output, report below, test with fuzzer to ensure it's correct */ + +/* Default FSE distribution table for Literal Lengths */ +static const ZSTD_seqSymbol LL_defaultDTable[(1<tableLog = 0; + DTableH->fastMode = 0; + + cell->nbBits = 0; + cell->nextState = 0; + assert(nbAddBits < 255); + cell->nbAdditionalBits = nbAddBits; + cell->baseValue = baseValue; +} + + +/* ZSTD_buildFSETable() : + * generate FSE decoding table for one symbol (ll, ml or off) + * cannot fail if input is valid => + * all inputs are presumed validated at this stage */ +FORCE_INLINE_TEMPLATE +void ZSTD_buildFSETable_body(ZSTD_seqSymbol* dt, + const short* normalizedCounter, unsigned maxSymbolValue, + const U32* baseValue, const U8* nbAdditionalBits, + unsigned tableLog, void* wksp, size_t wkspSize) +{ + ZSTD_seqSymbol* const tableDecode = dt+1; + U32 const maxSV1 = maxSymbolValue + 1; + U32 const tableSize = 1 << tableLog; + + U16* symbolNext = (U16*)wksp; + BYTE* spread = (BYTE*)(symbolNext + MaxSeq + 1); + U32 highThreshold = tableSize - 1; + + + /* Sanity Checks */ + assert(maxSymbolValue <= MaxSeq); + assert(tableLog <= MaxFSELog); + assert(wkspSize >= ZSTD_BUILD_FSE_TABLE_WKSP_SIZE); + (void)wkspSize; + /* Init, lay down lowprob symbols */ + { ZSTD_seqSymbol_header DTableH; + DTableH.tableLog = tableLog; + DTableH.fastMode = 1; + { S16 const largeLimit= (S16)(1 << (tableLog-1)); + U32 s; + for (s=0; s= largeLimit) DTableH.fastMode=0; + assert(normalizedCounter[s]>=0); + symbolNext[s] = (U16)normalizedCounter[s]; + } } } + ZSTD_memcpy(dt, &DTableH, sizeof(DTableH)); + } + + /* Spread symbols */ + assert(tableSize <= 512); + /* Specialized symbol spreading for the case when there are + * no low probability (-1 count) symbols. When compressing + * small blocks we avoid low probability symbols to hit this + * case, since header decoding speed matters more. + */ + if (highThreshold == tableSize - 1) { + size_t const tableMask = tableSize-1; + size_t const step = FSE_TABLESTEP(tableSize); + /* First lay down the symbols in order. + * We use a uint64_t to lay down 8 bytes at a time. This reduces branch + * misses since small blocks generally have small table logs, so nearly + * all symbols have counts <= 8. We ensure we have 8 bytes at the end of + * our buffer to handle the over-write. + */ + { + U64 const add = 0x0101010101010101ull; + size_t pos = 0; + U64 sv = 0; + U32 s; + for (s=0; s=0); + pos += (size_t)n; + } + } + /* Now we spread those positions across the table. + * The benefit of doing it in two stages is that we avoid the + * variable size inner loop, which caused lots of branch misses. + * Now we can run through all the positions without any branch misses. + * We unroll the loop twice, since that is what empirically worked best. + */ + { + size_t position = 0; + size_t s; + size_t const unroll = 2; + assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */ + for (s = 0; s < (size_t)tableSize; s += unroll) { + size_t u; + for (u = 0; u < unroll; ++u) { + size_t const uPosition = (position + (u * step)) & tableMask; + tableDecode[uPosition].baseValue = spread[s + u]; + } + position = (position + (unroll * step)) & tableMask; + } + assert(position == 0); + } + } else { + U32 const tableMask = tableSize-1; + U32 const step = FSE_TABLESTEP(tableSize); + U32 s, position = 0; + for (s=0; s highThreshold)) position = (position + step) & tableMask; /* lowprob area */ + } } + assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */ + } + + /* Build Decoding table */ + { + U32 u; + for (u=0; u max, corruption_detected, ""); + { U32 const symbol = *(const BYTE*)src; + U32 const baseline = baseValue[symbol]; + U8 const nbBits = nbAdditionalBits[symbol]; + ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits); + } + *DTablePtr = DTableSpace; + return 1; + case set_basic : + *DTablePtr = defaultTable; + return 0; + case set_repeat: + RETURN_ERROR_IF(!flagRepeatTable, corruption_detected, ""); + /* prefetch FSE table if used */ + if (ddictIsCold && (nbSeq > 24 /* heuristic */)) { + const void* const pStart = *DTablePtr; + size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog)); + PREFETCH_AREA(pStart, pSize); + } + return 0; + case set_compressed : + { unsigned tableLog; + S16 norm[MaxSeq+1]; + size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize); + RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected, ""); + RETURN_ERROR_IF(tableLog > maxLog, corruption_detected, ""); + ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog, wksp, wkspSize, bmi2); + *DTablePtr = DTableSpace; + return headerSize; + } + default : + assert(0); + RETURN_ERROR(GENERIC, "impossible"); + } +} + +size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr, + const void* src, size_t srcSize) +{ + const BYTE* const istart = (const BYTE*)src; + const BYTE* const iend = istart + srcSize; + const BYTE* ip = istart; + int nbSeq; + DEBUGLOG(5, "ZSTD_decodeSeqHeaders"); + + /* check */ + RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong, ""); + + /* SeqHead */ + nbSeq = *ip++; + if (nbSeq > 0x7F) { + if (nbSeq == 0xFF) { + RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong, ""); + nbSeq = MEM_readLE16(ip) + LONGNBSEQ; + ip+=2; + } else { + RETURN_ERROR_IF(ip >= iend, srcSize_wrong, ""); + nbSeq = ((nbSeq-0x80)<<8) + *ip++; + } + } + *nbSeqPtr = nbSeq; + + if (nbSeq == 0) { + /* No sequence : section ends immediately */ + RETURN_ERROR_IF(ip != iend, corruption_detected, + "extraneous data present in the Sequences section"); + return (size_t)(ip - istart); + } + + /* FSE table descriptors */ + RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong, ""); /* minimum possible size: 1 byte for symbol encoding types */ + RETURN_ERROR_IF(*ip & 3, corruption_detected, ""); /* The last field, Reserved, must be all-zeroes. */ + { SymbolEncodingType_e const LLtype = (SymbolEncodingType_e)(*ip >> 6); + SymbolEncodingType_e const OFtype = (SymbolEncodingType_e)((*ip >> 4) & 3); + SymbolEncodingType_e const MLtype = (SymbolEncodingType_e)((*ip >> 2) & 3); + ip++; + + /* Build DTables */ + { size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr, + LLtype, MaxLL, LLFSELog, + ip, iend-ip, + LL_base, LL_bits, + LL_defaultDTable, dctx->fseEntropy, + dctx->ddictIsCold, nbSeq, + dctx->workspace, sizeof(dctx->workspace), + ZSTD_DCtx_get_bmi2(dctx)); + RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected, "ZSTD_buildSeqTable failed"); + ip += llhSize; + } + + { size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr, + OFtype, MaxOff, OffFSELog, + ip, iend-ip, + OF_base, OF_bits, + OF_defaultDTable, dctx->fseEntropy, + dctx->ddictIsCold, nbSeq, + dctx->workspace, sizeof(dctx->workspace), + ZSTD_DCtx_get_bmi2(dctx)); + RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected, "ZSTD_buildSeqTable failed"); + ip += ofhSize; + } + + { size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr, + MLtype, MaxML, MLFSELog, + ip, iend-ip, + ML_base, ML_bits, + ML_defaultDTable, dctx->fseEntropy, + dctx->ddictIsCold, nbSeq, + dctx->workspace, sizeof(dctx->workspace), + ZSTD_DCtx_get_bmi2(dctx)); + RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected, "ZSTD_buildSeqTable failed"); + ip += mlhSize; + } + } + + return ip-istart; +} + + +typedef struct { + size_t litLength; + size_t matchLength; + size_t offset; +} seq_t; + +typedef struct { + size_t state; + const ZSTD_seqSymbol* table; +} ZSTD_fseState; + +typedef struct { + BIT_DStream_t DStream; + ZSTD_fseState stateLL; + ZSTD_fseState stateOffb; + ZSTD_fseState stateML; + size_t prevOffset[ZSTD_REP_NUM]; +} seqState_t; + +/*! ZSTD_overlapCopy8() : + * Copies 8 bytes from ip to op and updates op and ip where ip <= op. + * If the offset is < 8 then the offset is spread to at least 8 bytes. + * + * Precondition: *ip <= *op + * Postcondition: *op - *op >= 8 + */ +HINT_INLINE void ZSTD_overlapCopy8(BYTE** op, BYTE const** ip, size_t offset) { + assert(*ip <= *op); + if (offset < 8) { + /* close range match, overlap */ + static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */ + static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */ + int const sub2 = dec64table[offset]; + (*op)[0] = (*ip)[0]; + (*op)[1] = (*ip)[1]; + (*op)[2] = (*ip)[2]; + (*op)[3] = (*ip)[3]; + *ip += dec32table[offset]; + ZSTD_copy4(*op+4, *ip); + *ip -= sub2; + } else { + ZSTD_copy8(*op, *ip); + } + *ip += 8; + *op += 8; + assert(*op - *ip >= 8); +} + +/*! ZSTD_safecopy() : + * Specialized version of memcpy() that is allowed to READ up to WILDCOPY_OVERLENGTH past the input buffer + * and write up to 16 bytes past oend_w (op >= oend_w is allowed). + * This function is only called in the uncommon case where the sequence is near the end of the block. It + * should be fast for a single long sequence, but can be slow for several short sequences. + * + * @param ovtype controls the overlap detection + * - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart. + * - ZSTD_overlap_src_before_dst: The src and dst may overlap and may be any distance apart. + * The src buffer must be before the dst buffer. + */ +static void ZSTD_safecopy(BYTE* op, const BYTE* const oend_w, BYTE const* ip, ptrdiff_t length, ZSTD_overlap_e ovtype) { + ptrdiff_t const diff = op - ip; + BYTE* const oend = op + length; + + assert((ovtype == ZSTD_no_overlap && (diff <= -8 || diff >= 8 || op >= oend_w)) || + (ovtype == ZSTD_overlap_src_before_dst && diff >= 0)); + + if (length < 8) { + /* Handle short lengths. */ + while (op < oend) *op++ = *ip++; + return; + } + if (ovtype == ZSTD_overlap_src_before_dst) { + /* Copy 8 bytes and ensure the offset >= 8 when there can be overlap. */ + assert(length >= 8); + ZSTD_overlapCopy8(&op, &ip, diff); + length -= 8; + assert(op - ip >= 8); + assert(op <= oend); + } + + if (oend <= oend_w) { + /* No risk of overwrite. */ + ZSTD_wildcopy(op, ip, length, ovtype); + return; + } + if (op <= oend_w) { + /* Wildcopy until we get close to the end. */ + assert(oend > oend_w); + ZSTD_wildcopy(op, ip, oend_w - op, ovtype); + ip += oend_w - op; + op += oend_w - op; + } + /* Handle the leftovers. */ + while (op < oend) *op++ = *ip++; +} + +/* ZSTD_safecopyDstBeforeSrc(): + * This version allows overlap with dst before src, or handles the non-overlap case with dst after src + * Kept separate from more common ZSTD_safecopy case to avoid performance impact to the safecopy common case */ +static void ZSTD_safecopyDstBeforeSrc(BYTE* op, const BYTE* ip, ptrdiff_t length) { + ptrdiff_t const diff = op - ip; + BYTE* const oend = op + length; + + if (length < 8 || diff > -8) { + /* Handle short lengths, close overlaps, and dst not before src. */ + while (op < oend) *op++ = *ip++; + return; + } + + if (op <= oend - WILDCOPY_OVERLENGTH && diff < -WILDCOPY_VECLEN) { + ZSTD_wildcopy(op, ip, oend - WILDCOPY_OVERLENGTH - op, ZSTD_no_overlap); + ip += oend - WILDCOPY_OVERLENGTH - op; + op += oend - WILDCOPY_OVERLENGTH - op; + } + + /* Handle the leftovers. */ + while (op < oend) *op++ = *ip++; +} + +/* ZSTD_execSequenceEnd(): + * This version handles cases that are near the end of the output buffer. It requires + * more careful checks to make sure there is no overflow. By separating out these hard + * and unlikely cases, we can speed up the common cases. + * + * NOTE: This function needs to be fast for a single long sequence, but doesn't need + * to be optimized for many small sequences, since those fall into ZSTD_execSequence(). + */ +FORCE_NOINLINE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_execSequenceEnd(BYTE* op, + BYTE* const oend, seq_t sequence, + const BYTE** litPtr, const BYTE* const litLimit, + const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd) +{ + BYTE* const oLitEnd = op + sequence.litLength; + size_t const sequenceLength = sequence.litLength + sequence.matchLength; + const BYTE* const iLitEnd = *litPtr + sequence.litLength; + const BYTE* match = oLitEnd - sequence.offset; + BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH; + + /* bounds checks : careful of address space overflow in 32-bit mode */ + RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer"); + RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer"); + assert(op < op + sequenceLength); + assert(oLitEnd < op + sequenceLength); + + /* copy literals */ + ZSTD_safecopy(op, oend_w, *litPtr, sequence.litLength, ZSTD_no_overlap); + op = oLitEnd; + *litPtr = iLitEnd; + + /* copy Match */ + if (sequence.offset > (size_t)(oLitEnd - prefixStart)) { + /* offset beyond prefix */ + RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, ""); + match = dictEnd - (prefixStart - match); + if (match + sequence.matchLength <= dictEnd) { + ZSTD_memmove(oLitEnd, match, sequence.matchLength); + return sequenceLength; + } + /* span extDict & currentPrefixSegment */ + { size_t const length1 = dictEnd - match; + ZSTD_memmove(oLitEnd, match, length1); + op = oLitEnd + length1; + sequence.matchLength -= length1; + match = prefixStart; + } + } + ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst); + return sequenceLength; +} + +/* ZSTD_execSequenceEndSplitLitBuffer(): + * This version is intended to be used during instances where the litBuffer is still split. It is kept separate to avoid performance impact for the good case. + */ +FORCE_NOINLINE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_execSequenceEndSplitLitBuffer(BYTE* op, + BYTE* const oend, const BYTE* const oend_w, seq_t sequence, + const BYTE** litPtr, const BYTE* const litLimit, + const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd) +{ + BYTE* const oLitEnd = op + sequence.litLength; + size_t const sequenceLength = sequence.litLength + sequence.matchLength; + const BYTE* const iLitEnd = *litPtr + sequence.litLength; + const BYTE* match = oLitEnd - sequence.offset; + + + /* bounds checks : careful of address space overflow in 32-bit mode */ + RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer"); + RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer"); + assert(op < op + sequenceLength); + assert(oLitEnd < op + sequenceLength); + + /* copy literals */ + RETURN_ERROR_IF(op > *litPtr && op < *litPtr + sequence.litLength, dstSize_tooSmall, "output should not catch up to and overwrite literal buffer"); + ZSTD_safecopyDstBeforeSrc(op, *litPtr, sequence.litLength); + op = oLitEnd; + *litPtr = iLitEnd; + + /* copy Match */ + if (sequence.offset > (size_t)(oLitEnd - prefixStart)) { + /* offset beyond prefix */ + RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, ""); + match = dictEnd - (prefixStart - match); + if (match + sequence.matchLength <= dictEnd) { + ZSTD_memmove(oLitEnd, match, sequence.matchLength); + return sequenceLength; + } + /* span extDict & currentPrefixSegment */ + { size_t const length1 = dictEnd - match; + ZSTD_memmove(oLitEnd, match, length1); + op = oLitEnd + length1; + sequence.matchLength -= length1; + match = prefixStart; + } + } + ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst); + return sequenceLength; +} + +HINT_INLINE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_execSequence(BYTE* op, + BYTE* const oend, seq_t sequence, + const BYTE** litPtr, const BYTE* const litLimit, + const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd) +{ + BYTE* const oLitEnd = op + sequence.litLength; + size_t const sequenceLength = sequence.litLength + sequence.matchLength; + BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */ + BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH; /* risk : address space underflow on oend=NULL */ + const BYTE* const iLitEnd = *litPtr + sequence.litLength; + const BYTE* match = oLitEnd - sequence.offset; + + assert(op != NULL /* Precondition */); + assert(oend_w < oend /* No underflow */); + +#if defined(__aarch64__) + /* prefetch sequence starting from match that will be used for copy later */ + PREFETCH_L1(match); +#endif + /* Handle edge cases in a slow path: + * - Read beyond end of literals + * - Match end is within WILDCOPY_OVERLIMIT of oend + * - 32-bit mode and the match length overflows + */ + if (UNLIKELY( + iLitEnd > litLimit || + oMatchEnd > oend_w || + (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH))) + return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd); + + /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */ + assert(op <= oLitEnd /* No overflow */); + assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */); + assert(oMatchEnd <= oend /* No underflow */); + assert(iLitEnd <= litLimit /* Literal length is in bounds */); + assert(oLitEnd <= oend_w /* Can wildcopy literals */); + assert(oMatchEnd <= oend_w /* Can wildcopy matches */); + + /* Copy Literals: + * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9. + * We likely don't need the full 32-byte wildcopy. + */ + assert(WILDCOPY_OVERLENGTH >= 16); + ZSTD_copy16(op, (*litPtr)); + if (UNLIKELY(sequence.litLength > 16)) { + ZSTD_wildcopy(op + 16, (*litPtr) + 16, sequence.litLength - 16, ZSTD_no_overlap); + } + op = oLitEnd; + *litPtr = iLitEnd; /* update for next sequence */ + + /* Copy Match */ + if (sequence.offset > (size_t)(oLitEnd - prefixStart)) { + /* offset beyond prefix -> go into extDict */ + RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, ""); + match = dictEnd + (match - prefixStart); + if (match + sequence.matchLength <= dictEnd) { + ZSTD_memmove(oLitEnd, match, sequence.matchLength); + return sequenceLength; + } + /* span extDict & currentPrefixSegment */ + { size_t const length1 = dictEnd - match; + ZSTD_memmove(oLitEnd, match, length1); + op = oLitEnd + length1; + sequence.matchLength -= length1; + match = prefixStart; + } + } + /* Match within prefix of 1 or more bytes */ + assert(op <= oMatchEnd); + assert(oMatchEnd <= oend_w); + assert(match >= prefixStart); + assert(sequence.matchLength >= 1); + + /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy + * without overlap checking. + */ + if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) { + /* We bet on a full wildcopy for matches, since we expect matches to be + * longer than literals (in general). In silesia, ~10% of matches are longer + * than 16 bytes. + */ + ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap); + return sequenceLength; + } + assert(sequence.offset < WILDCOPY_VECLEN); + + /* Copy 8 bytes and spread the offset to be >= 8. */ + ZSTD_overlapCopy8(&op, &match, sequence.offset); + + /* If the match length is > 8 bytes, then continue with the wildcopy. */ + if (sequence.matchLength > 8) { + assert(op < oMatchEnd); + ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength - 8, ZSTD_overlap_src_before_dst); + } + return sequenceLength; +} + +HINT_INLINE +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +size_t ZSTD_execSequenceSplitLitBuffer(BYTE* op, + BYTE* const oend, const BYTE* const oend_w, seq_t sequence, + const BYTE** litPtr, const BYTE* const litLimit, + const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd) +{ + BYTE* const oLitEnd = op + sequence.litLength; + size_t const sequenceLength = sequence.litLength + sequence.matchLength; + BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */ + const BYTE* const iLitEnd = *litPtr + sequence.litLength; + const BYTE* match = oLitEnd - sequence.offset; + + assert(op != NULL /* Precondition */); + assert(oend_w < oend /* No underflow */); + /* Handle edge cases in a slow path: + * - Read beyond end of literals + * - Match end is within WILDCOPY_OVERLIMIT of oend + * - 32-bit mode and the match length overflows + */ + if (UNLIKELY( + iLitEnd > litLimit || + oMatchEnd > oend_w || + (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH))) + return ZSTD_execSequenceEndSplitLitBuffer(op, oend, oend_w, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd); + + /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */ + assert(op <= oLitEnd /* No overflow */); + assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */); + assert(oMatchEnd <= oend /* No underflow */); + assert(iLitEnd <= litLimit /* Literal length is in bounds */); + assert(oLitEnd <= oend_w /* Can wildcopy literals */); + assert(oMatchEnd <= oend_w /* Can wildcopy matches */); + + /* Copy Literals: + * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9. + * We likely don't need the full 32-byte wildcopy. + */ + assert(WILDCOPY_OVERLENGTH >= 16); + ZSTD_copy16(op, (*litPtr)); + if (UNLIKELY(sequence.litLength > 16)) { + ZSTD_wildcopy(op+16, (*litPtr)+16, sequence.litLength-16, ZSTD_no_overlap); + } + op = oLitEnd; + *litPtr = iLitEnd; /* update for next sequence */ + + /* Copy Match */ + if (sequence.offset > (size_t)(oLitEnd - prefixStart)) { + /* offset beyond prefix -> go into extDict */ + RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, ""); + match = dictEnd + (match - prefixStart); + if (match + sequence.matchLength <= dictEnd) { + ZSTD_memmove(oLitEnd, match, sequence.matchLength); + return sequenceLength; + } + /* span extDict & currentPrefixSegment */ + { size_t const length1 = dictEnd - match; + ZSTD_memmove(oLitEnd, match, length1); + op = oLitEnd + length1; + sequence.matchLength -= length1; + match = prefixStart; + } } + /* Match within prefix of 1 or more bytes */ + assert(op <= oMatchEnd); + assert(oMatchEnd <= oend_w); + assert(match >= prefixStart); + assert(sequence.matchLength >= 1); + + /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy + * without overlap checking. + */ + if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) { + /* We bet on a full wildcopy for matches, since we expect matches to be + * longer than literals (in general). In silesia, ~10% of matches are longer + * than 16 bytes. + */ + ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap); + return sequenceLength; + } + assert(sequence.offset < WILDCOPY_VECLEN); + + /* Copy 8 bytes and spread the offset to be >= 8. */ + ZSTD_overlapCopy8(&op, &match, sequence.offset); + + /* If the match length is > 8 bytes, then continue with the wildcopy. */ + if (sequence.matchLength > 8) { + assert(op < oMatchEnd); + ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst); + } + return sequenceLength; +} + + +static void +ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt) +{ + const void* ptr = dt; + const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr; + DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog); + DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits", + (U32)DStatePtr->state, DTableH->tableLog); + BIT_reloadDStream(bitD); + DStatePtr->table = dt + 1; +} + +FORCE_INLINE_TEMPLATE void +ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, U16 nextState, U32 nbBits) +{ + size_t const lowBits = BIT_readBits(bitD, nbBits); + DStatePtr->state = nextState + lowBits; +} + +/* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum + * offset bits. But we can only read at most STREAM_ACCUMULATOR_MIN_32 + * bits before reloading. This value is the maximum number of bytes we read + * after reloading when we are decoding long offsets. + */ +#define LONG_OFFSETS_MAX_EXTRA_BITS_32 \ + (ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32 \ + ? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32 \ + : 0) + +typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e; + +/** + * ZSTD_decodeSequence(): + * @p longOffsets : tells the decoder to reload more bit while decoding large offsets + * only used in 32-bit mode + * @return : Sequence (litL + matchL + offset) + */ +FORCE_INLINE_TEMPLATE seq_t +ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets, const int isLastSeq) +{ + seq_t seq; + /* + * ZSTD_seqSymbol is a 64 bits wide structure. + * It can be loaded in one operation + * and its fields extracted by simply shifting or bit-extracting on aarch64. + * GCC doesn't recognize this and generates more unnecessary ldr/ldrb/ldrh + * operations that cause performance drop. This can be avoided by using this + * ZSTD_memcpy hack. + */ +#if defined(__aarch64__) && (defined(__GNUC__) && !defined(__clang__)) + ZSTD_seqSymbol llDInfoS, mlDInfoS, ofDInfoS; + ZSTD_seqSymbol* const llDInfo = &llDInfoS; + ZSTD_seqSymbol* const mlDInfo = &mlDInfoS; + ZSTD_seqSymbol* const ofDInfo = &ofDInfoS; + ZSTD_memcpy(llDInfo, seqState->stateLL.table + seqState->stateLL.state, sizeof(ZSTD_seqSymbol)); + ZSTD_memcpy(mlDInfo, seqState->stateML.table + seqState->stateML.state, sizeof(ZSTD_seqSymbol)); + ZSTD_memcpy(ofDInfo, seqState->stateOffb.table + seqState->stateOffb.state, sizeof(ZSTD_seqSymbol)); +#else + const ZSTD_seqSymbol* const llDInfo = seqState->stateLL.table + seqState->stateLL.state; + const ZSTD_seqSymbol* const mlDInfo = seqState->stateML.table + seqState->stateML.state; + const ZSTD_seqSymbol* const ofDInfo = seqState->stateOffb.table + seqState->stateOffb.state; +#endif + seq.matchLength = mlDInfo->baseValue; + seq.litLength = llDInfo->baseValue; + { U32 const ofBase = ofDInfo->baseValue; + BYTE const llBits = llDInfo->nbAdditionalBits; + BYTE const mlBits = mlDInfo->nbAdditionalBits; + BYTE const ofBits = ofDInfo->nbAdditionalBits; + BYTE const totalBits = llBits+mlBits+ofBits; + + U16 const llNext = llDInfo->nextState; + U16 const mlNext = mlDInfo->nextState; + U16 const ofNext = ofDInfo->nextState; + U32 const llnbBits = llDInfo->nbBits; + U32 const mlnbBits = mlDInfo->nbBits; + U32 const ofnbBits = ofDInfo->nbBits; + + assert(llBits <= MaxLLBits); + assert(mlBits <= MaxMLBits); + assert(ofBits <= MaxOff); + /* + * As gcc has better branch and block analyzers, sometimes it is only + * valuable to mark likeliness for clang, it gives around 3-4% of + * performance. + */ + + /* sequence */ + { size_t offset; + if (ofBits > 1) { + ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1); + ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5); + ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 > LONG_OFFSETS_MAX_EXTRA_BITS_32); + ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 - LONG_OFFSETS_MAX_EXTRA_BITS_32 >= MaxMLBits); + if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) { + /* Always read extra bits, this keeps the logic simple, + * avoids branches, and avoids accidentally reading 0 bits. + */ + U32 const extraBits = LONG_OFFSETS_MAX_EXTRA_BITS_32; + offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits); + BIT_reloadDStream(&seqState->DStream); + offset += BIT_readBitsFast(&seqState->DStream, extraBits); + } else { + offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */ + if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); + } + seqState->prevOffset[2] = seqState->prevOffset[1]; + seqState->prevOffset[1] = seqState->prevOffset[0]; + seqState->prevOffset[0] = offset; + } else { + U32 const ll0 = (llDInfo->baseValue == 0); + if (LIKELY((ofBits == 0))) { + offset = seqState->prevOffset[ll0]; + seqState->prevOffset[1] = seqState->prevOffset[!ll0]; + seqState->prevOffset[0] = offset; + } else { + offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1); + { size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset]; + temp -= !temp; /* 0 is not valid: input corrupted => force offset to -1 => corruption detected at execSequence */ + if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1]; + seqState->prevOffset[1] = seqState->prevOffset[0]; + seqState->prevOffset[0] = offset = temp; + } } } + seq.offset = offset; + } + + if (mlBits > 0) + seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/); + + if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32)) + BIT_reloadDStream(&seqState->DStream); + if (MEM_64bits() && UNLIKELY(totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog))) + BIT_reloadDStream(&seqState->DStream); + /* Ensure there are enough bits to read the rest of data in 64-bit mode. */ + ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64); + + if (llBits > 0) + seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/); + + if (MEM_32bits()) + BIT_reloadDStream(&seqState->DStream); + + DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u", + (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset); + + if (!isLastSeq) { + /* don't update FSE state for last Sequence */ + ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llNext, llnbBits); /* <= 9 bits */ + ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlNext, mlnbBits); /* <= 9 bits */ + if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */ + ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofNext, ofnbBits); /* <= 8 bits */ + BIT_reloadDStream(&seqState->DStream); + } + } + + return seq; +} + +#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) +#if DEBUGLEVEL >= 1 +static int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefixStart, BYTE const* oLitEnd) +{ + size_t const windowSize = dctx->fParams.windowSize; + /* No dictionary used. */ + if (dctx->dictContentEndForFuzzing == NULL) return 0; + /* Dictionary is our prefix. */ + if (prefixStart == dctx->dictContentBeginForFuzzing) return 1; + /* Dictionary is not our ext-dict. */ + if (dctx->dictEnd != dctx->dictContentEndForFuzzing) return 0; + /* Dictionary is not within our window size. */ + if ((size_t)(oLitEnd - prefixStart) >= windowSize) return 0; + /* Dictionary is active. */ + return 1; +} +#endif + +static void ZSTD_assertValidSequence( + ZSTD_DCtx const* dctx, + BYTE const* op, BYTE const* oend, + seq_t const seq, + BYTE const* prefixStart, BYTE const* virtualStart) +{ +#if DEBUGLEVEL >= 1 + if (dctx->isFrameDecompression) { + size_t const windowSize = dctx->fParams.windowSize; + size_t const sequenceSize = seq.litLength + seq.matchLength; + BYTE const* const oLitEnd = op + seq.litLength; + DEBUGLOG(6, "Checking sequence: litL=%u matchL=%u offset=%u", + (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset); + assert(op <= oend); + assert((size_t)(oend - op) >= sequenceSize); + assert(sequenceSize <= ZSTD_blockSizeMax(dctx)); + if (ZSTD_dictionaryIsActive(dctx, prefixStart, oLitEnd)) { + size_t const dictSize = (size_t)((char const*)dctx->dictContentEndForFuzzing - (char const*)dctx->dictContentBeginForFuzzing); + /* Offset must be within the dictionary. */ + assert(seq.offset <= (size_t)(oLitEnd - virtualStart)); + assert(seq.offset <= windowSize + dictSize); + } else { + /* Offset must be within our window. */ + assert(seq.offset <= windowSize); + } + } +#else + (void)dctx, (void)op, (void)oend, (void)seq, (void)prefixStart, (void)virtualStart; +#endif +} +#endif + +#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG + + +FORCE_INLINE_TEMPLATE size_t +DONT_VECTORIZE +ZSTD_decompressSequences_bodySplitLitBuffer( ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + const BYTE* ip = (const BYTE*)seqStart; + const BYTE* const iend = ip + seqSize; + BYTE* const ostart = (BYTE*)dst; + BYTE* const oend = ZSTD_maybeNullPtrAdd(ostart, maxDstSize); + BYTE* op = ostart; + const BYTE* litPtr = dctx->litPtr; + const BYTE* litBufferEnd = dctx->litBufferEnd; + const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart); + const BYTE* const vBase = (const BYTE*) (dctx->virtualStart); + const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd); + DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer (%i seqs)", nbSeq); + + /* Literals are split between internal buffer & output buffer */ + if (nbSeq) { + seqState_t seqState; + dctx->fseEntropy = 1; + { U32 i; for (i=0; ientropy.rep[i]; } + RETURN_ERROR_IF( + ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)), + corruption_detected, ""); + ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr); + ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr); + ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr); + assert(dst != NULL); + + ZSTD_STATIC_ASSERT( + BIT_DStream_unfinished < BIT_DStream_completed && + BIT_DStream_endOfBuffer < BIT_DStream_completed && + BIT_DStream_completed < BIT_DStream_overflow); + + /* decompress without overrunning litPtr begins */ + { seq_t sequence = {0,0,0}; /* some static analyzer believe that @sequence is not initialized (it necessarily is, since for(;;) loop as at least one iteration) */ + /* Align the decompression loop to 32 + 16 bytes. + * + * zstd compiled with gcc-9 on an Intel i9-9900k shows 10% decompression + * speed swings based on the alignment of the decompression loop. This + * performance swing is caused by parts of the decompression loop falling + * out of the DSB. The entire decompression loop should fit in the DSB, + * when it can't we get much worse performance. You can measure if you've + * hit the good case or the bad case with this perf command for some + * compressed file test.zst: + * + * perf stat -e cycles -e instructions -e idq.all_dsb_cycles_any_uops \ + * -e idq.all_mite_cycles_any_uops -- ./zstd -tq test.zst + * + * If you see most cycles served out of the MITE you've hit the bad case. + * If you see most cycles served out of the DSB you've hit the good case. + * If it is pretty even then you may be in an okay case. + * + * This issue has been reproduced on the following CPUs: + * - Kabylake: Macbook Pro (15-inch, 2019) 2.4 GHz Intel Core i9 + * Use Instruments->Counters to get DSB/MITE cycles. + * I never got performance swings, but I was able to + * go from the good case of mostly DSB to half of the + * cycles served from MITE. + * - Coffeelake: Intel i9-9900k + * - Coffeelake: Intel i7-9700k + * + * I haven't been able to reproduce the instability or DSB misses on any + * of the following CPUS: + * - Haswell + * - Broadwell: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GH + * - Skylake + * + * Alignment is done for each of the three major decompression loops: + * - ZSTD_decompressSequences_bodySplitLitBuffer - presplit section of the literal buffer + * - ZSTD_decompressSequences_bodySplitLitBuffer - postsplit section of the literal buffer + * - ZSTD_decompressSequences_body + * Alignment choices are made to minimize large swings on bad cases and influence on performance + * from changes external to this code, rather than to overoptimize on the current commit. + * + * If you are seeing performance stability this script can help test. + * It tests on 4 commits in zstd where I saw performance change. + * + * https://gist.github.com/terrelln/9889fc06a423fd5ca6e99351564473f4 + */ +#if defined(__GNUC__) && defined(__x86_64__) + __asm__(".p2align 6"); +# if __GNUC__ >= 7 + /* good for gcc-7, gcc-9, and gcc-11 */ + __asm__("nop"); + __asm__(".p2align 5"); + __asm__("nop"); + __asm__(".p2align 4"); +# if __GNUC__ == 8 || __GNUC__ == 10 + /* good for gcc-8 and gcc-10 */ + __asm__("nop"); + __asm__(".p2align 3"); +# endif +# endif +#endif + + /* Handle the initial state where litBuffer is currently split between dst and litExtraBuffer */ + for ( ; nbSeq; nbSeq--) { + sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1); + if (litPtr + sequence.litLength > dctx->litBufferEnd) break; + { size_t const oneSeqSize = ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence.litLength - WILDCOPY_OVERLENGTH, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd); +#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) + assert(!ZSTD_isError(oneSeqSize)); + ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase); +#endif + if (UNLIKELY(ZSTD_isError(oneSeqSize))) + return oneSeqSize; + DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize); + op += oneSeqSize; + } } + DEBUGLOG(6, "reached: (litPtr + sequence.litLength > dctx->litBufferEnd)"); + + /* If there are more sequences, they will need to read literals from litExtraBuffer; copy over the remainder from dst and update litPtr and litEnd */ + if (nbSeq > 0) { + const size_t leftoverLit = dctx->litBufferEnd - litPtr; + DEBUGLOG(6, "There are %i sequences left, and %zu/%zu literals left in buffer", nbSeq, leftoverLit, sequence.litLength); + if (leftoverLit) { + RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer"); + ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit); + sequence.litLength -= leftoverLit; + op += leftoverLit; + } + litPtr = dctx->litExtraBuffer; + litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE; + dctx->litBufferLocation = ZSTD_not_in_dst; + { size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd); +#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) + assert(!ZSTD_isError(oneSeqSize)); + ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase); +#endif + if (UNLIKELY(ZSTD_isError(oneSeqSize))) + return oneSeqSize; + DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize); + op += oneSeqSize; + } + nbSeq--; + } + } + + if (nbSeq > 0) { + /* there is remaining lit from extra buffer */ + +#if defined(__GNUC__) && defined(__x86_64__) + __asm__(".p2align 6"); + __asm__("nop"); +# if __GNUC__ != 7 + /* worse for gcc-7 better for gcc-8, gcc-9, and gcc-10 and clang */ + __asm__(".p2align 4"); + __asm__("nop"); + __asm__(".p2align 3"); +# elif __GNUC__ >= 11 + __asm__(".p2align 3"); +# else + __asm__(".p2align 5"); + __asm__("nop"); + __asm__(".p2align 3"); +# endif +#endif + + for ( ; nbSeq ; nbSeq--) { + seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1); + size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd); +#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) + assert(!ZSTD_isError(oneSeqSize)); + ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase); +#endif + if (UNLIKELY(ZSTD_isError(oneSeqSize))) + return oneSeqSize; + DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize); + op += oneSeqSize; + } + } + + /* check if reached exact end */ + DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer: after decode loop, remaining nbSeq : %i", nbSeq); + RETURN_ERROR_IF(nbSeq, corruption_detected, ""); + DEBUGLOG(5, "bitStream : start=%p, ptr=%p, bitsConsumed=%u", seqState.DStream.start, seqState.DStream.ptr, seqState.DStream.bitsConsumed); + RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, ""); + /* save reps for next block */ + { U32 i; for (i=0; ientropy.rep[i] = (U32)(seqState.prevOffset[i]); } + } + + /* last literal segment */ + if (dctx->litBufferLocation == ZSTD_split) { + /* split hasn't been reached yet, first get dst then copy litExtraBuffer */ + size_t const lastLLSize = (size_t)(litBufferEnd - litPtr); + DEBUGLOG(6, "copy last literals from segment : %u", (U32)lastLLSize); + RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, ""); + if (op != NULL) { + ZSTD_memmove(op, litPtr, lastLLSize); + op += lastLLSize; + } + litPtr = dctx->litExtraBuffer; + litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE; + dctx->litBufferLocation = ZSTD_not_in_dst; + } + /* copy last literals from internal buffer */ + { size_t const lastLLSize = (size_t)(litBufferEnd - litPtr); + DEBUGLOG(6, "copy last literals from internal buffer : %u", (U32)lastLLSize); + RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, ""); + if (op != NULL) { + ZSTD_memcpy(op, litPtr, lastLLSize); + op += lastLLSize; + } } + + DEBUGLOG(6, "decoded block of size %u bytes", (U32)(op - ostart)); + return (size_t)(op - ostart); +} + +FORCE_INLINE_TEMPLATE size_t +DONT_VECTORIZE +ZSTD_decompressSequences_body(ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + const BYTE* ip = (const BYTE*)seqStart; + const BYTE* const iend = ip + seqSize; + BYTE* const ostart = (BYTE*)dst; + BYTE* const oend = dctx->litBufferLocation == ZSTD_not_in_dst ? ZSTD_maybeNullPtrAdd(ostart, maxDstSize) : dctx->litBuffer; + BYTE* op = ostart; + const BYTE* litPtr = dctx->litPtr; + const BYTE* const litEnd = litPtr + dctx->litSize; + const BYTE* const prefixStart = (const BYTE*)(dctx->prefixStart); + const BYTE* const vBase = (const BYTE*)(dctx->virtualStart); + const BYTE* const dictEnd = (const BYTE*)(dctx->dictEnd); + DEBUGLOG(5, "ZSTD_decompressSequences_body: nbSeq = %d", nbSeq); + + /* Regen sequences */ + if (nbSeq) { + seqState_t seqState; + dctx->fseEntropy = 1; + { U32 i; for (i = 0; i < ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; } + RETURN_ERROR_IF( + ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend - ip)), + corruption_detected, ""); + ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr); + ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr); + ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr); + assert(dst != NULL); + +#if defined(__GNUC__) && defined(__x86_64__) + __asm__(".p2align 6"); + __asm__("nop"); +# if __GNUC__ >= 7 + __asm__(".p2align 5"); + __asm__("nop"); + __asm__(".p2align 3"); +# else + __asm__(".p2align 4"); + __asm__("nop"); + __asm__(".p2align 3"); +# endif +#endif + + for ( ; nbSeq ; nbSeq--) { + seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1); + size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd); +#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) + assert(!ZSTD_isError(oneSeqSize)); + ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase); +#endif + if (UNLIKELY(ZSTD_isError(oneSeqSize))) + return oneSeqSize; + DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize); + op += oneSeqSize; + } + + /* check if reached exact end */ + assert(nbSeq == 0); + RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, ""); + /* save reps for next block */ + { U32 i; for (i=0; ientropy.rep[i] = (U32)(seqState.prevOffset[i]); } + } + + /* last literal segment */ + { size_t const lastLLSize = (size_t)(litEnd - litPtr); + DEBUGLOG(6, "copy last literals : %u", (U32)lastLLSize); + RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, ""); + if (op != NULL) { + ZSTD_memcpy(op, litPtr, lastLLSize); + op += lastLLSize; + } } + + DEBUGLOG(6, "decoded block of size %u bytes", (U32)(op - ostart)); + return (size_t)(op - ostart); +} + +static size_t +ZSTD_decompressSequences_default(ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); +} + +static size_t +ZSTD_decompressSequencesSplitLitBuffer_default(ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); +} +#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */ + +#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT + +FORCE_INLINE_TEMPLATE + +size_t ZSTD_prefetchMatch(size_t prefetchPos, seq_t const sequence, + const BYTE* const prefixStart, const BYTE* const dictEnd) +{ + prefetchPos += sequence.litLength; + { const BYTE* const matchBase = (sequence.offset > prefetchPos) ? dictEnd : prefixStart; + /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted. + * No consequence though : memory address is only used for prefetching, not for dereferencing */ + const BYTE* const match = ZSTD_wrappedPtrSub(ZSTD_wrappedPtrAdd(matchBase, prefetchPos), sequence.offset); + PREFETCH_L1(match); PREFETCH_L1(match+CACHELINE_SIZE); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */ + } + return prefetchPos + sequence.matchLength; +} + +/* This decoding function employs prefetching + * to reduce latency impact of cache misses. + * It's generally employed when block contains a significant portion of long-distance matches + * or when coupled with a "cold" dictionary */ +FORCE_INLINE_TEMPLATE size_t +ZSTD_decompressSequencesLong_body( + ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + const BYTE* ip = (const BYTE*)seqStart; + const BYTE* const iend = ip + seqSize; + BYTE* const ostart = (BYTE*)dst; + BYTE* const oend = dctx->litBufferLocation == ZSTD_in_dst ? dctx->litBuffer : ZSTD_maybeNullPtrAdd(ostart, maxDstSize); + BYTE* op = ostart; + const BYTE* litPtr = dctx->litPtr; + const BYTE* litBufferEnd = dctx->litBufferEnd; + const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart); + const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart); + const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd); + + /* Regen sequences */ + if (nbSeq) { +#define STORED_SEQS 8 +#define STORED_SEQS_MASK (STORED_SEQS-1) +#define ADVANCED_SEQS STORED_SEQS + seq_t sequences[STORED_SEQS]; + int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS); + seqState_t seqState; + int seqNb; + size_t prefetchPos = (size_t)(op-prefixStart); /* track position relative to prefixStart */ + + dctx->fseEntropy = 1; + { int i; for (i=0; ientropy.rep[i]; } + assert(dst != NULL); + assert(iend >= ip); + RETURN_ERROR_IF( + ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)), + corruption_detected, ""); + ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr); + ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr); + ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr); + + /* prepare in advance */ + for (seqNb=0; seqNblitBufferLocation == ZSTD_split && litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength > dctx->litBufferEnd) { + /* lit buffer is reaching split point, empty out the first buffer and transition to litExtraBuffer */ + const size_t leftoverLit = dctx->litBufferEnd - litPtr; + if (leftoverLit) + { + RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer"); + ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit); + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength -= leftoverLit; + op += leftoverLit; + } + litPtr = dctx->litExtraBuffer; + litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE; + dctx->litBufferLocation = ZSTD_not_in_dst; + { size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd); +#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) + assert(!ZSTD_isError(oneSeqSize)); + ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart); +#endif + if (ZSTD_isError(oneSeqSize)) return oneSeqSize; + + prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd); + sequences[seqNb & STORED_SEQS_MASK] = sequence; + op += oneSeqSize; + } } + else + { + /* lit buffer is either wholly contained in first or second split, or not split at all*/ + size_t const oneSeqSize = dctx->litBufferLocation == ZSTD_split ? + ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength - WILDCOPY_OVERLENGTH, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) : + ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd); +#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) + assert(!ZSTD_isError(oneSeqSize)); + ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart); +#endif + if (ZSTD_isError(oneSeqSize)) return oneSeqSize; + + prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd); + sequences[seqNb & STORED_SEQS_MASK] = sequence; + op += oneSeqSize; + } + } + RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, ""); + + /* finish queue */ + seqNb -= seqAdvance; + for ( ; seqNblitBufferLocation == ZSTD_split && litPtr + sequence->litLength > dctx->litBufferEnd) { + const size_t leftoverLit = dctx->litBufferEnd - litPtr; + if (leftoverLit) { + RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer"); + ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit); + sequence->litLength -= leftoverLit; + op += leftoverLit; + } + litPtr = dctx->litExtraBuffer; + litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE; + dctx->litBufferLocation = ZSTD_not_in_dst; + { size_t const oneSeqSize = ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd); +#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) + assert(!ZSTD_isError(oneSeqSize)); + ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart); +#endif + if (ZSTD_isError(oneSeqSize)) return oneSeqSize; + op += oneSeqSize; + } + } + else + { + size_t const oneSeqSize = dctx->litBufferLocation == ZSTD_split ? + ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence->litLength - WILDCOPY_OVERLENGTH, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) : + ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd); +#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) + assert(!ZSTD_isError(oneSeqSize)); + ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart); +#endif + if (ZSTD_isError(oneSeqSize)) return oneSeqSize; + op += oneSeqSize; + } + } + + /* save reps for next block */ + { U32 i; for (i=0; ientropy.rep[i] = (U32)(seqState.prevOffset[i]); } + } + + /* last literal segment */ + if (dctx->litBufferLocation == ZSTD_split) { /* first deplete literal buffer in dst, then copy litExtraBuffer */ + size_t const lastLLSize = litBufferEnd - litPtr; + RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, ""); + if (op != NULL) { + ZSTD_memmove(op, litPtr, lastLLSize); + op += lastLLSize; + } + litPtr = dctx->litExtraBuffer; + litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE; + } + { size_t const lastLLSize = litBufferEnd - litPtr; + RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, ""); + if (op != NULL) { + ZSTD_memmove(op, litPtr, lastLLSize); + op += lastLLSize; + } + } + + return (size_t)(op - ostart); +} + +static size_t +ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); +} +#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */ + + + +#if DYNAMIC_BMI2 + +#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG +static BMI2_TARGET_ATTRIBUTE size_t +DONT_VECTORIZE +ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); +} +static BMI2_TARGET_ATTRIBUTE size_t +DONT_VECTORIZE +ZSTD_decompressSequencesSplitLitBuffer_bmi2(ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); +} +#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */ + +#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT +static BMI2_TARGET_ATTRIBUTE size_t +ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); +} +#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */ + +#endif /* DYNAMIC_BMI2 */ + +typedef size_t (*ZSTD_decompressSequences_t)( + ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset); + +#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG +static size_t +ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + DEBUGLOG(5, "ZSTD_decompressSequences"); +#if DYNAMIC_BMI2 + if (ZSTD_DCtx_get_bmi2(dctx)) { + return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); + } +#endif + return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); +} +static size_t +ZSTD_decompressSequencesSplitLitBuffer(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + DEBUGLOG(5, "ZSTD_decompressSequencesSplitLitBuffer"); +#if DYNAMIC_BMI2 + if (ZSTD_DCtx_get_bmi2(dctx)) { + return ZSTD_decompressSequencesSplitLitBuffer_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); + } +#endif + return ZSTD_decompressSequencesSplitLitBuffer_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); +} +#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */ + + +#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT +/* ZSTD_decompressSequencesLong() : + * decompression function triggered when a minimum share of offsets is considered "long", + * aka out of cache. + * note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance". + * This function will try to mitigate main memory latency through the use of prefetching */ +static size_t +ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + DEBUGLOG(5, "ZSTD_decompressSequencesLong"); +#if DYNAMIC_BMI2 + if (ZSTD_DCtx_get_bmi2(dctx)) { + return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); + } +#endif + return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); +} +#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */ + + +/** + * @returns The total size of the history referenceable by zstd, including + * both the prefix and the extDict. At @p op any offset larger than this + * is invalid. + */ +static size_t ZSTD_totalHistorySize(BYTE* op, BYTE const* virtualStart) +{ + return (size_t)(op - virtualStart); +} + +typedef struct { + unsigned longOffsetShare; + unsigned maxNbAdditionalBits; +} ZSTD_OffsetInfo; + +/* ZSTD_getOffsetInfo() : + * condition : offTable must be valid + * @return : "share" of long offsets (arbitrarily defined as > (1<<23)) + * compared to maximum possible of (1< 22) info.longOffsetShare += 1; + } + + assert(tableLog <= OffFSELog); + info.longOffsetShare <<= (OffFSELog - tableLog); /* scale to OffFSELog */ + } + + return info; +} + +/** + * @returns The maximum offset we can decode in one read of our bitstream, without + * reloading more bits in the middle of the offset bits read. Any offsets larger + * than this must use the long offset decoder. + */ +static size_t ZSTD_maxShortOffset(void) +{ + if (MEM_64bits()) { + /* We can decode any offset without reloading bits. + * This might change if the max window size grows. + */ + ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31); + return (size_t)-1; + } else { + /* The maximum offBase is (1 << (STREAM_ACCUMULATOR_MIN + 1)) - 1. + * This offBase would require STREAM_ACCUMULATOR_MIN extra bits. + * Then we have to subtract ZSTD_REP_NUM to get the maximum possible offset. + */ + size_t const maxOffbase = ((size_t)1 << (STREAM_ACCUMULATOR_MIN + 1)) - 1; + size_t const maxOffset = maxOffbase - ZSTD_REP_NUM; + assert(ZSTD_highbit32((U32)maxOffbase) == STREAM_ACCUMULATOR_MIN); + return maxOffset; + } +} + +size_t +ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, const streaming_operation streaming) +{ /* blockType == blockCompressed */ + const BYTE* ip = (const BYTE*)src; + DEBUGLOG(5, "ZSTD_decompressBlock_internal (cSize : %u)", (unsigned)srcSize); + + /* Note : the wording of the specification + * allows compressed block to be sized exactly ZSTD_blockSizeMax(dctx). + * This generally does not happen, as it makes little sense, + * since an uncompressed block would feature same size and have no decompression cost. + * Also, note that decoder from reference libzstd before < v1.5.4 + * would consider this edge case as an error. + * As a consequence, avoid generating compressed blocks of size ZSTD_blockSizeMax(dctx) + * for broader compatibility with the deployed ecosystem of zstd decoders */ + RETURN_ERROR_IF(srcSize > ZSTD_blockSizeMax(dctx), srcSize_wrong, ""); + + /* Decode literals section */ + { size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, streaming); + DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : cSize=%u, nbLiterals=%zu", (U32)litCSize, dctx->litSize); + if (ZSTD_isError(litCSize)) return litCSize; + ip += litCSize; + srcSize -= litCSize; + } + + /* Build Decoding Tables */ + { + /* Compute the maximum block size, which must also work when !frame and fParams are unset. + * Additionally, take the min with dstCapacity to ensure that the totalHistorySize fits in a size_t. + */ + size_t const blockSizeMax = MIN(dstCapacity, ZSTD_blockSizeMax(dctx)); + size_t const totalHistorySize = ZSTD_totalHistorySize(ZSTD_maybeNullPtrAdd((BYTE*)dst, blockSizeMax), (BYTE const*)dctx->virtualStart); + /* isLongOffset must be true if there are long offsets. + * Offsets are long if they are larger than ZSTD_maxShortOffset(). + * We don't expect that to be the case in 64-bit mode. + * + * We check here to see if our history is large enough to allow long offsets. + * If it isn't, then we can't possible have (valid) long offsets. If the offset + * is invalid, then it is okay to read it incorrectly. + * + * If isLongOffsets is true, then we will later check our decoding table to see + * if it is even possible to generate long offsets. + */ + ZSTD_longOffset_e isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (totalHistorySize > ZSTD_maxShortOffset())); + /* These macros control at build-time which decompressor implementation + * we use. If neither is defined, we do some inspection and dispatch at + * runtime. + */ +#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \ + !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG) + int usePrefetchDecoder = dctx->ddictIsCold; +#else + /* Set to 1 to avoid computing offset info if we don't need to. + * Otherwise this value is ignored. + */ + int usePrefetchDecoder = 1; +#endif + int nbSeq; + size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize); + if (ZSTD_isError(seqHSize)) return seqHSize; + ip += seqHSize; + srcSize -= seqHSize; + + RETURN_ERROR_IF((dst == NULL || dstCapacity == 0) && nbSeq > 0, dstSize_tooSmall, "NULL not handled"); + RETURN_ERROR_IF(MEM_64bits() && sizeof(size_t) == sizeof(void*) && (size_t)(-1) - (size_t)dst < (size_t)(1 << 20), dstSize_tooSmall, + "invalid dst"); + + /* If we could potentially have long offsets, or we might want to use the prefetch decoder, + * compute information about the share of long offsets, and the maximum nbAdditionalBits. + * NOTE: could probably use a larger nbSeq limit + */ + if (isLongOffset || (!usePrefetchDecoder && (totalHistorySize > (1u << 24)) && (nbSeq > 8))) { + ZSTD_OffsetInfo const info = ZSTD_getOffsetInfo(dctx->OFTptr, nbSeq); + if (isLongOffset && info.maxNbAdditionalBits <= STREAM_ACCUMULATOR_MIN) { + /* If isLongOffset, but the maximum number of additional bits that we see in our table is small + * enough, then we know it is impossible to have too long an offset in this block, so we can + * use the regular offset decoder. + */ + isLongOffset = ZSTD_lo_isRegularOffset; + } + if (!usePrefetchDecoder) { + U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */ + usePrefetchDecoder = (info.longOffsetShare >= minShare); + } + } + + dctx->ddictIsCold = 0; + +#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \ + !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG) + if (usePrefetchDecoder) { +#else + (void)usePrefetchDecoder; + { +#endif +#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT + return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset); +#endif + } + +#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG + /* else */ + if (dctx->litBufferLocation == ZSTD_split) + return ZSTD_decompressSequencesSplitLitBuffer(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset); + else + return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset); +#endif + } +} + + +ZSTD_ALLOW_POINTER_OVERFLOW_ATTR +void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize) +{ + if (dst != dctx->previousDstEnd && dstSize > 0) { /* not contiguous */ + dctx->dictEnd = dctx->previousDstEnd; + dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart)); + dctx->prefixStart = dst; + dctx->previousDstEnd = dst; + } +} + + +size_t ZSTD_decompressBlock_deprecated(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize) +{ + size_t dSize; + dctx->isFrameDecompression = 0; + ZSTD_checkContinuity(dctx, dst, dstCapacity); + dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, not_streaming); + FORWARD_IF_ERROR(dSize, ""); + dctx->previousDstEnd = (char*)dst + dSize; + return dSize; +} + + +/* NOTE: Must just wrap ZSTD_decompressBlock_deprecated() */ +size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize) +{ + return ZSTD_decompressBlock_deprecated(dctx, dst, dstCapacity, src, srcSize); +} diff --git a/src/third-party/zstd/decompress/zstd_decompress_block.h b/src/third-party/zstd/decompress/zstd_decompress_block.h new file mode 100644 index 0000000000000..ab152404ba057 --- /dev/null +++ b/src/third-party/zstd/decompress/zstd_decompress_block.h @@ -0,0 +1,73 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + +#ifndef ZSTD_DEC_BLOCK_H +#define ZSTD_DEC_BLOCK_H + +/*-******************************************************* + * Dependencies + *********************************************************/ +#include "../common/zstd_deps.h" /* size_t */ +#include "../zstd.h" /* DCtx, and some public functions */ +#include "../common/zstd_internal.h" /* blockProperties_t, and some public functions */ +#include "zstd_decompress_internal.h" /* ZSTD_seqSymbol */ + + +/* === Prototypes === */ + +/* note: prototypes already published within `zstd.h` : + * ZSTD_decompressBlock() + */ + +/* note: prototypes already published within `zstd_internal.h` : + * ZSTD_getcBlockSize() + * ZSTD_decodeSeqHeaders() + */ + + + /* Streaming state is used to inform allocation of the literal buffer */ +typedef enum { + not_streaming = 0, + is_streaming = 1 +} streaming_operation; + +/* ZSTD_decompressBlock_internal() : + * decompress block, starting at `src`, + * into destination buffer `dst`. + * @return : decompressed block size, + * or an error code (which can be tested using ZSTD_isError()) + */ +size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, const streaming_operation streaming); + +/* ZSTD_buildFSETable() : + * generate FSE decoding table for one symbol (ll, ml or off) + * this function must be called with valid parameters only + * (dt is large enough, normalizedCounter distribution total is a power of 2, max is within range, etc.) + * in which case it cannot fail. + * The workspace must be 4-byte aligned and at least ZSTD_BUILD_FSE_TABLE_WKSP_SIZE bytes, which is + * defined in zstd_decompress_internal.h. + * Internal use only. + */ +void ZSTD_buildFSETable(ZSTD_seqSymbol* dt, + const short* normalizedCounter, unsigned maxSymbolValue, + const U32* baseValue, const U8* nbAdditionalBits, + unsigned tableLog, void* wksp, size_t wkspSize, + int bmi2); + +/* Internal definition of ZSTD_decompressBlock() to avoid deprecation warnings. */ +size_t ZSTD_decompressBlock_deprecated(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize); + + +#endif /* ZSTD_DEC_BLOCK_H */ diff --git a/src/third-party/zstd/decompress/zstd_decompress_internal.h b/src/third-party/zstd/decompress/zstd_decompress_internal.h new file mode 100644 index 0000000000000..7d1f1053b237e --- /dev/null +++ b/src/third-party/zstd/decompress/zstd_decompress_internal.h @@ -0,0 +1,240 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + +/* zstd_decompress_internal: + * objects and definitions shared within lib/decompress modules */ + + #ifndef ZSTD_DECOMPRESS_INTERNAL_H + #define ZSTD_DECOMPRESS_INTERNAL_H + + +/*-******************************************************* + * Dependencies + *********************************************************/ +#include "../common/mem.h" /* BYTE, U16, U32 */ +#include "../common/zstd_internal.h" /* constants : MaxLL, MaxML, MaxOff, LLFSELog, etc. */ + + + +/*-******************************************************* + * Constants + *********************************************************/ +static UNUSED_ATTR const U32 LL_base[MaxLL+1] = { + 0, 1, 2, 3, 4, 5, 6, 7, + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 18, 20, 22, 24, 28, 32, 40, + 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, + 0x2000, 0x4000, 0x8000, 0x10000 }; + +static UNUSED_ATTR const U32 OF_base[MaxOff+1] = { + 0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D, + 0xFD, 0x1FD, 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD, + 0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD, + 0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD, 0x1FFFFFFD, 0x3FFFFFFD, 0x7FFFFFFD }; + +static UNUSED_ATTR const U8 OF_bits[MaxOff+1] = { + 0, 1, 2, 3, 4, 5, 6, 7, + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31 }; + +static UNUSED_ATTR const U32 ML_base[MaxML+1] = { + 3, 4, 5, 6, 7, 8, 9, 10, + 11, 12, 13, 14, 15, 16, 17, 18, + 19, 20, 21, 22, 23, 24, 25, 26, + 27, 28, 29, 30, 31, 32, 33, 34, + 35, 37, 39, 41, 43, 47, 51, 59, + 67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803, + 0x1003, 0x2003, 0x4003, 0x8003, 0x10003 }; + + +/*-******************************************************* + * Decompression types + *********************************************************/ + typedef struct { + U32 fastMode; + U32 tableLog; + } ZSTD_seqSymbol_header; + + typedef struct { + U16 nextState; + BYTE nbAdditionalBits; + BYTE nbBits; + U32 baseValue; + } ZSTD_seqSymbol; + + #define SEQSYMBOL_TABLE_SIZE(log) (1 + (1 << (log))) + +#define ZSTD_BUILD_FSE_TABLE_WKSP_SIZE (sizeof(S16) * (MaxSeq + 1) + (1u << MaxFSELog) + sizeof(U64)) +#define ZSTD_BUILD_FSE_TABLE_WKSP_SIZE_U32 ((ZSTD_BUILD_FSE_TABLE_WKSP_SIZE + sizeof(U32) - 1) / sizeof(U32)) +#define ZSTD_HUFFDTABLE_CAPACITY_LOG 12 + +typedef struct { + ZSTD_seqSymbol LLTable[SEQSYMBOL_TABLE_SIZE(LLFSELog)]; /* Note : Space reserved for FSE Tables */ + ZSTD_seqSymbol OFTable[SEQSYMBOL_TABLE_SIZE(OffFSELog)]; /* is also used as temporary workspace while building hufTable during DDict creation */ + ZSTD_seqSymbol MLTable[SEQSYMBOL_TABLE_SIZE(MLFSELog)]; /* and therefore must be at least HUF_DECOMPRESS_WORKSPACE_SIZE large */ + HUF_DTable hufTable[HUF_DTABLE_SIZE(ZSTD_HUFFDTABLE_CAPACITY_LOG)]; /* can accommodate HUF_decompress4X */ + U32 rep[ZSTD_REP_NUM]; + U32 workspace[ZSTD_BUILD_FSE_TABLE_WKSP_SIZE_U32]; +} ZSTD_entropyDTables_t; + +typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader, + ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock, + ZSTDds_decompressLastBlock, ZSTDds_checkChecksum, + ZSTDds_decodeSkippableHeader, ZSTDds_skipFrame } ZSTD_dStage; + +typedef enum { zdss_init=0, zdss_loadHeader, + zdss_read, zdss_load, zdss_flush } ZSTD_dStreamStage; + +typedef enum { + ZSTD_use_indefinitely = -1, /* Use the dictionary indefinitely */ + ZSTD_dont_use = 0, /* Do not use the dictionary (if one exists free it) */ + ZSTD_use_once = 1 /* Use the dictionary once and set to ZSTD_dont_use */ +} ZSTD_dictUses_e; + +/* Hashset for storing references to multiple ZSTD_DDict within ZSTD_DCtx */ +typedef struct { + const ZSTD_DDict** ddictPtrTable; + size_t ddictPtrTableSize; + size_t ddictPtrCount; +} ZSTD_DDictHashSet; + +#ifndef ZSTD_DECODER_INTERNAL_BUFFER +# define ZSTD_DECODER_INTERNAL_BUFFER (1 << 16) +#endif + +#define ZSTD_LBMIN 64 +#define ZSTD_LBMAX (128 << 10) + +/* extra buffer, compensates when dst is not large enough to store litBuffer */ +#define ZSTD_LITBUFFEREXTRASIZE BOUNDED(ZSTD_LBMIN, ZSTD_DECODER_INTERNAL_BUFFER, ZSTD_LBMAX) + +typedef enum { + ZSTD_not_in_dst = 0, /* Stored entirely within litExtraBuffer */ + ZSTD_in_dst = 1, /* Stored entirely within dst (in memory after current output write) */ + ZSTD_split = 2 /* Split between litExtraBuffer and dst */ +} ZSTD_litLocation_e; + +struct ZSTD_DCtx_s +{ + const ZSTD_seqSymbol* LLTptr; + const ZSTD_seqSymbol* MLTptr; + const ZSTD_seqSymbol* OFTptr; + const HUF_DTable* HUFptr; + ZSTD_entropyDTables_t entropy; + U32 workspace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; /* space needed when building huffman tables */ + const void* previousDstEnd; /* detect continuity */ + const void* prefixStart; /* start of current segment */ + const void* virtualStart; /* virtual start of previous segment if it was just before current one */ + const void* dictEnd; /* end of previous segment */ + size_t expected; + ZSTD_FrameHeader fParams; + U64 processedCSize; + U64 decodedSize; + blockType_e bType; /* used in ZSTD_decompressContinue(), store blockType between block header decoding and block decompression stages */ + ZSTD_dStage stage; + U32 litEntropy; + U32 fseEntropy; + XXH64_state_t xxhState; + size_t headerSize; + ZSTD_format_e format; + ZSTD_forceIgnoreChecksum_e forceIgnoreChecksum; /* User specified: if == 1, will ignore checksums in compressed frame. Default == 0 */ + U32 validateChecksum; /* if == 1, will validate checksum. Is == 1 if (fParams.checksumFlag == 1) and (forceIgnoreChecksum == 0). */ + const BYTE* litPtr; + ZSTD_customMem customMem; + size_t litSize; + size_t rleSize; + size_t staticSize; + int isFrameDecompression; +#if DYNAMIC_BMI2 != 0 + int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */ +#endif + + /* dictionary */ + ZSTD_DDict* ddictLocal; + const ZSTD_DDict* ddict; /* set by ZSTD_initDStream_usingDDict(), or ZSTD_DCtx_refDDict() */ + U32 dictID; + int ddictIsCold; /* if == 1 : dictionary is "new" for working context, and presumed "cold" (not in cpu cache) */ + ZSTD_dictUses_e dictUses; + ZSTD_DDictHashSet* ddictSet; /* Hash set for multiple ddicts */ + ZSTD_refMultipleDDicts_e refMultipleDDicts; /* User specified: if == 1, will allow references to multiple DDicts. Default == 0 (disabled) */ + int disableHufAsm; + int maxBlockSizeParam; + + /* streaming */ + ZSTD_dStreamStage streamStage; + char* inBuff; + size_t inBuffSize; + size_t inPos; + size_t maxWindowSize; + char* outBuff; + size_t outBuffSize; + size_t outStart; + size_t outEnd; + size_t lhSize; +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) + void* legacyContext; + U32 previousLegacyVersion; + U32 legacyVersion; +#endif + U32 hostageByte; + int noForwardProgress; + ZSTD_bufferMode_e outBufferMode; + ZSTD_outBuffer expectedOutBuffer; + + /* workspace */ + BYTE* litBuffer; + const BYTE* litBufferEnd; + ZSTD_litLocation_e litBufferLocation; + BYTE litExtraBuffer[ZSTD_LITBUFFEREXTRASIZE + WILDCOPY_OVERLENGTH]; /* literal buffer can be split between storage within dst and within this scratch buffer */ + BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX]; + + size_t oversizedDuration; + +#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION + void const* dictContentBeginForFuzzing; + void const* dictContentEndForFuzzing; +#endif + + /* Tracing */ +#if ZSTD_TRACE + ZSTD_TraceCtx traceCtx; +#endif +}; /* typedef'd to ZSTD_DCtx within "zstd.h" */ + +MEM_STATIC int ZSTD_DCtx_get_bmi2(const struct ZSTD_DCtx_s *dctx) { +#if DYNAMIC_BMI2 != 0 + return dctx->bmi2; +#else + (void)dctx; + return 0; +#endif +} + +/*-******************************************************* + * Shared internal functions + *********************************************************/ + +/*! ZSTD_loadDEntropy() : + * dict : must point at beginning of a valid zstd dictionary. + * @return : size of dictionary header (size of magic number + dict ID + entropy tables) */ +size_t ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy, + const void* const dict, size_t const dictSize); + +/*! ZSTD_checkContinuity() : + * check if next `dst` follows previous position, where decompression ended. + * If yes, do nothing (continue on current segment). + * If not, classify previous segment as "external dictionary", and start a new segment. + * This function cannot fail. */ +void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize); + + +#endif /* ZSTD_DECOMPRESS_INTERNAL_H */ diff --git a/src/third-party/zstd/zdict.h b/src/third-party/zstd/zdict.h new file mode 100644 index 0000000000000..599b793013ba9 --- /dev/null +++ b/src/third-party/zstd/zdict.h @@ -0,0 +1,481 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_ZDICT_H +#define ZSTD_ZDICT_H + + +/*====== Dependencies ======*/ +#include /* size_t */ + +#if defined (__cplusplus) +extern "C" { +#endif + +/* ===== ZDICTLIB_API : control library symbols visibility ===== */ +#ifndef ZDICTLIB_VISIBLE + /* Backwards compatibility with old macro name */ +# ifdef ZDICTLIB_VISIBILITY +# define ZDICTLIB_VISIBLE ZDICTLIB_VISIBILITY +# elif defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__) +# define ZDICTLIB_VISIBLE __attribute__ ((visibility ("default"))) +# else +# define ZDICTLIB_VISIBLE +# endif +#endif + +#ifndef ZDICTLIB_HIDDEN +# if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__) +# define ZDICTLIB_HIDDEN __attribute__ ((visibility ("hidden"))) +# else +# define ZDICTLIB_HIDDEN +# endif +#endif + +#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1) +# define ZDICTLIB_API __declspec(dllexport) ZDICTLIB_VISIBLE +#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1) +# define ZDICTLIB_API __declspec(dllimport) ZDICTLIB_VISIBLE /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ +#else +# define ZDICTLIB_API ZDICTLIB_VISIBLE +#endif + +/******************************************************************************* + * Zstd dictionary builder + * + * FAQ + * === + * Why should I use a dictionary? + * ------------------------------ + * + * Zstd can use dictionaries to improve compression ratio of small data. + * Traditionally small files don't compress well because there is very little + * repetition in a single sample, since it is small. But, if you are compressing + * many similar files, like a bunch of JSON records that share the same + * structure, you can train a dictionary on ahead of time on some samples of + * these files. Then, zstd can use the dictionary to find repetitions that are + * present across samples. This can vastly improve compression ratio. + * + * When is a dictionary useful? + * ---------------------------- + * + * Dictionaries are useful when compressing many small files that are similar. + * The larger a file is, the less benefit a dictionary will have. Generally, + * we don't expect dictionary compression to be effective past 100KB. And the + * smaller a file is, the more we would expect the dictionary to help. + * + * How do I use a dictionary? + * -------------------------- + * + * Simply pass the dictionary to the zstd compressor with + * `ZSTD_CCtx_loadDictionary()`. The same dictionary must then be passed to + * the decompressor, using `ZSTD_DCtx_loadDictionary()`. There are other + * more advanced functions that allow selecting some options, see zstd.h for + * complete documentation. + * + * What is a zstd dictionary? + * -------------------------- + * + * A zstd dictionary has two pieces: Its header, and its content. The header + * contains a magic number, the dictionary ID, and entropy tables. These + * entropy tables allow zstd to save on header costs in the compressed file, + * which really matters for small data. The content is just bytes, which are + * repeated content that is common across many samples. + * + * What is a raw content dictionary? + * --------------------------------- + * + * A raw content dictionary is just bytes. It doesn't have a zstd dictionary + * header, a dictionary ID, or entropy tables. Any buffer is a valid raw + * content dictionary. + * + * How do I train a dictionary? + * ---------------------------- + * + * Gather samples from your use case. These samples should be similar to each + * other. If you have several use cases, you could try to train one dictionary + * per use case. + * + * Pass those samples to `ZDICT_trainFromBuffer()` and that will train your + * dictionary. There are a few advanced versions of this function, but this + * is a great starting point. If you want to further tune your dictionary + * you could try `ZDICT_optimizeTrainFromBuffer_cover()`. If that is too slow + * you can try `ZDICT_optimizeTrainFromBuffer_fastCover()`. + * + * If the dictionary training function fails, that is likely because you + * either passed too few samples, or a dictionary would not be effective + * for your data. Look at the messages that the dictionary trainer printed, + * if it doesn't say too few samples, then a dictionary would not be effective. + * + * How large should my dictionary be? + * ---------------------------------- + * + * A reasonable dictionary size, the `dictBufferCapacity`, is about 100KB. + * The zstd CLI defaults to a 110KB dictionary. You likely don't need a + * dictionary larger than that. But, most use cases can get away with a + * smaller dictionary. The advanced dictionary builders can automatically + * shrink the dictionary for you, and select the smallest size that doesn't + * hurt compression ratio too much. See the `shrinkDict` parameter. + * A smaller dictionary can save memory, and potentially speed up + * compression. + * + * How many samples should I provide to the dictionary builder? + * ------------------------------------------------------------ + * + * We generally recommend passing ~100x the size of the dictionary + * in samples. A few thousand should suffice. Having too few samples + * can hurt the dictionaries effectiveness. Having more samples will + * only improve the dictionaries effectiveness. But having too many + * samples can slow down the dictionary builder. + * + * How do I determine if a dictionary will be effective? + * ----------------------------------------------------- + * + * Simply train a dictionary and try it out. You can use zstd's built in + * benchmarking tool to test the dictionary effectiveness. + * + * # Benchmark levels 1-3 without a dictionary + * zstd -b1e3 -r /path/to/my/files + * # Benchmark levels 1-3 with a dictionary + * zstd -b1e3 -r /path/to/my/files -D /path/to/my/dictionary + * + * When should I retrain a dictionary? + * ----------------------------------- + * + * You should retrain a dictionary when its effectiveness drops. Dictionary + * effectiveness drops as the data you are compressing changes. Generally, we do + * expect dictionaries to "decay" over time, as your data changes, but the rate + * at which they decay depends on your use case. Internally, we regularly + * retrain dictionaries, and if the new dictionary performs significantly + * better than the old dictionary, we will ship the new dictionary. + * + * I have a raw content dictionary, how do I turn it into a zstd dictionary? + * ------------------------------------------------------------------------- + * + * If you have a raw content dictionary, e.g. by manually constructing it, or + * using a third-party dictionary builder, you can turn it into a zstd + * dictionary by using `ZDICT_finalizeDictionary()`. You'll also have to + * provide some samples of the data. It will add the zstd header to the + * raw content, which contains a dictionary ID and entropy tables, which + * will improve compression ratio, and allow zstd to write the dictionary ID + * into the frame, if you so choose. + * + * Do I have to use zstd's dictionary builder? + * ------------------------------------------- + * + * No! You can construct dictionary content however you please, it is just + * bytes. It will always be valid as a raw content dictionary. If you want + * a zstd dictionary, which can improve compression ratio, use + * `ZDICT_finalizeDictionary()`. + * + * What is the attack surface of a zstd dictionary? + * ------------------------------------------------ + * + * Zstd is heavily fuzz tested, including loading fuzzed dictionaries, so + * zstd should never crash, or access out-of-bounds memory no matter what + * the dictionary is. However, if an attacker can control the dictionary + * during decompression, they can cause zstd to generate arbitrary bytes, + * just like if they controlled the compressed data. + * + ******************************************************************************/ + + +/*! ZDICT_trainFromBuffer(): + * Train a dictionary from an array of samples. + * Redirect towards ZDICT_optimizeTrainFromBuffer_fastCover() single-threaded, with d=8, steps=4, + * f=20, and accel=1. + * Samples must be stored concatenated in a single flat buffer `samplesBuffer`, + * supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order. + * The resulting dictionary will be saved into `dictBuffer`. + * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`) + * or an error code, which can be tested with ZDICT_isError(). + * Note: Dictionary training will fail if there are not enough samples to construct a + * dictionary, or if most of the samples are too small (< 8 bytes being the lower limit). + * If dictionary training fails, you should use zstd without a dictionary, as the dictionary + * would've been ineffective anyways. If you believe your samples would benefit from a dictionary + * please open an issue with details, and we can look into it. + * Note: ZDICT_trainFromBuffer()'s memory usage is about 6 MB. + * Tips: In general, a reasonable dictionary has a size of ~ 100 KB. + * It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`. + * In general, it's recommended to provide a few thousands samples, though this can vary a lot. + * It's recommended that total size of all samples be about ~x100 times the target size of dictionary. + */ +ZDICTLIB_API size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity, + const void* samplesBuffer, + const size_t* samplesSizes, unsigned nbSamples); + +typedef struct { + int compressionLevel; /**< optimize for a specific zstd compression level; 0 means default */ + unsigned notificationLevel; /**< Write log to stderr; 0 = none (default); 1 = errors; 2 = progression; 3 = details; 4 = debug; */ + unsigned dictID; /**< force dictID value; 0 means auto mode (32-bits random value) + * NOTE: The zstd format reserves some dictionary IDs for future use. + * You may use them in private settings, but be warned that they + * may be used by zstd in a public dictionary registry in the future. + * These dictionary IDs are: + * - low range : <= 32767 + * - high range : >= (2^31) + */ +} ZDICT_params_t; + +/*! ZDICT_finalizeDictionary(): + * Given a custom content as a basis for dictionary, and a set of samples, + * finalize dictionary by adding headers and statistics according to the zstd + * dictionary format. + * + * Samples must be stored concatenated in a flat buffer `samplesBuffer`, + * supplied with an array of sizes `samplesSizes`, providing the size of each + * sample in order. The samples are used to construct the statistics, so they + * should be representative of what you will compress with this dictionary. + * + * The compression level can be set in `parameters`. You should pass the + * compression level you expect to use in production. The statistics for each + * compression level differ, so tuning the dictionary for the compression level + * can help quite a bit. + * + * You can set an explicit dictionary ID in `parameters`, or allow us to pick + * a random dictionary ID for you, but we can't guarantee no collisions. + * + * The dstDictBuffer and the dictContent may overlap, and the content will be + * appended to the end of the header. If the header + the content doesn't fit in + * maxDictSize the beginning of the content is truncated to make room, since it + * is presumed that the most profitable content is at the end of the dictionary, + * since that is the cheapest to reference. + * + * `maxDictSize` must be >= max(dictContentSize, ZDICT_DICTSIZE_MIN). + * + * @return: size of dictionary stored into `dstDictBuffer` (<= `maxDictSize`), + * or an error code, which can be tested by ZDICT_isError(). + * Note: ZDICT_finalizeDictionary() will push notifications into stderr if + * instructed to, using notificationLevel>0. + * NOTE: This function currently may fail in several edge cases including: + * * Not enough samples + * * Samples are uncompressible + * * Samples are all exactly the same + */ +ZDICTLIB_API size_t ZDICT_finalizeDictionary(void* dstDictBuffer, size_t maxDictSize, + const void* dictContent, size_t dictContentSize, + const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, + ZDICT_params_t parameters); + + +/*====== Helper functions ======*/ +ZDICTLIB_API unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize); /**< extracts dictID; @return zero if error (not a valid dictionary) */ +ZDICTLIB_API size_t ZDICT_getDictHeaderSize(const void* dictBuffer, size_t dictSize); /* returns dict header size; returns a ZSTD error code on failure */ +ZDICTLIB_API unsigned ZDICT_isError(size_t errorCode); +ZDICTLIB_API const char* ZDICT_getErrorName(size_t errorCode); + +#if defined (__cplusplus) +} +#endif + +#endif /* ZSTD_ZDICT_H */ + +#if defined(ZDICT_STATIC_LINKING_ONLY) && !defined(ZSTD_ZDICT_H_STATIC) +#define ZSTD_ZDICT_H_STATIC + +#if defined (__cplusplus) +extern "C" { +#endif + +/* This can be overridden externally to hide static symbols. */ +#ifndef ZDICTLIB_STATIC_API +# if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1) +# define ZDICTLIB_STATIC_API __declspec(dllexport) ZDICTLIB_VISIBLE +# elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1) +# define ZDICTLIB_STATIC_API __declspec(dllimport) ZDICTLIB_VISIBLE +# else +# define ZDICTLIB_STATIC_API ZDICTLIB_VISIBLE +# endif +#endif + +/* ==================================================================================== + * The definitions in this section are considered experimental. + * They should never be used with a dynamic library, as they may change in the future. + * They are provided for advanced usages. + * Use them only in association with static linking. + * ==================================================================================== */ + +#define ZDICT_DICTSIZE_MIN 256 +/* Deprecated: Remove in v1.6.0 */ +#define ZDICT_CONTENTSIZE_MIN 128 + +/*! ZDICT_cover_params_t: + * k and d are the only required parameters. + * For others, value 0 means default. + */ +typedef struct { + unsigned k; /* Segment size : constraint: 0 < k : Reasonable range [16, 2048+] */ + unsigned d; /* dmer size : constraint: 0 < d <= k : Reasonable range [6, 16] */ + unsigned steps; /* Number of steps : Only used for optimization : 0 means default (40) : Higher means more parameters checked */ + unsigned nbThreads; /* Number of threads : constraint: 0 < nbThreads : 1 means single-threaded : Only used for optimization : Ignored if ZSTD_MULTITHREAD is not defined */ + double splitPoint; /* Percentage of samples used for training: Only used for optimization : the first nbSamples * splitPoint samples will be used to training, the last nbSamples * (1 - splitPoint) samples will be used for testing, 0 means default (1.0), 1.0 when all samples are used for both training and testing */ + unsigned shrinkDict; /* Train dictionaries to shrink in size starting from the minimum size and selects the smallest dictionary that is shrinkDictMaxRegression% worse than the largest dictionary. 0 means no shrinking and 1 means shrinking */ + unsigned shrinkDictMaxRegression; /* Sets shrinkDictMaxRegression so that a smaller dictionary can be at worse shrinkDictMaxRegression% worse than the max dict size dictionary. */ + ZDICT_params_t zParams; +} ZDICT_cover_params_t; + +typedef struct { + unsigned k; /* Segment size : constraint: 0 < k : Reasonable range [16, 2048+] */ + unsigned d; /* dmer size : constraint: 0 < d <= k : Reasonable range [6, 16] */ + unsigned f; /* log of size of frequency array : constraint: 0 < f <= 31 : 1 means default(20)*/ + unsigned steps; /* Number of steps : Only used for optimization : 0 means default (40) : Higher means more parameters checked */ + unsigned nbThreads; /* Number of threads : constraint: 0 < nbThreads : 1 means single-threaded : Only used for optimization : Ignored if ZSTD_MULTITHREAD is not defined */ + double splitPoint; /* Percentage of samples used for training: Only used for optimization : the first nbSamples * splitPoint samples will be used to training, the last nbSamples * (1 - splitPoint) samples will be used for testing, 0 means default (0.75), 1.0 when all samples are used for both training and testing */ + unsigned accel; /* Acceleration level: constraint: 0 < accel <= 10, higher means faster and less accurate, 0 means default(1) */ + unsigned shrinkDict; /* Train dictionaries to shrink in size starting from the minimum size and selects the smallest dictionary that is shrinkDictMaxRegression% worse than the largest dictionary. 0 means no shrinking and 1 means shrinking */ + unsigned shrinkDictMaxRegression; /* Sets shrinkDictMaxRegression so that a smaller dictionary can be at worse shrinkDictMaxRegression% worse than the max dict size dictionary. */ + + ZDICT_params_t zParams; +} ZDICT_fastCover_params_t; + +/*! ZDICT_trainFromBuffer_cover(): + * Train a dictionary from an array of samples using the COVER algorithm. + * Samples must be stored concatenated in a single flat buffer `samplesBuffer`, + * supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order. + * The resulting dictionary will be saved into `dictBuffer`. + * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`) + * or an error code, which can be tested with ZDICT_isError(). + * See ZDICT_trainFromBuffer() for details on failure modes. + * Note: ZDICT_trainFromBuffer_cover() requires about 9 bytes of memory for each input byte. + * Tips: In general, a reasonable dictionary has a size of ~ 100 KB. + * It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`. + * In general, it's recommended to provide a few thousands samples, though this can vary a lot. + * It's recommended that total size of all samples be about ~x100 times the target size of dictionary. + */ +ZDICTLIB_STATIC_API size_t ZDICT_trainFromBuffer_cover( + void *dictBuffer, size_t dictBufferCapacity, + const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples, + ZDICT_cover_params_t parameters); + +/*! ZDICT_optimizeTrainFromBuffer_cover(): + * The same requirements as above hold for all the parameters except `parameters`. + * This function tries many parameter combinations and picks the best parameters. + * `*parameters` is filled with the best parameters found, + * dictionary constructed with those parameters is stored in `dictBuffer`. + * + * All of the parameters d, k, steps are optional. + * If d is non-zero then we don't check multiple values of d, otherwise we check d = {6, 8}. + * if steps is zero it defaults to its default value. + * If k is non-zero then we don't check multiple values of k, otherwise we check steps values in [50, 2000]. + * + * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`) + * or an error code, which can be tested with ZDICT_isError(). + * On success `*parameters` contains the parameters selected. + * See ZDICT_trainFromBuffer() for details on failure modes. + * Note: ZDICT_optimizeTrainFromBuffer_cover() requires about 8 bytes of memory for each input byte and additionally another 5 bytes of memory for each byte of memory for each thread. + */ +ZDICTLIB_STATIC_API size_t ZDICT_optimizeTrainFromBuffer_cover( + void* dictBuffer, size_t dictBufferCapacity, + const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, + ZDICT_cover_params_t* parameters); + +/*! ZDICT_trainFromBuffer_fastCover(): + * Train a dictionary from an array of samples using a modified version of COVER algorithm. + * Samples must be stored concatenated in a single flat buffer `samplesBuffer`, + * supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order. + * d and k are required. + * All other parameters are optional, will use default values if not provided + * The resulting dictionary will be saved into `dictBuffer`. + * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`) + * or an error code, which can be tested with ZDICT_isError(). + * See ZDICT_trainFromBuffer() for details on failure modes. + * Note: ZDICT_trainFromBuffer_fastCover() requires 6 * 2^f bytes of memory. + * Tips: In general, a reasonable dictionary has a size of ~ 100 KB. + * It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`. + * In general, it's recommended to provide a few thousands samples, though this can vary a lot. + * It's recommended that total size of all samples be about ~x100 times the target size of dictionary. + */ +ZDICTLIB_STATIC_API size_t ZDICT_trainFromBuffer_fastCover(void *dictBuffer, + size_t dictBufferCapacity, const void *samplesBuffer, + const size_t *samplesSizes, unsigned nbSamples, + ZDICT_fastCover_params_t parameters); + +/*! ZDICT_optimizeTrainFromBuffer_fastCover(): + * The same requirements as above hold for all the parameters except `parameters`. + * This function tries many parameter combinations (specifically, k and d combinations) + * and picks the best parameters. `*parameters` is filled with the best parameters found, + * dictionary constructed with those parameters is stored in `dictBuffer`. + * All of the parameters d, k, steps, f, and accel are optional. + * If d is non-zero then we don't check multiple values of d, otherwise we check d = {6, 8}. + * if steps is zero it defaults to its default value. + * If k is non-zero then we don't check multiple values of k, otherwise we check steps values in [50, 2000]. + * If f is zero, default value of 20 is used. + * If accel is zero, default value of 1 is used. + * + * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`) + * or an error code, which can be tested with ZDICT_isError(). + * On success `*parameters` contains the parameters selected. + * See ZDICT_trainFromBuffer() for details on failure modes. + * Note: ZDICT_optimizeTrainFromBuffer_fastCover() requires about 6 * 2^f bytes of memory for each thread. + */ +ZDICTLIB_STATIC_API size_t ZDICT_optimizeTrainFromBuffer_fastCover(void* dictBuffer, + size_t dictBufferCapacity, const void* samplesBuffer, + const size_t* samplesSizes, unsigned nbSamples, + ZDICT_fastCover_params_t* parameters); + +typedef struct { + unsigned selectivityLevel; /* 0 means default; larger => select more => larger dictionary */ + ZDICT_params_t zParams; +} ZDICT_legacy_params_t; + +/*! ZDICT_trainFromBuffer_legacy(): + * Train a dictionary from an array of samples. + * Samples must be stored concatenated in a single flat buffer `samplesBuffer`, + * supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order. + * The resulting dictionary will be saved into `dictBuffer`. + * `parameters` is optional and can be provided with values set to 0 to mean "default". + * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`) + * or an error code, which can be tested with ZDICT_isError(). + * See ZDICT_trainFromBuffer() for details on failure modes. + * Tips: In general, a reasonable dictionary has a size of ~ 100 KB. + * It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`. + * In general, it's recommended to provide a few thousands samples, though this can vary a lot. + * It's recommended that total size of all samples be about ~x100 times the target size of dictionary. + * Note: ZDICT_trainFromBuffer_legacy() will send notifications into stderr if instructed to, using notificationLevel>0. + */ +ZDICTLIB_STATIC_API size_t ZDICT_trainFromBuffer_legacy( + void* dictBuffer, size_t dictBufferCapacity, + const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, + ZDICT_legacy_params_t parameters); + + +/* Deprecation warnings */ +/* It is generally possible to disable deprecation warnings from compiler, + for example with -Wno-deprecated-declarations for gcc + or _CRT_SECURE_NO_WARNINGS in Visual. + Otherwise, it's also possible to manually define ZDICT_DISABLE_DEPRECATE_WARNINGS */ +#ifdef ZDICT_DISABLE_DEPRECATE_WARNINGS +# define ZDICT_DEPRECATED(message) /* disable deprecation warnings */ +#else +# define ZDICT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) +# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */ +# define ZDICT_DEPRECATED(message) [[deprecated(message)]] +# elif defined(__clang__) || (ZDICT_GCC_VERSION >= 405) +# define ZDICT_DEPRECATED(message) __attribute__((deprecated(message))) +# elif (ZDICT_GCC_VERSION >= 301) +# define ZDICT_DEPRECATED(message) __attribute__((deprecated)) +# elif defined(_MSC_VER) +# define ZDICT_DEPRECATED(message) __declspec(deprecated(message)) +# else +# pragma message("WARNING: You need to implement ZDICT_DEPRECATED for this compiler") +# define ZDICT_DEPRECATED(message) +# endif +#endif /* ZDICT_DISABLE_DEPRECATE_WARNINGS */ + +ZDICT_DEPRECATED("use ZDICT_finalizeDictionary() instead") +ZDICTLIB_STATIC_API +size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity, + const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples); + +#if defined (__cplusplus) +} +#endif + +#endif /* ZSTD_ZDICT_H_STATIC */ diff --git a/src/third-party/zstd/zstd.h b/src/third-party/zstd/zstd.h new file mode 100644 index 0000000000000..b8c0644a7ec65 --- /dev/null +++ b/src/third-party/zstd/zstd.h @@ -0,0 +1,3198 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_H_235446 +#define ZSTD_H_235446 + + +/* ====== Dependencies ======*/ +#include /* size_t */ + +#include "zstd_errors.h" /* list of errors */ +#if defined(ZSTD_STATIC_LINKING_ONLY) && !defined(ZSTD_H_ZSTD_STATIC_LINKING_ONLY) +#include /* INT_MAX */ +#endif /* ZSTD_STATIC_LINKING_ONLY */ + +#if defined (__cplusplus) +extern "C" { +#endif + +/* ===== ZSTDLIB_API : control library symbols visibility ===== */ +#ifndef ZSTDLIB_VISIBLE + /* Backwards compatibility with old macro name */ +# ifdef ZSTDLIB_VISIBILITY +# define ZSTDLIB_VISIBLE ZSTDLIB_VISIBILITY +# elif defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__) +# define ZSTDLIB_VISIBLE __attribute__ ((visibility ("default"))) +# else +# define ZSTDLIB_VISIBLE +# endif +#endif + +#ifndef ZSTDLIB_HIDDEN +# if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__) +# define ZSTDLIB_HIDDEN __attribute__ ((visibility ("hidden"))) +# else +# define ZSTDLIB_HIDDEN +# endif +#endif + +#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1) +# define ZSTDLIB_API __declspec(dllexport) ZSTDLIB_VISIBLE +#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1) +# define ZSTDLIB_API __declspec(dllimport) ZSTDLIB_VISIBLE /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ +#else +# define ZSTDLIB_API ZSTDLIB_VISIBLE +#endif + +/* Deprecation warnings : + * Should these warnings be a problem, it is generally possible to disable them, + * typically with -Wno-deprecated-declarations for gcc or _CRT_SECURE_NO_WARNINGS in Visual. + * Otherwise, it's also possible to define ZSTD_DISABLE_DEPRECATE_WARNINGS. + */ +#ifdef ZSTD_DISABLE_DEPRECATE_WARNINGS +# define ZSTD_DEPRECATED(message) /* disable deprecation warnings */ +#else +# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */ +# define ZSTD_DEPRECATED(message) [[deprecated(message)]] +# elif (defined(GNUC) && (GNUC > 4 || (GNUC == 4 && GNUC_MINOR >= 5))) || defined(__clang__) || defined(__IAR_SYSTEMS_ICC__) +# define ZSTD_DEPRECATED(message) __attribute__((deprecated(message))) +# elif defined(__GNUC__) && (__GNUC__ >= 3) +# define ZSTD_DEPRECATED(message) __attribute__((deprecated)) +# elif defined(_MSC_VER) +# define ZSTD_DEPRECATED(message) __declspec(deprecated(message)) +# else +# pragma message("WARNING: You need to implement ZSTD_DEPRECATED for this compiler") +# define ZSTD_DEPRECATED(message) +# endif +#endif /* ZSTD_DISABLE_DEPRECATE_WARNINGS */ + + +/******************************************************************************* + Introduction + + zstd, short for Zstandard, is a fast lossless compression algorithm, targeting + real-time compression scenarios at zlib-level and better compression ratios. + The zstd compression library provides in-memory compression and decompression + functions. + + The library supports regular compression levels from 1 up to ZSTD_maxCLevel(), + which is currently 22. Levels >= 20, labeled `--ultra`, should be used with + caution, as they require more memory. The library also offers negative + compression levels, which extend the range of speed vs. ratio preferences. + The lower the level, the faster the speed (at the cost of compression). + + Compression can be done in: + - a single step (described as Simple API) + - a single step, reusing a context (described as Explicit context) + - unbounded multiple steps (described as Streaming compression) + + The compression ratio achievable on small data can be highly improved using + a dictionary. Dictionary compression can be performed in: + - a single step (described as Simple dictionary API) + - a single step, reusing a dictionary (described as Bulk-processing + dictionary API) + + Advanced experimental functions can be accessed using + `#define ZSTD_STATIC_LINKING_ONLY` before including zstd.h. + + Advanced experimental APIs should never be used with a dynamically-linked + library. They are not "stable"; their definitions or signatures may change in + the future. Only static linking is allowed. +*******************************************************************************/ + +/*------ Version ------*/ +#define ZSTD_VERSION_MAJOR 1 +#define ZSTD_VERSION_MINOR 5 +#define ZSTD_VERSION_RELEASE 7 +#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE) + +/*! ZSTD_versionNumber() : + * Return runtime library version, the value is (MAJOR*100*100 + MINOR*100 + RELEASE). */ +ZSTDLIB_API unsigned ZSTD_versionNumber(void); + +#define ZSTD_LIB_VERSION ZSTD_VERSION_MAJOR.ZSTD_VERSION_MINOR.ZSTD_VERSION_RELEASE +#define ZSTD_QUOTE(str) #str +#define ZSTD_EXPAND_AND_QUOTE(str) ZSTD_QUOTE(str) +#define ZSTD_VERSION_STRING ZSTD_EXPAND_AND_QUOTE(ZSTD_LIB_VERSION) + +/*! ZSTD_versionString() : + * Return runtime library version, like "1.4.5". Requires v1.3.0+. */ +ZSTDLIB_API const char* ZSTD_versionString(void); + +/* ************************************* + * Default constant + ***************************************/ +#ifndef ZSTD_CLEVEL_DEFAULT +# define ZSTD_CLEVEL_DEFAULT 3 +#endif + +/* ************************************* + * Constants + ***************************************/ + +/* All magic numbers are supposed read/written to/from files/memory using little-endian convention */ +#define ZSTD_MAGICNUMBER 0xFD2FB528 /* valid since v0.8.0 */ +#define ZSTD_MAGIC_DICTIONARY 0xEC30A437 /* valid since v0.7.0 */ +#define ZSTD_MAGIC_SKIPPABLE_START 0x184D2A50 /* all 16 values, from 0x184D2A50 to 0x184D2A5F, signal the beginning of a skippable frame */ +#define ZSTD_MAGIC_SKIPPABLE_MASK 0xFFFFFFF0 + +#define ZSTD_BLOCKSIZELOG_MAX 17 +#define ZSTD_BLOCKSIZE_MAX (1<= ZSTD_compressBound(srcSize)` guarantees that zstd will have + * enough space to successfully compress the data. + * @return : compressed size written into `dst` (<= `dstCapacity), + * or an error code if it fails (which can be tested using ZSTD_isError()). */ +ZSTDLIB_API size_t ZSTD_compress( void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + int compressionLevel); + +/*! ZSTD_decompress() : + * `compressedSize` : must be the _exact_ size of some number of compressed and/or skippable frames. + * Multiple compressed frames can be decompressed at once with this method. + * The result will be the concatenation of all decompressed frames, back to back. + * `dstCapacity` is an upper bound of originalSize to regenerate. + * First frame's decompressed size can be extracted using ZSTD_getFrameContentSize(). + * If maximum upper bound isn't known, prefer using streaming mode to decompress data. + * @return : the number of bytes decompressed into `dst` (<= `dstCapacity`), + * or an errorCode if it fails (which can be tested using ZSTD_isError()). */ +ZSTDLIB_API size_t ZSTD_decompress( void* dst, size_t dstCapacity, + const void* src, size_t compressedSize); + + +/*====== Decompression helper functions ======*/ + +/*! ZSTD_getFrameContentSize() : requires v1.3.0+ + * `src` should point to the start of a ZSTD encoded frame. + * `srcSize` must be at least as large as the frame header. + * hint : any size >= `ZSTD_frameHeaderSize_max` is large enough. + * @return : - decompressed size of `src` frame content, if known + * - ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined + * - ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small) + * note 1 : a 0 return value means the frame is valid but "empty". + * When invoking this method on a skippable frame, it will return 0. + * note 2 : decompressed size is an optional field, it may not be present (typically in streaming mode). + * When `return==ZSTD_CONTENTSIZE_UNKNOWN`, data to decompress could be any size. + * In which case, it's necessary to use streaming mode to decompress data. + * Optionally, application can rely on some implicit limit, + * as ZSTD_decompress() only needs an upper bound of decompressed size. + * (For example, data could be necessarily cut into blocks <= 16 KB). + * note 3 : decompressed size is always present when compression is completed using single-pass functions, + * such as ZSTD_compress(), ZSTD_compressCCtx() ZSTD_compress_usingDict() or ZSTD_compress_usingCDict(). + * note 4 : decompressed size can be very large (64-bits value), + * potentially larger than what local system can handle as a single memory segment. + * In which case, it's necessary to use streaming mode to decompress data. + * note 5 : If source is untrusted, decompressed size could be wrong or intentionally modified. + * Always ensure return value fits within application's authorized limits. + * Each application can set its own limits. + * note 6 : This function replaces ZSTD_getDecompressedSize() */ +#define ZSTD_CONTENTSIZE_UNKNOWN (0ULL - 1) +#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2) +ZSTDLIB_API unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize); + +/*! ZSTD_getDecompressedSize() (obsolete): + * This function is now obsolete, in favor of ZSTD_getFrameContentSize(). + * Both functions work the same way, but ZSTD_getDecompressedSize() blends + * "empty", "unknown" and "error" results to the same return value (0), + * while ZSTD_getFrameContentSize() gives them separate return values. + * @return : decompressed size of `src` frame content _if known and not empty_, 0 otherwise. */ +ZSTD_DEPRECATED("Replaced by ZSTD_getFrameContentSize") +ZSTDLIB_API unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize); + +/*! ZSTD_findFrameCompressedSize() : Requires v1.4.0+ + * `src` should point to the start of a ZSTD frame or skippable frame. + * `srcSize` must be >= first frame size + * @return : the compressed size of the first frame starting at `src`, + * suitable to pass as `srcSize` to `ZSTD_decompress` or similar, + * or an error code if input is invalid + * Note 1: this method is called _find*() because it's not enough to read the header, + * it may have to scan through the frame's content, to reach its end. + * Note 2: this method also works with Skippable Frames. In which case, + * it returns the size of the complete skippable frame, + * which is always equal to its content size + 8 bytes for headers. */ +ZSTDLIB_API size_t ZSTD_findFrameCompressedSize(const void* src, size_t srcSize); + + +/*====== Compression helper functions ======*/ + +/*! ZSTD_compressBound() : + * maximum compressed size in worst case single-pass scenario. + * When invoking `ZSTD_compress()`, or any other one-pass compression function, + * it's recommended to provide @dstCapacity >= ZSTD_compressBound(srcSize) + * as it eliminates one potential failure scenario, + * aka not enough room in dst buffer to write the compressed frame. + * Note : ZSTD_compressBound() itself can fail, if @srcSize >= ZSTD_MAX_INPUT_SIZE . + * In which case, ZSTD_compressBound() will return an error code + * which can be tested using ZSTD_isError(). + * + * ZSTD_COMPRESSBOUND() : + * same as ZSTD_compressBound(), but as a macro. + * It can be used to produce constants, which can be useful for static allocation, + * for example to size a static array on stack. + * Will produce constant value 0 if srcSize is too large. + */ +#define ZSTD_MAX_INPUT_SIZE ((sizeof(size_t)==8) ? 0xFF00FF00FF00FF00ULL : 0xFF00FF00U) +#define ZSTD_COMPRESSBOUND(srcSize) (((size_t)(srcSize) >= ZSTD_MAX_INPUT_SIZE) ? 0 : (srcSize) + ((srcSize)>>8) + (((srcSize) < (128<<10)) ? (((128<<10) - (srcSize)) >> 11) /* margin, from 64 to 0 */ : 0)) /* this formula ensures that bound(A) + bound(B) <= bound(A+B) as long as A and B >= 128 KB */ +ZSTDLIB_API size_t ZSTD_compressBound(size_t srcSize); /*!< maximum compressed size in worst case single-pass scenario */ + + +/*====== Error helper functions ======*/ +/* ZSTD_isError() : + * Most ZSTD_* functions returning a size_t value can be tested for error, + * using ZSTD_isError(). + * @return 1 if error, 0 otherwise + */ +ZSTDLIB_API unsigned ZSTD_isError(size_t result); /*!< tells if a `size_t` function result is an error code */ +ZSTDLIB_API ZSTD_ErrorCode ZSTD_getErrorCode(size_t functionResult); /* convert a result into an error code, which can be compared to error enum list */ +ZSTDLIB_API const char* ZSTD_getErrorName(size_t result); /*!< provides readable string from a function result */ +ZSTDLIB_API int ZSTD_minCLevel(void); /*!< minimum negative compression level allowed, requires v1.4.0+ */ +ZSTDLIB_API int ZSTD_maxCLevel(void); /*!< maximum compression level available */ +ZSTDLIB_API int ZSTD_defaultCLevel(void); /*!< default compression level, specified by ZSTD_CLEVEL_DEFAULT, requires v1.5.0+ */ + + +/*************************************** +* Explicit context +***************************************/ +/*= Compression context + * When compressing many times, + * it is recommended to allocate a compression context just once, + * and reuse it for each successive compression operation. + * This will make the workload easier for system's memory. + * Note : re-using context is just a speed / resource optimization. + * It doesn't change the compression ratio, which remains identical. + * Note 2: For parallel execution in multi-threaded environments, + * use one different context per thread . + */ +typedef struct ZSTD_CCtx_s ZSTD_CCtx; +ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx(void); +ZSTDLIB_API size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx); /* compatible with NULL pointer */ + +/*! ZSTD_compressCCtx() : + * Same as ZSTD_compress(), using an explicit ZSTD_CCtx. + * Important : in order to mirror `ZSTD_compress()` behavior, + * this function compresses at the requested compression level, + * __ignoring any other advanced parameter__ . + * If any advanced parameter was set using the advanced API, + * they will all be reset. Only @compressionLevel remains. + */ +ZSTDLIB_API size_t ZSTD_compressCCtx(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + int compressionLevel); + +/*= Decompression context + * When decompressing many times, + * it is recommended to allocate a context only once, + * and reuse it for each successive compression operation. + * This will make workload friendlier for system's memory. + * Use one context per thread for parallel execution. */ +typedef struct ZSTD_DCtx_s ZSTD_DCtx; +ZSTDLIB_API ZSTD_DCtx* ZSTD_createDCtx(void); +ZSTDLIB_API size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx); /* accept NULL pointer */ + +/*! ZSTD_decompressDCtx() : + * Same as ZSTD_decompress(), + * requires an allocated ZSTD_DCtx. + * Compatible with sticky parameters (see below). + */ +ZSTDLIB_API size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize); + + +/********************************************* +* Advanced compression API (Requires v1.4.0+) +**********************************************/ + +/* API design : + * Parameters are pushed one by one into an existing context, + * using ZSTD_CCtx_set*() functions. + * Pushed parameters are sticky : they are valid for next compressed frame, and any subsequent frame. + * "sticky" parameters are applicable to `ZSTD_compress2()` and `ZSTD_compressStream*()` ! + * __They do not apply to one-shot variants such as ZSTD_compressCCtx()__ . + * + * It's possible to reset all parameters to "default" using ZSTD_CCtx_reset(). + * + * This API supersedes all other "advanced" API entry points in the experimental section. + * In the future, we expect to remove API entry points from experimental which are redundant with this API. + */ + + +/* Compression strategies, listed from fastest to strongest */ +typedef enum { ZSTD_fast=1, + ZSTD_dfast=2, + ZSTD_greedy=3, + ZSTD_lazy=4, + ZSTD_lazy2=5, + ZSTD_btlazy2=6, + ZSTD_btopt=7, + ZSTD_btultra=8, + ZSTD_btultra2=9 + /* note : new strategies _might_ be added in the future. + Only the order (from fast to strong) is guaranteed */ +} ZSTD_strategy; + +typedef enum { + + /* compression parameters + * Note: When compressing with a ZSTD_CDict these parameters are superseded + * by the parameters used to construct the ZSTD_CDict. + * See ZSTD_CCtx_refCDict() for more info (superseded-by-cdict). */ + ZSTD_c_compressionLevel=100, /* Set compression parameters according to pre-defined cLevel table. + * Note that exact compression parameters are dynamically determined, + * depending on both compression level and srcSize (when known). + * Default level is ZSTD_CLEVEL_DEFAULT==3. + * Special: value 0 means default, which is controlled by ZSTD_CLEVEL_DEFAULT. + * Note 1 : it's possible to pass a negative compression level. + * Note 2 : setting a level does not automatically set all other compression parameters + * to default. Setting this will however eventually dynamically impact the compression + * parameters which have not been manually set. The manually set + * ones will 'stick'. */ + /* Advanced compression parameters : + * It's possible to pin down compression parameters to some specific values. + * In which case, these values are no longer dynamically selected by the compressor */ + ZSTD_c_windowLog=101, /* Maximum allowed back-reference distance, expressed as power of 2. + * This will set a memory budget for streaming decompression, + * with larger values requiring more memory + * and typically compressing more. + * Must be clamped between ZSTD_WINDOWLOG_MIN and ZSTD_WINDOWLOG_MAX. + * Special: value 0 means "use default windowLog". + * Note: Using a windowLog greater than ZSTD_WINDOWLOG_LIMIT_DEFAULT + * requires explicitly allowing such size at streaming decompression stage. */ + ZSTD_c_hashLog=102, /* Size of the initial probe table, as a power of 2. + * Resulting memory usage is (1 << (hashLog+2)). + * Must be clamped between ZSTD_HASHLOG_MIN and ZSTD_HASHLOG_MAX. + * Larger tables improve compression ratio of strategies <= dFast, + * and improve speed of strategies > dFast. + * Special: value 0 means "use default hashLog". */ + ZSTD_c_chainLog=103, /* Size of the multi-probe search table, as a power of 2. + * Resulting memory usage is (1 << (chainLog+2)). + * Must be clamped between ZSTD_CHAINLOG_MIN and ZSTD_CHAINLOG_MAX. + * Larger tables result in better and slower compression. + * This parameter is useless for "fast" strategy. + * It's still useful when using "dfast" strategy, + * in which case it defines a secondary probe table. + * Special: value 0 means "use default chainLog". */ + ZSTD_c_searchLog=104, /* Number of search attempts, as a power of 2. + * More attempts result in better and slower compression. + * This parameter is useless for "fast" and "dFast" strategies. + * Special: value 0 means "use default searchLog". */ + ZSTD_c_minMatch=105, /* Minimum size of searched matches. + * Note that Zstandard can still find matches of smaller size, + * it just tweaks its search algorithm to look for this size and larger. + * Larger values increase compression and decompression speed, but decrease ratio. + * Must be clamped between ZSTD_MINMATCH_MIN and ZSTD_MINMATCH_MAX. + * Note that currently, for all strategies < btopt, effective minimum is 4. + * , for all strategies > fast, effective maximum is 6. + * Special: value 0 means "use default minMatchLength". */ + ZSTD_c_targetLength=106, /* Impact of this field depends on strategy. + * For strategies btopt, btultra & btultra2: + * Length of Match considered "good enough" to stop search. + * Larger values make compression stronger, and slower. + * For strategy fast: + * Distance between match sampling. + * Larger values make compression faster, and weaker. + * Special: value 0 means "use default targetLength". */ + ZSTD_c_strategy=107, /* See ZSTD_strategy enum definition. + * The higher the value of selected strategy, the more complex it is, + * resulting in stronger and slower compression. + * Special: value 0 means "use default strategy". */ + + ZSTD_c_targetCBlockSize=130, /* v1.5.6+ + * Attempts to fit compressed block size into approximately targetCBlockSize. + * Bound by ZSTD_TARGETCBLOCKSIZE_MIN and ZSTD_TARGETCBLOCKSIZE_MAX. + * Note that it's not a guarantee, just a convergence target (default:0). + * No target when targetCBlockSize == 0. + * This is helpful in low bandwidth streaming environments to improve end-to-end latency, + * when a client can make use of partial documents (a prominent example being Chrome). + * Note: this parameter is stable since v1.5.6. + * It was present as an experimental parameter in earlier versions, + * but it's not recommended using it with earlier library versions + * due to massive performance regressions. + */ + /* LDM mode parameters */ + ZSTD_c_enableLongDistanceMatching=160, /* Enable long distance matching. + * This parameter is designed to improve compression ratio + * for large inputs, by finding large matches at long distance. + * It increases memory usage and window size. + * Note: enabling this parameter increases default ZSTD_c_windowLog to 128 MB + * except when expressly set to a different value. + * Note: will be enabled by default if ZSTD_c_windowLog >= 128 MB and + * compression strategy >= ZSTD_btopt (== compression level 16+) */ + ZSTD_c_ldmHashLog=161, /* Size of the table for long distance matching, as a power of 2. + * Larger values increase memory usage and compression ratio, + * but decrease compression speed. + * Must be clamped between ZSTD_HASHLOG_MIN and ZSTD_HASHLOG_MAX + * default: windowlog - 7. + * Special: value 0 means "automatically determine hashlog". */ + ZSTD_c_ldmMinMatch=162, /* Minimum match size for long distance matcher. + * Larger/too small values usually decrease compression ratio. + * Must be clamped between ZSTD_LDM_MINMATCH_MIN and ZSTD_LDM_MINMATCH_MAX. + * Special: value 0 means "use default value" (default: 64). */ + ZSTD_c_ldmBucketSizeLog=163, /* Log size of each bucket in the LDM hash table for collision resolution. + * Larger values improve collision resolution but decrease compression speed. + * The maximum value is ZSTD_LDM_BUCKETSIZELOG_MAX. + * Special: value 0 means "use default value" (default: 3). */ + ZSTD_c_ldmHashRateLog=164, /* Frequency of inserting/looking up entries into the LDM hash table. + * Must be clamped between 0 and (ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN). + * Default is MAX(0, (windowLog - ldmHashLog)), optimizing hash table usage. + * Larger values improve compression speed. + * Deviating far from default value will likely result in a compression ratio decrease. + * Special: value 0 means "automatically determine hashRateLog". */ + + /* frame parameters */ + ZSTD_c_contentSizeFlag=200, /* Content size will be written into frame header _whenever known_ (default:1) + * Content size must be known at the beginning of compression. + * This is automatically the case when using ZSTD_compress2(), + * For streaming scenarios, content size must be provided with ZSTD_CCtx_setPledgedSrcSize() */ + ZSTD_c_checksumFlag=201, /* A 32-bits checksum of content is written at end of frame (default:0) */ + ZSTD_c_dictIDFlag=202, /* When applicable, dictionary's ID is written into frame header (default:1) */ + + /* multi-threading parameters */ + /* These parameters are only active if multi-threading is enabled (compiled with build macro ZSTD_MULTITHREAD). + * Otherwise, trying to set any other value than default (0) will be a no-op and return an error. + * In a situation where it's unknown if the linked library supports multi-threading or not, + * setting ZSTD_c_nbWorkers to any value >= 1 and consulting the return value provides a quick way to check this property. + */ + ZSTD_c_nbWorkers=400, /* Select how many threads will be spawned to compress in parallel. + * When nbWorkers >= 1, triggers asynchronous mode when invoking ZSTD_compressStream*() : + * ZSTD_compressStream*() consumes input and flush output if possible, but immediately gives back control to caller, + * while compression is performed in parallel, within worker thread(s). + * (note : a strong exception to this rule is when first invocation of ZSTD_compressStream2() sets ZSTD_e_end : + * in which case, ZSTD_compressStream2() delegates to ZSTD_compress2(), which is always a blocking call). + * More workers improve speed, but also increase memory usage. + * Default value is `0`, aka "single-threaded mode" : no worker is spawned, + * compression is performed inside Caller's thread, and all invocations are blocking */ + ZSTD_c_jobSize=401, /* Size of a compression job. This value is enforced only when nbWorkers >= 1. + * Each compression job is completed in parallel, so this value can indirectly impact the nb of active threads. + * 0 means default, which is dynamically determined based on compression parameters. + * Job size must be a minimum of overlap size, or ZSTDMT_JOBSIZE_MIN (= 512 KB), whichever is largest. + * The minimum size is automatically and transparently enforced. */ + ZSTD_c_overlapLog=402, /* Control the overlap size, as a fraction of window size. + * The overlap size is an amount of data reloaded from previous job at the beginning of a new job. + * It helps preserve compression ratio, while each job is compressed in parallel. + * This value is enforced only when nbWorkers >= 1. + * Larger values increase compression ratio, but decrease speed. + * Possible values range from 0 to 9 : + * - 0 means "default" : value will be determined by the library, depending on strategy + * - 1 means "no overlap" + * - 9 means "full overlap", using a full window size. + * Each intermediate rank increases/decreases load size by a factor 2 : + * 9: full window; 8: w/2; 7: w/4; 6: w/8; 5:w/16; 4: w/32; 3:w/64; 2:w/128; 1:no overlap; 0:default + * default value varies between 6 and 9, depending on strategy */ + + /* note : additional experimental parameters are also available + * within the experimental section of the API. + * At the time of this writing, they include : + * ZSTD_c_rsyncable + * ZSTD_c_format + * ZSTD_c_forceMaxWindow + * ZSTD_c_forceAttachDict + * ZSTD_c_literalCompressionMode + * ZSTD_c_srcSizeHint + * ZSTD_c_enableDedicatedDictSearch + * ZSTD_c_stableInBuffer + * ZSTD_c_stableOutBuffer + * ZSTD_c_blockDelimiters + * ZSTD_c_validateSequences + * ZSTD_c_blockSplitterLevel + * ZSTD_c_splitAfterSequences + * ZSTD_c_useRowMatchFinder + * ZSTD_c_prefetchCDictTables + * ZSTD_c_enableSeqProducerFallback + * ZSTD_c_maxBlockSize + * Because they are not stable, it's necessary to define ZSTD_STATIC_LINKING_ONLY to access them. + * note : never ever use experimentalParam? names directly; + * also, the enums values themselves are unstable and can still change. + */ + ZSTD_c_experimentalParam1=500, + ZSTD_c_experimentalParam2=10, + ZSTD_c_experimentalParam3=1000, + ZSTD_c_experimentalParam4=1001, + ZSTD_c_experimentalParam5=1002, + /* was ZSTD_c_experimentalParam6=1003; is now ZSTD_c_targetCBlockSize */ + ZSTD_c_experimentalParam7=1004, + ZSTD_c_experimentalParam8=1005, + ZSTD_c_experimentalParam9=1006, + ZSTD_c_experimentalParam10=1007, + ZSTD_c_experimentalParam11=1008, + ZSTD_c_experimentalParam12=1009, + ZSTD_c_experimentalParam13=1010, + ZSTD_c_experimentalParam14=1011, + ZSTD_c_experimentalParam15=1012, + ZSTD_c_experimentalParam16=1013, + ZSTD_c_experimentalParam17=1014, + ZSTD_c_experimentalParam18=1015, + ZSTD_c_experimentalParam19=1016, + ZSTD_c_experimentalParam20=1017 +} ZSTD_cParameter; + +typedef struct { + size_t error; + int lowerBound; + int upperBound; +} ZSTD_bounds; + +/*! ZSTD_cParam_getBounds() : + * All parameters must belong to an interval with lower and upper bounds, + * otherwise they will either trigger an error or be automatically clamped. + * @return : a structure, ZSTD_bounds, which contains + * - an error status field, which must be tested using ZSTD_isError() + * - lower and upper bounds, both inclusive + */ +ZSTDLIB_API ZSTD_bounds ZSTD_cParam_getBounds(ZSTD_cParameter cParam); + +/*! ZSTD_CCtx_setParameter() : + * Set one compression parameter, selected by enum ZSTD_cParameter. + * All parameters have valid bounds. Bounds can be queried using ZSTD_cParam_getBounds(). + * Providing a value beyond bound will either clamp it, or trigger an error (depending on parameter). + * Setting a parameter is generally only possible during frame initialization (before starting compression). + * Exception : when using multi-threading mode (nbWorkers >= 1), + * the following parameters can be updated _during_ compression (within same frame): + * => compressionLevel, hashLog, chainLog, searchLog, minMatch, targetLength and strategy. + * new parameters will be active for next job only (after a flush()). + * @return : an error code (which can be tested using ZSTD_isError()). + */ +ZSTDLIB_API size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int value); + +/*! ZSTD_CCtx_setPledgedSrcSize() : + * Total input data size to be compressed as a single frame. + * Value will be written in frame header, unless if explicitly forbidden using ZSTD_c_contentSizeFlag. + * This value will also be controlled at end of frame, and trigger an error if not respected. + * @result : 0, or an error code (which can be tested with ZSTD_isError()). + * Note 1 : pledgedSrcSize==0 actually means zero, aka an empty frame. + * In order to mean "unknown content size", pass constant ZSTD_CONTENTSIZE_UNKNOWN. + * ZSTD_CONTENTSIZE_UNKNOWN is default value for any new frame. + * Note 2 : pledgedSrcSize is only valid once, for the next frame. + * It's discarded at the end of the frame, and replaced by ZSTD_CONTENTSIZE_UNKNOWN. + * Note 3 : Whenever all input data is provided and consumed in a single round, + * for example with ZSTD_compress2(), + * or invoking immediately ZSTD_compressStream2(,,,ZSTD_e_end), + * this value is automatically overridden by srcSize instead. + */ +ZSTDLIB_API size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize); + +typedef enum { + ZSTD_reset_session_only = 1, + ZSTD_reset_parameters = 2, + ZSTD_reset_session_and_parameters = 3 +} ZSTD_ResetDirective; + +/*! ZSTD_CCtx_reset() : + * There are 2 different things that can be reset, independently or jointly : + * - The session : will stop compressing current frame, and make CCtx ready to start a new one. + * Useful after an error, or to interrupt any ongoing compression. + * Any internal data not yet flushed is cancelled. + * Compression parameters and dictionary remain unchanged. + * They will be used to compress next frame. + * Resetting session never fails. + * - The parameters : changes all parameters back to "default". + * This also removes any reference to any dictionary or external sequence producer. + * Parameters can only be changed between 2 sessions (i.e. no compression is currently ongoing) + * otherwise the reset fails, and function returns an error value (which can be tested using ZSTD_isError()) + * - Both : similar to resetting the session, followed by resetting parameters. + */ +ZSTDLIB_API size_t ZSTD_CCtx_reset(ZSTD_CCtx* cctx, ZSTD_ResetDirective reset); + +/*! ZSTD_compress2() : + * Behave the same as ZSTD_compressCCtx(), but compression parameters are set using the advanced API. + * (note that this entry point doesn't even expose a compression level parameter). + * ZSTD_compress2() always starts a new frame. + * Should cctx hold data from a previously unfinished frame, everything about it is forgotten. + * - Compression parameters are pushed into CCtx before starting compression, using ZSTD_CCtx_set*() + * - The function is always blocking, returns when compression is completed. + * NOTE: Providing `dstCapacity >= ZSTD_compressBound(srcSize)` guarantees that zstd will have + * enough space to successfully compress the data, though it is possible it fails for other reasons. + * @return : compressed size written into `dst` (<= `dstCapacity), + * or an error code if it fails (which can be tested using ZSTD_isError()). + */ +ZSTDLIB_API size_t ZSTD_compress2( ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize); + + +/*********************************************** +* Advanced decompression API (Requires v1.4.0+) +************************************************/ + +/* The advanced API pushes parameters one by one into an existing DCtx context. + * Parameters are sticky, and remain valid for all following frames + * using the same DCtx context. + * It's possible to reset parameters to default values using ZSTD_DCtx_reset(). + * Note : This API is compatible with existing ZSTD_decompressDCtx() and ZSTD_decompressStream(). + * Therefore, no new decompression function is necessary. + */ + +typedef enum { + + ZSTD_d_windowLogMax=100, /* Select a size limit (in power of 2) beyond which + * the streaming API will refuse to allocate memory buffer + * in order to protect the host from unreasonable memory requirements. + * This parameter is only useful in streaming mode, since no internal buffer is allocated in single-pass mode. + * By default, a decompression context accepts window sizes <= (1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT). + * Special: value 0 means "use default maximum windowLog". */ + + /* note : additional experimental parameters are also available + * within the experimental section of the API. + * At the time of this writing, they include : + * ZSTD_d_format + * ZSTD_d_stableOutBuffer + * ZSTD_d_forceIgnoreChecksum + * ZSTD_d_refMultipleDDicts + * ZSTD_d_disableHuffmanAssembly + * ZSTD_d_maxBlockSize + * Because they are not stable, it's necessary to define ZSTD_STATIC_LINKING_ONLY to access them. + * note : never ever use experimentalParam? names directly + */ + ZSTD_d_experimentalParam1=1000, + ZSTD_d_experimentalParam2=1001, + ZSTD_d_experimentalParam3=1002, + ZSTD_d_experimentalParam4=1003, + ZSTD_d_experimentalParam5=1004, + ZSTD_d_experimentalParam6=1005 + +} ZSTD_dParameter; + +/*! ZSTD_dParam_getBounds() : + * All parameters must belong to an interval with lower and upper bounds, + * otherwise they will either trigger an error or be automatically clamped. + * @return : a structure, ZSTD_bounds, which contains + * - an error status field, which must be tested using ZSTD_isError() + * - both lower and upper bounds, inclusive + */ +ZSTDLIB_API ZSTD_bounds ZSTD_dParam_getBounds(ZSTD_dParameter dParam); + +/*! ZSTD_DCtx_setParameter() : + * Set one compression parameter, selected by enum ZSTD_dParameter. + * All parameters have valid bounds. Bounds can be queried using ZSTD_dParam_getBounds(). + * Providing a value beyond bound will either clamp it, or trigger an error (depending on parameter). + * Setting a parameter is only possible during frame initialization (before starting decompression). + * @return : 0, or an error code (which can be tested using ZSTD_isError()). + */ +ZSTDLIB_API size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int value); + +/*! ZSTD_DCtx_reset() : + * Return a DCtx to clean state. + * Session and parameters can be reset jointly or separately. + * Parameters can only be reset when no active frame is being decompressed. + * @return : 0, or an error code, which can be tested with ZSTD_isError() + */ +ZSTDLIB_API size_t ZSTD_DCtx_reset(ZSTD_DCtx* dctx, ZSTD_ResetDirective reset); + + +/**************************** +* Streaming +****************************/ + +typedef struct ZSTD_inBuffer_s { + const void* src; /**< start of input buffer */ + size_t size; /**< size of input buffer */ + size_t pos; /**< position where reading stopped. Will be updated. Necessarily 0 <= pos <= size */ +} ZSTD_inBuffer; + +typedef struct ZSTD_outBuffer_s { + void* dst; /**< start of output buffer */ + size_t size; /**< size of output buffer */ + size_t pos; /**< position where writing stopped. Will be updated. Necessarily 0 <= pos <= size */ +} ZSTD_outBuffer; + + + +/*-*********************************************************************** +* Streaming compression - HowTo +* +* A ZSTD_CStream object is required to track streaming operation. +* Use ZSTD_createCStream() and ZSTD_freeCStream() to create/release resources. +* ZSTD_CStream objects can be reused multiple times on consecutive compression operations. +* It is recommended to reuse ZSTD_CStream since it will play nicer with system's memory, by re-using already allocated memory. +* +* For parallel execution, use one separate ZSTD_CStream per thread. +* +* note : since v1.3.0, ZSTD_CStream and ZSTD_CCtx are the same thing. +* +* Parameters are sticky : when starting a new compression on the same context, +* it will reuse the same sticky parameters as previous compression session. +* When in doubt, it's recommended to fully initialize the context before usage. +* Use ZSTD_CCtx_reset() to reset the context and ZSTD_CCtx_setParameter(), +* ZSTD_CCtx_setPledgedSrcSize(), or ZSTD_CCtx_loadDictionary() and friends to +* set more specific parameters, the pledged source size, or load a dictionary. +* +* Use ZSTD_compressStream2() with ZSTD_e_continue as many times as necessary to +* consume input stream. The function will automatically update both `pos` +* fields within `input` and `output`. +* Note that the function may not consume the entire input, for example, because +* the output buffer is already full, in which case `input.pos < input.size`. +* The caller must check if input has been entirely consumed. +* If not, the caller must make some room to receive more compressed data, +* and then present again remaining input data. +* note: ZSTD_e_continue is guaranteed to make some forward progress when called, +* but doesn't guarantee maximal forward progress. This is especially relevant +* when compressing with multiple threads. The call won't block if it can +* consume some input, but if it can't it will wait for some, but not all, +* output to be flushed. +* @return : provides a minimum amount of data remaining to be flushed from internal buffers +* or an error code, which can be tested using ZSTD_isError(). +* +* At any moment, it's possible to flush whatever data might remain stuck within internal buffer, +* using ZSTD_compressStream2() with ZSTD_e_flush. `output->pos` will be updated. +* Note that, if `output->size` is too small, a single invocation with ZSTD_e_flush might not be enough (return code > 0). +* In which case, make some room to receive more compressed data, and call again ZSTD_compressStream2() with ZSTD_e_flush. +* You must continue calling ZSTD_compressStream2() with ZSTD_e_flush until it returns 0, at which point you can change the +* operation. +* note: ZSTD_e_flush will flush as much output as possible, meaning when compressing with multiple threads, it will +* block until the flush is complete or the output buffer is full. +* @return : 0 if internal buffers are entirely flushed, +* >0 if some data still present within internal buffer (the value is minimal estimation of remaining size), +* or an error code, which can be tested using ZSTD_isError(). +* +* Calling ZSTD_compressStream2() with ZSTD_e_end instructs to finish a frame. +* It will perform a flush and write frame epilogue. +* The epilogue is required for decoders to consider a frame completed. +* flush operation is the same, and follows same rules as calling ZSTD_compressStream2() with ZSTD_e_flush. +* You must continue calling ZSTD_compressStream2() with ZSTD_e_end until it returns 0, at which point you are free to +* start a new frame. +* note: ZSTD_e_end will flush as much output as possible, meaning when compressing with multiple threads, it will +* block until the flush is complete or the output buffer is full. +* @return : 0 if frame fully completed and fully flushed, +* >0 if some data still present within internal buffer (the value is minimal estimation of remaining size), +* or an error code, which can be tested using ZSTD_isError(). +* +* *******************************************************************/ + +typedef ZSTD_CCtx ZSTD_CStream; /**< CCtx and CStream are now effectively same object (>= v1.3.0) */ + /* Continue to distinguish them for compatibility with older versions <= v1.2.0 */ +/*===== ZSTD_CStream management functions =====*/ +ZSTDLIB_API ZSTD_CStream* ZSTD_createCStream(void); +ZSTDLIB_API size_t ZSTD_freeCStream(ZSTD_CStream* zcs); /* accept NULL pointer */ + +/*===== Streaming compression functions =====*/ +typedef enum { + ZSTD_e_continue=0, /* collect more data, encoder decides when to output compressed result, for optimal compression ratio */ + ZSTD_e_flush=1, /* flush any data provided so far, + * it creates (at least) one new block, that can be decoded immediately on reception; + * frame will continue: any future data can still reference previously compressed data, improving compression. + * note : multithreaded compression will block to flush as much output as possible. */ + ZSTD_e_end=2 /* flush any remaining data _and_ close current frame. + * note that frame is only closed after compressed data is fully flushed (return value == 0). + * After that point, any additional data starts a new frame. + * note : each frame is independent (does not reference any content from previous frame). + : note : multithreaded compression will block to flush as much output as possible. */ +} ZSTD_EndDirective; + +/*! ZSTD_compressStream2() : Requires v1.4.0+ + * Behaves about the same as ZSTD_compressStream, with additional control on end directive. + * - Compression parameters are pushed into CCtx before starting compression, using ZSTD_CCtx_set*() + * - Compression parameters cannot be changed once compression is started (save a list of exceptions in multi-threading mode) + * - output->pos must be <= dstCapacity, input->pos must be <= srcSize + * - output->pos and input->pos will be updated. They are guaranteed to remain below their respective limit. + * - endOp must be a valid directive + * - When nbWorkers==0 (default), function is blocking : it completes its job before returning to caller. + * - When nbWorkers>=1, function is non-blocking : it copies a portion of input, distributes jobs to internal worker threads, flush to output whatever is available, + * and then immediately returns, just indicating that there is some data remaining to be flushed. + * The function nonetheless guarantees forward progress : it will return only after it reads or write at least 1+ byte. + * - Exception : if the first call requests a ZSTD_e_end directive and provides enough dstCapacity, the function delegates to ZSTD_compress2() which is always blocking. + * - @return provides a minimum amount of data remaining to be flushed from internal buffers + * or an error code, which can be tested using ZSTD_isError(). + * if @return != 0, flush is not fully completed, there is still some data left within internal buffers. + * This is useful for ZSTD_e_flush, since in this case more flushes are necessary to empty all buffers. + * For ZSTD_e_end, @return == 0 when internal buffers are fully flushed and frame is completed. + * - after a ZSTD_e_end directive, if internal buffer is not fully flushed (@return != 0), + * only ZSTD_e_end or ZSTD_e_flush operations are allowed. + * Before starting a new compression job, or changing compression parameters, + * it is required to fully flush internal buffers. + * - note: if an operation ends with an error, it may leave @cctx in an undefined state. + * Therefore, it's UB to invoke ZSTD_compressStream2() of ZSTD_compressStream() on such a state. + * In order to be re-employed after an error, a state must be reset, + * which can be done explicitly (ZSTD_CCtx_reset()), + * or is sometimes implied by methods starting a new compression job (ZSTD_initCStream(), ZSTD_compressCCtx()) + */ +ZSTDLIB_API size_t ZSTD_compressStream2( ZSTD_CCtx* cctx, + ZSTD_outBuffer* output, + ZSTD_inBuffer* input, + ZSTD_EndDirective endOp); + + +/* These buffer sizes are softly recommended. + * They are not required : ZSTD_compressStream*() happily accepts any buffer size, for both input and output. + * Respecting the recommended size just makes it a bit easier for ZSTD_compressStream*(), + * reducing the amount of memory shuffling and buffering, resulting in minor performance savings. + * + * However, note that these recommendations are from the perspective of a C caller program. + * If the streaming interface is invoked from some other language, + * especially managed ones such as Java or Go, through a foreign function interface such as jni or cgo, + * a major performance rule is to reduce crossing such interface to an absolute minimum. + * It's not rare that performance ends being spent more into the interface, rather than compression itself. + * In which cases, prefer using large buffers, as large as practical, + * for both input and output, to reduce the nb of roundtrips. + */ +ZSTDLIB_API size_t ZSTD_CStreamInSize(void); /**< recommended size for input buffer */ +ZSTDLIB_API size_t ZSTD_CStreamOutSize(void); /**< recommended size for output buffer. Guarantee to successfully flush at least one complete compressed block. */ + + +/* ***************************************************************************** + * This following is a legacy streaming API, available since v1.0+ . + * It can be replaced by ZSTD_CCtx_reset() and ZSTD_compressStream2(). + * It is redundant, but remains fully supported. + ******************************************************************************/ + +/*! + * Equivalent to: + * + * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + * ZSTD_CCtx_refCDict(zcs, NULL); // clear the dictionary (if any) + * ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel); + * + * Note that ZSTD_initCStream() clears any previously set dictionary. Use the new API + * to compress with a dictionary. + */ +ZSTDLIB_API size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel); +/*! + * Alternative for ZSTD_compressStream2(zcs, output, input, ZSTD_e_continue). + * NOTE: The return value is different. ZSTD_compressStream() returns a hint for + * the next read size (if non-zero and not an error). ZSTD_compressStream2() + * returns the minimum nb of bytes left to flush (if non-zero and not an error). + */ +ZSTDLIB_API size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input); +/*! Equivalent to ZSTD_compressStream2(zcs, output, &emptyInput, ZSTD_e_flush). */ +ZSTDLIB_API size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output); +/*! Equivalent to ZSTD_compressStream2(zcs, output, &emptyInput, ZSTD_e_end). */ +ZSTDLIB_API size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output); + + +/*-*************************************************************************** +* Streaming decompression - HowTo +* +* A ZSTD_DStream object is required to track streaming operations. +* Use ZSTD_createDStream() and ZSTD_freeDStream() to create/release resources. +* ZSTD_DStream objects can be re-employed multiple times. +* +* Use ZSTD_initDStream() to start a new decompression operation. +* @return : recommended first input size +* Alternatively, use advanced API to set specific properties. +* +* Use ZSTD_decompressStream() repetitively to consume your input. +* The function will update both `pos` fields. +* If `input.pos < input.size`, some input has not been consumed. +* It's up to the caller to present again remaining data. +* +* The function tries to flush all data decoded immediately, respecting output buffer size. +* If `output.pos < output.size`, decoder has flushed everything it could. +* +* However, when `output.pos == output.size`, it's more difficult to know. +* If @return > 0, the frame is not complete, meaning +* either there is still some data left to flush within internal buffers, +* or there is more input to read to complete the frame (or both). +* In which case, call ZSTD_decompressStream() again to flush whatever remains in the buffer. +* Note : with no additional input provided, amount of data flushed is necessarily <= ZSTD_BLOCKSIZE_MAX. +* @return : 0 when a frame is completely decoded and fully flushed, +* or an error code, which can be tested using ZSTD_isError(), +* or any other value > 0, which means there is still some decoding or flushing to do to complete current frame : +* the return value is a suggested next input size (just a hint for better latency) +* that will never request more than the remaining content of the compressed frame. +* *******************************************************************************/ + +typedef ZSTD_DCtx ZSTD_DStream; /**< DCtx and DStream are now effectively same object (>= v1.3.0) */ + /* For compatibility with versions <= v1.2.0, prefer differentiating them. */ +/*===== ZSTD_DStream management functions =====*/ +ZSTDLIB_API ZSTD_DStream* ZSTD_createDStream(void); +ZSTDLIB_API size_t ZSTD_freeDStream(ZSTD_DStream* zds); /* accept NULL pointer */ + +/*===== Streaming decompression functions =====*/ + +/*! ZSTD_initDStream() : + * Initialize/reset DStream state for new decompression operation. + * Call before new decompression operation using same DStream. + * + * Note : This function is redundant with the advanced API and equivalent to: + * ZSTD_DCtx_reset(zds, ZSTD_reset_session_only); + * ZSTD_DCtx_refDDict(zds, NULL); + */ +ZSTDLIB_API size_t ZSTD_initDStream(ZSTD_DStream* zds); + +/*! ZSTD_decompressStream() : + * Streaming decompression function. + * Call repetitively to consume full input updating it as necessary. + * Function will update both input and output `pos` fields exposing current state via these fields: + * - `input.pos < input.size`, some input remaining and caller should provide remaining input + * on the next call. + * - `output.pos < output.size`, decoder flushed internal output buffer. + * - `output.pos == output.size`, unflushed data potentially present in the internal buffers, + * check ZSTD_decompressStream() @return value, + * if > 0, invoke it again to flush remaining data to output. + * Note : with no additional input, amount of data flushed <= ZSTD_BLOCKSIZE_MAX. + * + * @return : 0 when a frame is completely decoded and fully flushed, + * or an error code, which can be tested using ZSTD_isError(), + * or any other value > 0, which means there is some decoding or flushing to do to complete current frame. + * + * Note: when an operation returns with an error code, the @zds state may be left in undefined state. + * It's UB to invoke `ZSTD_decompressStream()` on such a state. + * In order to re-use such a state, it must be first reset, + * which can be done explicitly (`ZSTD_DCtx_reset()`), + * or is implied for operations starting some new decompression job (`ZSTD_initDStream`, `ZSTD_decompressDCtx()`, `ZSTD_decompress_usingDict()`) + */ +ZSTDLIB_API size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input); + +ZSTDLIB_API size_t ZSTD_DStreamInSize(void); /*!< recommended size for input buffer */ +ZSTDLIB_API size_t ZSTD_DStreamOutSize(void); /*!< recommended size for output buffer. Guarantee to successfully flush at least one complete block in all circumstances. */ + + +/************************** +* Simple dictionary API +***************************/ +/*! ZSTD_compress_usingDict() : + * Compression at an explicit compression level using a Dictionary. + * A dictionary can be any arbitrary data segment (also called a prefix), + * or a buffer with specified information (see zdict.h). + * Note : This function loads the dictionary, resulting in significant startup delay. + * It's intended for a dictionary used only once. + * Note 2 : When `dict == NULL || dictSize < 8` no dictionary is used. */ +ZSTDLIB_API size_t ZSTD_compress_usingDict(ZSTD_CCtx* ctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict,size_t dictSize, + int compressionLevel); + +/*! ZSTD_decompress_usingDict() : + * Decompression using a known Dictionary. + * Dictionary must be identical to the one used during compression. + * Note : This function loads the dictionary, resulting in significant startup delay. + * It's intended for a dictionary used only once. + * Note : When `dict == NULL || dictSize < 8` no dictionary is used. */ +ZSTDLIB_API size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict,size_t dictSize); + + +/*********************************** + * Bulk processing dictionary API + **********************************/ +typedef struct ZSTD_CDict_s ZSTD_CDict; + +/*! ZSTD_createCDict() : + * When compressing multiple messages or blocks using the same dictionary, + * it's recommended to digest the dictionary only once, since it's a costly operation. + * ZSTD_createCDict() will create a state from digesting a dictionary. + * The resulting state can be used for future compression operations with very limited startup cost. + * ZSTD_CDict can be created once and shared by multiple threads concurrently, since its usage is read-only. + * @dictBuffer can be released after ZSTD_CDict creation, because its content is copied within CDict. + * Note 1 : Consider experimental function `ZSTD_createCDict_byReference()` if you prefer to not duplicate @dictBuffer content. + * Note 2 : A ZSTD_CDict can be created from an empty @dictBuffer, + * in which case the only thing that it transports is the @compressionLevel. + * This can be useful in a pipeline featuring ZSTD_compress_usingCDict() exclusively, + * expecting a ZSTD_CDict parameter with any data, including those without a known dictionary. */ +ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict(const void* dictBuffer, size_t dictSize, + int compressionLevel); + +/*! ZSTD_freeCDict() : + * Function frees memory allocated by ZSTD_createCDict(). + * If a NULL pointer is passed, no operation is performed. */ +ZSTDLIB_API size_t ZSTD_freeCDict(ZSTD_CDict* CDict); + +/*! ZSTD_compress_usingCDict() : + * Compression using a digested Dictionary. + * Recommended when same dictionary is used multiple times. + * Note : compression level is _decided at dictionary creation time_, + * and frame parameters are hardcoded (dictID=yes, contentSize=yes, checksum=no) */ +ZSTDLIB_API size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const ZSTD_CDict* cdict); + + +typedef struct ZSTD_DDict_s ZSTD_DDict; + +/*! ZSTD_createDDict() : + * Create a digested dictionary, ready to start decompression operation without startup delay. + * dictBuffer can be released after DDict creation, as its content is copied inside DDict. */ +ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict(const void* dictBuffer, size_t dictSize); + +/*! ZSTD_freeDDict() : + * Function frees memory allocated with ZSTD_createDDict() + * If a NULL pointer is passed, no operation is performed. */ +ZSTDLIB_API size_t ZSTD_freeDDict(ZSTD_DDict* ddict); + +/*! ZSTD_decompress_usingDDict() : + * Decompression using a digested Dictionary. + * Recommended when same dictionary is used multiple times. */ +ZSTDLIB_API size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const ZSTD_DDict* ddict); + + +/******************************** + * Dictionary helper functions + *******************************/ + +/*! ZSTD_getDictID_fromDict() : Requires v1.4.0+ + * Provides the dictID stored within dictionary. + * if @return == 0, the dictionary is not conformant with Zstandard specification. + * It can still be loaded, but as a content-only dictionary. */ +ZSTDLIB_API unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize); + +/*! ZSTD_getDictID_fromCDict() : Requires v1.5.0+ + * Provides the dictID of the dictionary loaded into `cdict`. + * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty. + * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */ +ZSTDLIB_API unsigned ZSTD_getDictID_fromCDict(const ZSTD_CDict* cdict); + +/*! ZSTD_getDictID_fromDDict() : Requires v1.4.0+ + * Provides the dictID of the dictionary loaded into `ddict`. + * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty. + * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */ +ZSTDLIB_API unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict); + +/*! ZSTD_getDictID_fromFrame() : Requires v1.4.0+ + * Provides the dictID required to decompressed the frame stored within `src`. + * If @return == 0, the dictID could not be decoded. + * This could for one of the following reasons : + * - The frame does not require a dictionary to be decoded (most common case). + * - The frame was built with dictID intentionally removed. Whatever dictionary is necessary is a hidden piece of information. + * Note : this use case also happens when using a non-conformant dictionary. + * - `srcSize` is too small, and as a result, the frame header could not be decoded (only possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`). + * - This is not a Zstandard frame. + * When identifying the exact failure cause, it's possible to use ZSTD_getFrameHeader(), which will provide a more precise error code. */ +ZSTDLIB_API unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize); + + +/******************************************************************************* + * Advanced dictionary and prefix API (Requires v1.4.0+) + * + * This API allows dictionaries to be used with ZSTD_compress2(), + * ZSTD_compressStream2(), and ZSTD_decompressDCtx(). + * Dictionaries are sticky, they remain valid when same context is reused, + * they only reset when the context is reset + * with ZSTD_reset_parameters or ZSTD_reset_session_and_parameters. + * In contrast, Prefixes are single-use. + ******************************************************************************/ + + +/*! ZSTD_CCtx_loadDictionary() : Requires v1.4.0+ + * Create an internal CDict from `dict` buffer. + * Decompression will have to use same dictionary. + * @result : 0, or an error code (which can be tested with ZSTD_isError()). + * Special: Loading a NULL (or 0-size) dictionary invalidates previous dictionary, + * meaning "return to no-dictionary mode". + * Note 1 : Dictionary is sticky, it will be used for all future compressed frames, + * until parameters are reset, a new dictionary is loaded, or the dictionary + * is explicitly invalidated by loading a NULL dictionary. + * Note 2 : Loading a dictionary involves building tables. + * It's also a CPU consuming operation, with non-negligible impact on latency. + * Tables are dependent on compression parameters, and for this reason, + * compression parameters can no longer be changed after loading a dictionary. + * Note 3 :`dict` content will be copied internally. + * Use experimental ZSTD_CCtx_loadDictionary_byReference() to reference content instead. + * In such a case, dictionary buffer must outlive its users. + * Note 4 : Use ZSTD_CCtx_loadDictionary_advanced() + * to precisely select how dictionary content must be interpreted. + * Note 5 : This method does not benefit from LDM (long distance mode). + * If you want to employ LDM on some large dictionary content, + * prefer employing ZSTD_CCtx_refPrefix() described below. + */ +ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize); + +/*! ZSTD_CCtx_refCDict() : Requires v1.4.0+ + * Reference a prepared dictionary, to be used for all future compressed frames. + * Note that compression parameters are enforced from within CDict, + * and supersede any compression parameter previously set within CCtx. + * The parameters ignored are labelled as "superseded-by-cdict" in the ZSTD_cParameter enum docs. + * The ignored parameters will be used again if the CCtx is returned to no-dictionary mode. + * The dictionary will remain valid for future compressed frames using same CCtx. + * @result : 0, or an error code (which can be tested with ZSTD_isError()). + * Special : Referencing a NULL CDict means "return to no-dictionary mode". + * Note 1 : Currently, only one dictionary can be managed. + * Referencing a new dictionary effectively "discards" any previous one. + * Note 2 : CDict is just referenced, its lifetime must outlive its usage within CCtx. */ +ZSTDLIB_API size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict); + +/*! ZSTD_CCtx_refPrefix() : Requires v1.4.0+ + * Reference a prefix (single-usage dictionary) for next compressed frame. + * A prefix is **only used once**. Tables are discarded at end of frame (ZSTD_e_end). + * Decompression will need same prefix to properly regenerate data. + * Compressing with a prefix is similar in outcome as performing a diff and compressing it, + * but performs much faster, especially during decompression (compression speed is tunable with compression level). + * This method is compatible with LDM (long distance mode). + * @result : 0, or an error code (which can be tested with ZSTD_isError()). + * Special: Adding any prefix (including NULL) invalidates any previous prefix or dictionary + * Note 1 : Prefix buffer is referenced. It **must** outlive compression. + * Its content must remain unmodified during compression. + * Note 2 : If the intention is to diff some large src data blob with some prior version of itself, + * ensure that the window size is large enough to contain the entire source. + * See ZSTD_c_windowLog. + * Note 3 : Referencing a prefix involves building tables, which are dependent on compression parameters. + * It's a CPU consuming operation, with non-negligible impact on latency. + * If there is a need to use the same prefix multiple times, consider loadDictionary instead. + * Note 4 : By default, the prefix is interpreted as raw content (ZSTD_dct_rawContent). + * Use experimental ZSTD_CCtx_refPrefix_advanced() to alter dictionary interpretation. */ +ZSTDLIB_API size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx, + const void* prefix, size_t prefixSize); + +/*! ZSTD_DCtx_loadDictionary() : Requires v1.4.0+ + * Create an internal DDict from dict buffer, to be used to decompress all future frames. + * The dictionary remains valid for all future frames, until explicitly invalidated, or + * a new dictionary is loaded. + * @result : 0, or an error code (which can be tested with ZSTD_isError()). + * Special : Adding a NULL (or 0-size) dictionary invalidates any previous dictionary, + * meaning "return to no-dictionary mode". + * Note 1 : Loading a dictionary involves building tables, + * which has a non-negligible impact on CPU usage and latency. + * It's recommended to "load once, use many times", to amortize the cost + * Note 2 :`dict` content will be copied internally, so `dict` can be released after loading. + * Use ZSTD_DCtx_loadDictionary_byReference() to reference dictionary content instead. + * Note 3 : Use ZSTD_DCtx_loadDictionary_advanced() to take control of + * how dictionary content is loaded and interpreted. + */ +ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize); + +/*! ZSTD_DCtx_refDDict() : Requires v1.4.0+ + * Reference a prepared dictionary, to be used to decompress next frames. + * The dictionary remains active for decompression of future frames using same DCtx. + * + * If called with ZSTD_d_refMultipleDDicts enabled, repeated calls of this function + * will store the DDict references in a table, and the DDict used for decompression + * will be determined at decompression time, as per the dict ID in the frame. + * The memory for the table is allocated on the first call to refDDict, and can be + * freed with ZSTD_freeDCtx(). + * + * If called with ZSTD_d_refMultipleDDicts disabled (the default), only one dictionary + * will be managed, and referencing a dictionary effectively "discards" any previous one. + * + * @result : 0, or an error code (which can be tested with ZSTD_isError()). + * Special: referencing a NULL DDict means "return to no-dictionary mode". + * Note 2 : DDict is just referenced, its lifetime must outlive its usage from DCtx. + */ +ZSTDLIB_API size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict); + +/*! ZSTD_DCtx_refPrefix() : Requires v1.4.0+ + * Reference a prefix (single-usage dictionary) to decompress next frame. + * This is the reverse operation of ZSTD_CCtx_refPrefix(), + * and must use the same prefix as the one used during compression. + * Prefix is **only used once**. Reference is discarded at end of frame. + * End of frame is reached when ZSTD_decompressStream() returns 0. + * @result : 0, or an error code (which can be tested with ZSTD_isError()). + * Note 1 : Adding any prefix (including NULL) invalidates any previously set prefix or dictionary + * Note 2 : Prefix buffer is referenced. It **must** outlive decompression. + * Prefix buffer must remain unmodified up to the end of frame, + * reached when ZSTD_decompressStream() returns 0. + * Note 3 : By default, the prefix is treated as raw content (ZSTD_dct_rawContent). + * Use ZSTD_CCtx_refPrefix_advanced() to alter dictMode (Experimental section) + * Note 4 : Referencing a raw content prefix has almost no cpu nor memory cost. + * A full dictionary is more costly, as it requires building tables. + */ +ZSTDLIB_API size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx, + const void* prefix, size_t prefixSize); + +/* === Memory management === */ + +/*! ZSTD_sizeof_*() : Requires v1.4.0+ + * These functions give the _current_ memory usage of selected object. + * Note that object memory usage can evolve (increase or decrease) over time. */ +ZSTDLIB_API size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx); +ZSTDLIB_API size_t ZSTD_sizeof_DCtx(const ZSTD_DCtx* dctx); +ZSTDLIB_API size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs); +ZSTDLIB_API size_t ZSTD_sizeof_DStream(const ZSTD_DStream* zds); +ZSTDLIB_API size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict); +ZSTDLIB_API size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict); + +#if defined (__cplusplus) +} +#endif + +#endif /* ZSTD_H_235446 */ + + +/* ************************************************************************************** + * ADVANCED AND EXPERIMENTAL FUNCTIONS + **************************************************************************************** + * The definitions in the following section are considered experimental. + * They are provided for advanced scenarios. + * They should never be used with a dynamic library, as prototypes may change in the future. + * Use them only in association with static linking. + * ***************************************************************************************/ + +#if defined(ZSTD_STATIC_LINKING_ONLY) && !defined(ZSTD_H_ZSTD_STATIC_LINKING_ONLY) +#define ZSTD_H_ZSTD_STATIC_LINKING_ONLY + +#if defined (__cplusplus) +extern "C" { +#endif + +/* This can be overridden externally to hide static symbols. */ +#ifndef ZSTDLIB_STATIC_API +# if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1) +# define ZSTDLIB_STATIC_API __declspec(dllexport) ZSTDLIB_VISIBLE +# elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1) +# define ZSTDLIB_STATIC_API __declspec(dllimport) ZSTDLIB_VISIBLE +# else +# define ZSTDLIB_STATIC_API ZSTDLIB_VISIBLE +# endif +#endif + +/**************************************************************************************** + * experimental API (static linking only) + **************************************************************************************** + * The following symbols and constants + * are not planned to join "stable API" status in the near future. + * They can still change in future versions. + * Some of them are planned to remain in the static_only section indefinitely. + * Some of them might be removed in the future (especially when redundant with existing stable functions) + * ***************************************************************************************/ + +#define ZSTD_FRAMEHEADERSIZE_PREFIX(format) ((format) == ZSTD_f_zstd1 ? 5 : 1) /* minimum input size required to query frame header size */ +#define ZSTD_FRAMEHEADERSIZE_MIN(format) ((format) == ZSTD_f_zstd1 ? 6 : 2) +#define ZSTD_FRAMEHEADERSIZE_MAX 18 /* can be useful for static allocation */ +#define ZSTD_SKIPPABLEHEADERSIZE 8 + +/* compression parameter bounds */ +#define ZSTD_WINDOWLOG_MAX_32 30 +#define ZSTD_WINDOWLOG_MAX_64 31 +#define ZSTD_WINDOWLOG_MAX ((int)(sizeof(size_t) == 4 ? ZSTD_WINDOWLOG_MAX_32 : ZSTD_WINDOWLOG_MAX_64)) +#define ZSTD_WINDOWLOG_MIN 10 +#define ZSTD_HASHLOG_MAX ((ZSTD_WINDOWLOG_MAX < 30) ? ZSTD_WINDOWLOG_MAX : 30) +#define ZSTD_HASHLOG_MIN 6 +#define ZSTD_CHAINLOG_MAX_32 29 +#define ZSTD_CHAINLOG_MAX_64 30 +#define ZSTD_CHAINLOG_MAX ((int)(sizeof(size_t) == 4 ? ZSTD_CHAINLOG_MAX_32 : ZSTD_CHAINLOG_MAX_64)) +#define ZSTD_CHAINLOG_MIN ZSTD_HASHLOG_MIN +#define ZSTD_SEARCHLOG_MAX (ZSTD_WINDOWLOG_MAX-1) +#define ZSTD_SEARCHLOG_MIN 1 +#define ZSTD_MINMATCH_MAX 7 /* only for ZSTD_fast, other strategies are limited to 6 */ +#define ZSTD_MINMATCH_MIN 3 /* only for ZSTD_btopt+, faster strategies are limited to 4 */ +#define ZSTD_TARGETLENGTH_MAX ZSTD_BLOCKSIZE_MAX +#define ZSTD_TARGETLENGTH_MIN 0 /* note : comparing this constant to an unsigned results in a tautological test */ +#define ZSTD_STRATEGY_MIN ZSTD_fast +#define ZSTD_STRATEGY_MAX ZSTD_btultra2 +#define ZSTD_BLOCKSIZE_MAX_MIN (1 << 10) /* The minimum valid max blocksize. Maximum blocksizes smaller than this make compressBound() inaccurate. */ + + +#define ZSTD_OVERLAPLOG_MIN 0 +#define ZSTD_OVERLAPLOG_MAX 9 + +#define ZSTD_WINDOWLOG_LIMIT_DEFAULT 27 /* by default, the streaming decoder will refuse any frame + * requiring larger than (1< 0: + * If litLength != 0: + * rep == 1 --> offset == repeat_offset_1 + * rep == 2 --> offset == repeat_offset_2 + * rep == 3 --> offset == repeat_offset_3 + * If litLength == 0: + * rep == 1 --> offset == repeat_offset_2 + * rep == 2 --> offset == repeat_offset_3 + * rep == 3 --> offset == repeat_offset_1 - 1 + * + * Note: This field is optional. ZSTD_generateSequences() will calculate the value of + * 'rep', but repeat offsets do not necessarily need to be calculated from an external + * sequence provider perspective. For example, ZSTD_compressSequences() does not + * use this 'rep' field at all (as of now). + */ +} ZSTD_Sequence; + +typedef struct { + unsigned windowLog; /**< largest match distance : larger == more compression, more memory needed during decompression */ + unsigned chainLog; /**< fully searched segment : larger == more compression, slower, more memory (useless for fast) */ + unsigned hashLog; /**< dispatch table : larger == faster, more memory */ + unsigned searchLog; /**< nb of searches : larger == more compression, slower */ + unsigned minMatch; /**< match length searched : larger == faster decompression, sometimes less compression */ + unsigned targetLength; /**< acceptable match size for optimal parser (only) : larger == more compression, slower */ + ZSTD_strategy strategy; /**< see ZSTD_strategy definition above */ +} ZSTD_compressionParameters; + +typedef struct { + int contentSizeFlag; /**< 1: content size will be in frame header (when known) */ + int checksumFlag; /**< 1: generate a 32-bits checksum using XXH64 algorithm at end of frame, for error detection */ + int noDictIDFlag; /**< 1: no dictID will be saved into frame header (dictID is only useful for dictionary compression) */ +} ZSTD_frameParameters; + +typedef struct { + ZSTD_compressionParameters cParams; + ZSTD_frameParameters fParams; +} ZSTD_parameters; + +typedef enum { + ZSTD_dct_auto = 0, /* dictionary is "full" when starting with ZSTD_MAGIC_DICTIONARY, otherwise it is "rawContent" */ + ZSTD_dct_rawContent = 1, /* ensures dictionary is always loaded as rawContent, even if it starts with ZSTD_MAGIC_DICTIONARY */ + ZSTD_dct_fullDict = 2 /* refuses to load a dictionary if it does not respect Zstandard's specification, starting with ZSTD_MAGIC_DICTIONARY */ +} ZSTD_dictContentType_e; + +typedef enum { + ZSTD_dlm_byCopy = 0, /**< Copy dictionary content internally */ + ZSTD_dlm_byRef = 1 /**< Reference dictionary content -- the dictionary buffer must outlive its users. */ +} ZSTD_dictLoadMethod_e; + +typedef enum { + ZSTD_f_zstd1 = 0, /* zstd frame format, specified in zstd_compression_format.md (default) */ + ZSTD_f_zstd1_magicless = 1 /* Variant of zstd frame format, without initial 4-bytes magic number. + * Useful to save 4 bytes per generated frame. + * Decoder cannot recognise automatically this format, requiring this instruction. */ +} ZSTD_format_e; + +typedef enum { + /* Note: this enum controls ZSTD_d_forceIgnoreChecksum */ + ZSTD_d_validateChecksum = 0, + ZSTD_d_ignoreChecksum = 1 +} ZSTD_forceIgnoreChecksum_e; + +typedef enum { + /* Note: this enum controls ZSTD_d_refMultipleDDicts */ + ZSTD_rmd_refSingleDDict = 0, + ZSTD_rmd_refMultipleDDicts = 1 +} ZSTD_refMultipleDDicts_e; + +typedef enum { + /* Note: this enum and the behavior it controls are effectively internal + * implementation details of the compressor. They are expected to continue + * to evolve and should be considered only in the context of extremely + * advanced performance tuning. + * + * Zstd currently supports the use of a CDict in three ways: + * + * - The contents of the CDict can be copied into the working context. This + * means that the compression can search both the dictionary and input + * while operating on a single set of internal tables. This makes + * the compression faster per-byte of input. However, the initial copy of + * the CDict's tables incurs a fixed cost at the beginning of the + * compression. For small compressions (< 8 KB), that copy can dominate + * the cost of the compression. + * + * - The CDict's tables can be used in-place. In this model, compression is + * slower per input byte, because the compressor has to search two sets of + * tables. However, this model incurs no start-up cost (as long as the + * working context's tables can be reused). For small inputs, this can be + * faster than copying the CDict's tables. + * + * - The CDict's tables are not used at all, and instead we use the working + * context alone to reload the dictionary and use params based on the source + * size. See ZSTD_compress_insertDictionary() and ZSTD_compress_usingDict(). + * This method is effective when the dictionary sizes are very small relative + * to the input size, and the input size is fairly large to begin with. + * + * Zstd has a simple internal heuristic that selects which strategy to use + * at the beginning of a compression. However, if experimentation shows that + * Zstd is making poor choices, it is possible to override that choice with + * this enum. + */ + ZSTD_dictDefaultAttach = 0, /* Use the default heuristic. */ + ZSTD_dictForceAttach = 1, /* Never copy the dictionary. */ + ZSTD_dictForceCopy = 2, /* Always copy the dictionary. */ + ZSTD_dictForceLoad = 3 /* Always reload the dictionary */ +} ZSTD_dictAttachPref_e; + +typedef enum { + ZSTD_lcm_auto = 0, /**< Automatically determine the compression mode based on the compression level. + * Negative compression levels will be uncompressed, and positive compression + * levels will be compressed. */ + ZSTD_lcm_huffman = 1, /**< Always attempt Huffman compression. Uncompressed literals will still be + * emitted if Huffman compression is not profitable. */ + ZSTD_lcm_uncompressed = 2 /**< Always emit uncompressed literals. */ +} ZSTD_literalCompressionMode_e; + +typedef enum { + /* Note: This enum controls features which are conditionally beneficial. + * Zstd can take a decision on whether or not to enable the feature (ZSTD_ps_auto), + * but setting the switch to ZSTD_ps_enable or ZSTD_ps_disable force enable/disable the feature. + */ + ZSTD_ps_auto = 0, /* Let the library automatically determine whether the feature shall be enabled */ + ZSTD_ps_enable = 1, /* Force-enable the feature */ + ZSTD_ps_disable = 2 /* Do not use the feature */ +} ZSTD_ParamSwitch_e; +#define ZSTD_paramSwitch_e ZSTD_ParamSwitch_e /* old name */ + +/*************************************** +* Frame header and size functions +***************************************/ + +/*! ZSTD_findDecompressedSize() : + * `src` should point to the start of a series of ZSTD encoded and/or skippable frames + * `srcSize` must be the _exact_ size of this series + * (i.e. there should be a frame boundary at `src + srcSize`) + * @return : - decompressed size of all data in all successive frames + * - if the decompressed size cannot be determined: ZSTD_CONTENTSIZE_UNKNOWN + * - if an error occurred: ZSTD_CONTENTSIZE_ERROR + * + * note 1 : decompressed size is an optional field, that may not be present, especially in streaming mode. + * When `return==ZSTD_CONTENTSIZE_UNKNOWN`, data to decompress could be any size. + * In which case, it's necessary to use streaming mode to decompress data. + * note 2 : decompressed size is always present when compression is done with ZSTD_compress() + * note 3 : decompressed size can be very large (64-bits value), + * potentially larger than what local system can handle as a single memory segment. + * In which case, it's necessary to use streaming mode to decompress data. + * note 4 : If source is untrusted, decompressed size could be wrong or intentionally modified. + * Always ensure result fits within application's authorized limits. + * Each application can set its own limits. + * note 5 : ZSTD_findDecompressedSize handles multiple frames, and so it must traverse the input to + * read each contained frame header. This is fast as most of the data is skipped, + * however it does mean that all frame data must be present and valid. */ +ZSTDLIB_STATIC_API unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize); + +/*! ZSTD_decompressBound() : + * `src` should point to the start of a series of ZSTD encoded and/or skippable frames + * `srcSize` must be the _exact_ size of this series + * (i.e. there should be a frame boundary at `src + srcSize`) + * @return : - upper-bound for the decompressed size of all data in all successive frames + * - if an error occurred: ZSTD_CONTENTSIZE_ERROR + * + * note 1 : an error can occur if `src` contains an invalid or incorrectly formatted frame. + * note 2 : the upper-bound is exact when the decompressed size field is available in every ZSTD encoded frame of `src`. + * in this case, `ZSTD_findDecompressedSize` and `ZSTD_decompressBound` return the same value. + * note 3 : when the decompressed size field isn't available, the upper-bound for that frame is calculated by: + * upper-bound = # blocks * min(128 KB, Window_Size) + */ +ZSTDLIB_STATIC_API unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize); + +/*! ZSTD_frameHeaderSize() : + * srcSize must be large enough, aka >= ZSTD_FRAMEHEADERSIZE_PREFIX. + * @return : size of the Frame Header, + * or an error code (if srcSize is too small) */ +ZSTDLIB_STATIC_API size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize); + +typedef enum { ZSTD_frame, ZSTD_skippableFrame } ZSTD_FrameType_e; +#define ZSTD_frameType_e ZSTD_FrameType_e /* old name */ +typedef struct { + unsigned long long frameContentSize; /* if == ZSTD_CONTENTSIZE_UNKNOWN, it means this field is not available. 0 means "empty" */ + unsigned long long windowSize; /* can be very large, up to <= frameContentSize */ + unsigned blockSizeMax; + ZSTD_FrameType_e frameType; /* if == ZSTD_skippableFrame, frameContentSize is the size of skippable content */ + unsigned headerSize; + unsigned dictID; /* for ZSTD_skippableFrame, contains the skippable magic variant [0-15] */ + unsigned checksumFlag; + unsigned _reserved1; + unsigned _reserved2; +} ZSTD_FrameHeader; +#define ZSTD_frameHeader ZSTD_FrameHeader /* old name */ + +/*! ZSTD_getFrameHeader() : + * decode Frame Header into `zfhPtr`, or requires larger `srcSize`. + * @return : 0 => header is complete, `zfhPtr` is correctly filled, + * >0 => `srcSize` is too small, @return value is the wanted `srcSize` amount, `zfhPtr` is not filled, + * or an error code, which can be tested using ZSTD_isError() */ +ZSTDLIB_STATIC_API size_t ZSTD_getFrameHeader(ZSTD_FrameHeader* zfhPtr, const void* src, size_t srcSize); +/*! ZSTD_getFrameHeader_advanced() : + * same as ZSTD_getFrameHeader(), + * with added capability to select a format (like ZSTD_f_zstd1_magicless) */ +ZSTDLIB_STATIC_API size_t ZSTD_getFrameHeader_advanced(ZSTD_FrameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format); + +/*! ZSTD_decompressionMargin() : + * Zstd supports in-place decompression, where the input and output buffers overlap. + * In this case, the output buffer must be at least (Margin + Output_Size) bytes large, + * and the input buffer must be at the end of the output buffer. + * + * _______________________ Output Buffer ________________________ + * | | + * | ____ Input Buffer ____| + * | | | + * v v v + * |---------------------------------------|-----------|----------| + * ^ ^ ^ + * |___________________ Output_Size ___________________|_ Margin _| + * + * NOTE: See also ZSTD_DECOMPRESSION_MARGIN(). + * NOTE: This applies only to single-pass decompression through ZSTD_decompress() or + * ZSTD_decompressDCtx(). + * NOTE: This function supports multi-frame input. + * + * @param src The compressed frame(s) + * @param srcSize The size of the compressed frame(s) + * @returns The decompression margin or an error that can be checked with ZSTD_isError(). + */ +ZSTDLIB_STATIC_API size_t ZSTD_decompressionMargin(const void* src, size_t srcSize); + +/*! ZSTD_DECOMPRESS_MARGIN() : + * Similar to ZSTD_decompressionMargin(), but instead of computing the margin from + * the compressed frame, compute it from the original size and the blockSizeLog. + * See ZSTD_decompressionMargin() for details. + * + * WARNING: This macro does not support multi-frame input, the input must be a single + * zstd frame. If you need that support use the function, or implement it yourself. + * + * @param originalSize The original uncompressed size of the data. + * @param blockSize The block size == MIN(windowSize, ZSTD_BLOCKSIZE_MAX). + * Unless you explicitly set the windowLog smaller than + * ZSTD_BLOCKSIZELOG_MAX you can just use ZSTD_BLOCKSIZE_MAX. + */ +#define ZSTD_DECOMPRESSION_MARGIN(originalSize, blockSize) ((size_t)( \ + ZSTD_FRAMEHEADERSIZE_MAX /* Frame header */ + \ + 4 /* checksum */ + \ + ((originalSize) == 0 ? 0 : 3 * (((originalSize) + (blockSize) - 1) / blockSize)) /* 3 bytes per block */ + \ + (blockSize) /* One block of margin */ \ + )) + +typedef enum { + ZSTD_sf_noBlockDelimiters = 0, /* ZSTD_Sequence[] has no block delimiters, just sequences */ + ZSTD_sf_explicitBlockDelimiters = 1 /* ZSTD_Sequence[] contains explicit block delimiters */ +} ZSTD_SequenceFormat_e; +#define ZSTD_sequenceFormat_e ZSTD_SequenceFormat_e /* old name */ + +/*! ZSTD_sequenceBound() : + * `srcSize` : size of the input buffer + * @return : upper-bound for the number of sequences that can be generated + * from a buffer of srcSize bytes + * + * note : returns number of sequences - to get bytes, multiply by sizeof(ZSTD_Sequence). + */ +ZSTDLIB_STATIC_API size_t ZSTD_sequenceBound(size_t srcSize); + +/*! ZSTD_generateSequences() : + * WARNING: This function is meant for debugging and informational purposes ONLY! + * Its implementation is flawed, and it will be deleted in a future version. + * It is not guaranteed to succeed, as there are several cases where it will give + * up and fail. You should NOT use this function in production code. + * + * This function is deprecated, and will be removed in a future version. + * + * Generate sequences using ZSTD_compress2(), given a source buffer. + * + * @param zc The compression context to be used for ZSTD_compress2(). Set any + * compression parameters you need on this context. + * @param outSeqs The output sequences buffer of size @p outSeqsSize + * @param outSeqsCapacity The size of the output sequences buffer. + * ZSTD_sequenceBound(srcSize) is an upper bound on the number + * of sequences that can be generated. + * @param src The source buffer to generate sequences from of size @p srcSize. + * @param srcSize The size of the source buffer. + * + * Each block will end with a dummy sequence + * with offset == 0, matchLength == 0, and litLength == length of last literals. + * litLength may be == 0, and if so, then the sequence of (of: 0 ml: 0 ll: 0) + * simply acts as a block delimiter. + * + * @returns The number of sequences generated, necessarily less than + * ZSTD_sequenceBound(srcSize), or an error code that can be checked + * with ZSTD_isError(). + */ +ZSTD_DEPRECATED("For debugging only, will be replaced by ZSTD_extractSequences()") +ZSTDLIB_STATIC_API size_t +ZSTD_generateSequences(ZSTD_CCtx* zc, + ZSTD_Sequence* outSeqs, size_t outSeqsCapacity, + const void* src, size_t srcSize); + +/*! ZSTD_mergeBlockDelimiters() : + * Given an array of ZSTD_Sequence, remove all sequences that represent block delimiters/last literals + * by merging them into the literals of the next sequence. + * + * As such, the final generated result has no explicit representation of block boundaries, + * and the final last literals segment is not represented in the sequences. + * + * The output of this function can be fed into ZSTD_compressSequences() with CCtx + * setting of ZSTD_c_blockDelimiters as ZSTD_sf_noBlockDelimiters + * @return : number of sequences left after merging + */ +ZSTDLIB_STATIC_API size_t ZSTD_mergeBlockDelimiters(ZSTD_Sequence* sequences, size_t seqsSize); + +/*! ZSTD_compressSequences() : + * Compress an array of ZSTD_Sequence, associated with @src buffer, into dst. + * @src contains the entire input (not just the literals). + * If @srcSize > sum(sequence.length), the remaining bytes are considered all literals + * If a dictionary is included, then the cctx should reference the dict (see: ZSTD_CCtx_refCDict(), ZSTD_CCtx_loadDictionary(), etc.). + * The entire source is compressed into a single frame. + * + * The compression behavior changes based on cctx params. In particular: + * If ZSTD_c_blockDelimiters == ZSTD_sf_noBlockDelimiters, the array of ZSTD_Sequence is expected to contain + * no block delimiters (defined in ZSTD_Sequence). Block boundaries are roughly determined based on + * the block size derived from the cctx, and sequences may be split. This is the default setting. + * + * If ZSTD_c_blockDelimiters == ZSTD_sf_explicitBlockDelimiters, the array of ZSTD_Sequence is expected to contain + * valid block delimiters (defined in ZSTD_Sequence). Behavior is undefined if no block delimiters are provided. + * + * When ZSTD_c_blockDelimiters == ZSTD_sf_explicitBlockDelimiters, it's possible to decide generating repcodes + * using the advanced parameter ZSTD_c_repcodeResolution. Repcodes will improve compression ratio, though the benefit + * can vary greatly depending on Sequences. On the other hand, repcode resolution is an expensive operation. + * By default, it's disabled at low (<10) compression levels, and enabled above the threshold (>=10). + * ZSTD_c_repcodeResolution makes it possible to directly manage this processing in either direction. + * + * If ZSTD_c_validateSequences == 0, this function blindly accepts the Sequences provided. Invalid Sequences cause undefined + * behavior. If ZSTD_c_validateSequences == 1, then the function will detect invalid Sequences (see doc/zstd_compression_format.md for + * specifics regarding offset/matchlength requirements) and then bail out and return an error. + * + * In addition to the two adjustable experimental params, there are other important cctx params. + * - ZSTD_c_minMatch MUST be set as less than or equal to the smallest match generated by the match finder. It has a minimum value of ZSTD_MINMATCH_MIN. + * - ZSTD_c_compressionLevel accordingly adjusts the strength of the entropy coder, as it would in typical compression. + * - ZSTD_c_windowLog affects offset validation: this function will return an error at higher debug levels if a provided offset + * is larger than what the spec allows for a given window log and dictionary (if present). See: doc/zstd_compression_format.md + * + * Note: Repcodes are, as of now, always re-calculated within this function, ZSTD_Sequence.rep is effectively unused. + * Dev Note: Once ability to ingest repcodes become available, the explicit block delims mode must respect those repcodes exactly, + * and cannot emit an RLE block that disagrees with the repcode history. + * @return : final compressed size, or a ZSTD error code. + */ +ZSTDLIB_STATIC_API size_t +ZSTD_compressSequences(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const ZSTD_Sequence* inSeqs, size_t inSeqsSize, + const void* src, size_t srcSize); + + +/*! ZSTD_compressSequencesAndLiterals() : + * This is a variant of ZSTD_compressSequences() which, + * instead of receiving (src,srcSize) as input parameter, receives (literals,litSize), + * aka all the literals, already extracted and laid out into a single continuous buffer. + * This can be useful if the process generating the sequences also happens to generate the buffer of literals, + * thus skipping an extraction + caching stage. + * It's a speed optimization, useful when the right conditions are met, + * but it also features the following limitations: + * - Only supports explicit delimiter mode + * - Currently does not support Sequences validation (so input Sequences are trusted) + * - Not compatible with frame checksum, which must be disabled + * - If any block is incompressible, will fail and return an error + * - @litSize must be == sum of all @.litLength fields in @inSeqs. Any discrepancy will generate an error. + * - @litBufCapacity is the size of the underlying buffer into which literals are written, starting at address @literals. + * @litBufCapacity must be at least 8 bytes larger than @litSize. + * - @decompressedSize must be correct, and correspond to the sum of all Sequences. Any discrepancy will generate an error. + * @return : final compressed size, or a ZSTD error code. + */ +ZSTDLIB_STATIC_API size_t +ZSTD_compressSequencesAndLiterals(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const ZSTD_Sequence* inSeqs, size_t nbSequences, + const void* literals, size_t litSize, size_t litBufCapacity, + size_t decompressedSize); + + +/*! ZSTD_writeSkippableFrame() : + * Generates a zstd skippable frame containing data given by src, and writes it to dst buffer. + * + * Skippable frames begin with a 4-byte magic number. There are 16 possible choices of magic number, + * ranging from ZSTD_MAGIC_SKIPPABLE_START to ZSTD_MAGIC_SKIPPABLE_START+15. + * As such, the parameter magicVariant controls the exact skippable frame magic number variant used, + * so the magic number used will be ZSTD_MAGIC_SKIPPABLE_START + magicVariant. + * + * Returns an error if destination buffer is not large enough, if the source size is not representable + * with a 4-byte unsigned int, or if the parameter magicVariant is greater than 15 (and therefore invalid). + * + * @return : number of bytes written or a ZSTD error. + */ +ZSTDLIB_STATIC_API size_t ZSTD_writeSkippableFrame(void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + unsigned magicVariant); + +/*! ZSTD_readSkippableFrame() : + * Retrieves the content of a zstd skippable frame starting at @src, and writes it to @dst buffer. + * + * The parameter @magicVariant will receive the magicVariant that was supplied when the frame was written, + * i.e. magicNumber - ZSTD_MAGIC_SKIPPABLE_START. + * This can be NULL if the caller is not interested in the magicVariant. + * + * Returns an error if destination buffer is not large enough, or if the frame is not skippable. + * + * @return : number of bytes written or a ZSTD error. + */ +ZSTDLIB_STATIC_API size_t ZSTD_readSkippableFrame(void* dst, size_t dstCapacity, + unsigned* magicVariant, + const void* src, size_t srcSize); + +/*! ZSTD_isSkippableFrame() : + * Tells if the content of `buffer` starts with a valid Frame Identifier for a skippable frame. + */ +ZSTDLIB_STATIC_API unsigned ZSTD_isSkippableFrame(const void* buffer, size_t size); + + + +/*************************************** +* Memory management +***************************************/ + +/*! ZSTD_estimate*() : + * These functions make it possible to estimate memory usage + * of a future {D,C}Ctx, before its creation. + * This is useful in combination with ZSTD_initStatic(), + * which makes it possible to employ a static buffer for ZSTD_CCtx* state. + * + * ZSTD_estimateCCtxSize() will provide a memory budget large enough + * to compress data of any size using one-shot compression ZSTD_compressCCtx() or ZSTD_compress2() + * associated with any compression level up to max specified one. + * The estimate will assume the input may be arbitrarily large, + * which is the worst case. + * + * Note that the size estimation is specific for one-shot compression, + * it is not valid for streaming (see ZSTD_estimateCStreamSize*()) + * nor other potential ways of using a ZSTD_CCtx* state. + * + * When srcSize can be bound by a known and rather "small" value, + * this knowledge can be used to provide a tighter budget estimation + * because the ZSTD_CCtx* state will need less memory for small inputs. + * This tighter estimation can be provided by employing more advanced functions + * ZSTD_estimateCCtxSize_usingCParams(), which can be used in tandem with ZSTD_getCParams(), + * and ZSTD_estimateCCtxSize_usingCCtxParams(), which can be used in tandem with ZSTD_CCtxParams_setParameter(). + * Both can be used to estimate memory using custom compression parameters and arbitrary srcSize limits. + * + * Note : only single-threaded compression is supported. + * ZSTD_estimateCCtxSize_usingCCtxParams() will return an error code if ZSTD_c_nbWorkers is >= 1. + */ +ZSTDLIB_STATIC_API size_t ZSTD_estimateCCtxSize(int maxCompressionLevel); +ZSTDLIB_STATIC_API size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams); +ZSTDLIB_STATIC_API size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params); +ZSTDLIB_STATIC_API size_t ZSTD_estimateDCtxSize(void); + +/*! ZSTD_estimateCStreamSize() : + * ZSTD_estimateCStreamSize() will provide a memory budget large enough for streaming compression + * using any compression level up to the max specified one. + * It will also consider src size to be arbitrarily "large", which is a worst case scenario. + * If srcSize is known to always be small, ZSTD_estimateCStreamSize_usingCParams() can provide a tighter estimation. + * ZSTD_estimateCStreamSize_usingCParams() can be used in tandem with ZSTD_getCParams() to create cParams from compressionLevel. + * ZSTD_estimateCStreamSize_usingCCtxParams() can be used in tandem with ZSTD_CCtxParams_setParameter(). Only single-threaded compression is supported. This function will return an error code if ZSTD_c_nbWorkers is >= 1. + * Note : CStream size estimation is only correct for single-threaded compression. + * ZSTD_estimateCStreamSize_usingCCtxParams() will return an error code if ZSTD_c_nbWorkers is >= 1. + * Note 2 : ZSTD_estimateCStreamSize* functions are not compatible with the Block-Level Sequence Producer API at this time. + * Size estimates assume that no external sequence producer is registered. + * + * ZSTD_DStream memory budget depends on frame's window Size. + * This information can be passed manually, using ZSTD_estimateDStreamSize, + * or deducted from a valid frame Header, using ZSTD_estimateDStreamSize_fromFrame(); + * Any frame requesting a window size larger than max specified one will be rejected. + * Note : if streaming is init with function ZSTD_init?Stream_usingDict(), + * an internal ?Dict will be created, which additional size is not estimated here. + * In this case, get total size by adding ZSTD_estimate?DictSize + */ +ZSTDLIB_STATIC_API size_t ZSTD_estimateCStreamSize(int maxCompressionLevel); +ZSTDLIB_STATIC_API size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams); +ZSTDLIB_STATIC_API size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params); +ZSTDLIB_STATIC_API size_t ZSTD_estimateDStreamSize(size_t maxWindowSize); +ZSTDLIB_STATIC_API size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize); + +/*! ZSTD_estimate?DictSize() : + * ZSTD_estimateCDictSize() will bet that src size is relatively "small", and content is copied, like ZSTD_createCDict(). + * ZSTD_estimateCDictSize_advanced() makes it possible to control compression parameters precisely, like ZSTD_createCDict_advanced(). + * Note : dictionaries created by reference (`ZSTD_dlm_byRef`) are logically smaller. + */ +ZSTDLIB_STATIC_API size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel); +ZSTDLIB_STATIC_API size_t ZSTD_estimateCDictSize_advanced(size_t dictSize, ZSTD_compressionParameters cParams, ZSTD_dictLoadMethod_e dictLoadMethod); +ZSTDLIB_STATIC_API size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod); + +/*! ZSTD_initStatic*() : + * Initialize an object using a pre-allocated fixed-size buffer. + * workspace: The memory area to emplace the object into. + * Provided pointer *must be 8-bytes aligned*. + * Buffer must outlive object. + * workspaceSize: Use ZSTD_estimate*Size() to determine + * how large workspace must be to support target scenario. + * @return : pointer to object (same address as workspace, just different type), + * or NULL if error (size too small, incorrect alignment, etc.) + * Note : zstd will never resize nor malloc() when using a static buffer. + * If the object requires more memory than available, + * zstd will just error out (typically ZSTD_error_memory_allocation). + * Note 2 : there is no corresponding "free" function. + * Since workspace is allocated externally, it must be freed externally too. + * Note 3 : cParams : use ZSTD_getCParams() to convert a compression level + * into its associated cParams. + * Limitation 1 : currently not compatible with internal dictionary creation, triggered by + * ZSTD_CCtx_loadDictionary(), ZSTD_initCStream_usingDict() or ZSTD_initDStream_usingDict(). + * Limitation 2 : static cctx currently not compatible with multi-threading. + * Limitation 3 : static dctx is incompatible with legacy support. + */ +ZSTDLIB_STATIC_API ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize); +ZSTDLIB_STATIC_API ZSTD_CStream* ZSTD_initStaticCStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticCCtx() */ + +ZSTDLIB_STATIC_API ZSTD_DCtx* ZSTD_initStaticDCtx(void* workspace, size_t workspaceSize); +ZSTDLIB_STATIC_API ZSTD_DStream* ZSTD_initStaticDStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticDCtx() */ + +ZSTDLIB_STATIC_API const ZSTD_CDict* ZSTD_initStaticCDict( + void* workspace, size_t workspaceSize, + const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType, + ZSTD_compressionParameters cParams); + +ZSTDLIB_STATIC_API const ZSTD_DDict* ZSTD_initStaticDDict( + void* workspace, size_t workspaceSize, + const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType); + + +/*! Custom memory allocation : + * These prototypes make it possible to pass your own allocation/free functions. + * ZSTD_customMem is provided at creation time, using ZSTD_create*_advanced() variants listed below. + * All allocation/free operations will be completed using these custom variants instead of regular ones. + */ +typedef void* (*ZSTD_allocFunction) (void* opaque, size_t size); +typedef void (*ZSTD_freeFunction) (void* opaque, void* address); +typedef struct { ZSTD_allocFunction customAlloc; ZSTD_freeFunction customFree; void* opaque; } ZSTD_customMem; +static +#ifdef __GNUC__ +__attribute__((__unused__)) +#endif + +#if defined(__clang__) && __clang_major__ >= 5 +#pragma clang diagnostic push +#pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant" +#endif +ZSTD_customMem const ZSTD_defaultCMem = { NULL, NULL, NULL }; /**< this constant defers to stdlib's functions */ +#if defined(__clang__) && __clang_major__ >= 5 +#pragma clang diagnostic pop +#endif + +ZSTDLIB_STATIC_API ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem); +ZSTDLIB_STATIC_API ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem); +ZSTDLIB_STATIC_API ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem); +ZSTDLIB_STATIC_API ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem); + +ZSTDLIB_STATIC_API ZSTD_CDict* ZSTD_createCDict_advanced(const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType, + ZSTD_compressionParameters cParams, + ZSTD_customMem customMem); + +/*! Thread pool : + * These prototypes make it possible to share a thread pool among multiple compression contexts. + * This can limit resources for applications with multiple threads where each one uses + * a threaded compression mode (via ZSTD_c_nbWorkers parameter). + * ZSTD_createThreadPool creates a new thread pool with a given number of threads. + * Note that the lifetime of such pool must exist while being used. + * ZSTD_CCtx_refThreadPool assigns a thread pool to a context (use NULL argument value + * to use an internal thread pool). + * ZSTD_freeThreadPool frees a thread pool, accepts NULL pointer. + */ +typedef struct POOL_ctx_s ZSTD_threadPool; +ZSTDLIB_STATIC_API ZSTD_threadPool* ZSTD_createThreadPool(size_t numThreads); +ZSTDLIB_STATIC_API void ZSTD_freeThreadPool (ZSTD_threadPool* pool); /* accept NULL pointer */ +ZSTDLIB_STATIC_API size_t ZSTD_CCtx_refThreadPool(ZSTD_CCtx* cctx, ZSTD_threadPool* pool); + + +/* + * This API is temporary and is expected to change or disappear in the future! + */ +ZSTDLIB_STATIC_API ZSTD_CDict* ZSTD_createCDict_advanced2( + const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType, + const ZSTD_CCtx_params* cctxParams, + ZSTD_customMem customMem); + +ZSTDLIB_STATIC_API ZSTD_DDict* ZSTD_createDDict_advanced( + const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType, + ZSTD_customMem customMem); + + +/*************************************** +* Advanced compression functions +***************************************/ + +/*! ZSTD_createCDict_byReference() : + * Create a digested dictionary for compression + * Dictionary content is just referenced, not duplicated. + * As a consequence, `dictBuffer` **must** outlive CDict, + * and its content must remain unmodified throughout the lifetime of CDict. + * note: equivalent to ZSTD_createCDict_advanced(), with dictLoadMethod==ZSTD_dlm_byRef */ +ZSTDLIB_STATIC_API ZSTD_CDict* ZSTD_createCDict_byReference(const void* dictBuffer, size_t dictSize, int compressionLevel); + +/*! ZSTD_getCParams() : + * @return ZSTD_compressionParameters structure for a selected compression level and estimated srcSize. + * `estimatedSrcSize` value is optional, select 0 if not known */ +ZSTDLIB_STATIC_API ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize); + +/*! ZSTD_getParams() : + * same as ZSTD_getCParams(), but @return a full `ZSTD_parameters` object instead of sub-component `ZSTD_compressionParameters`. + * All fields of `ZSTD_frameParameters` are set to default : contentSize=1, checksum=0, noDictID=0 */ +ZSTDLIB_STATIC_API ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize); + +/*! ZSTD_checkCParams() : + * Ensure param values remain within authorized range. + * @return 0 on success, or an error code (can be checked with ZSTD_isError()) */ +ZSTDLIB_STATIC_API size_t ZSTD_checkCParams(ZSTD_compressionParameters params); + +/*! ZSTD_adjustCParams() : + * optimize params for a given `srcSize` and `dictSize`. + * `srcSize` can be unknown, in which case use ZSTD_CONTENTSIZE_UNKNOWN. + * `dictSize` must be `0` when there is no dictionary. + * cPar can be invalid : all parameters will be clamped within valid range in the @return struct. + * This function never fails (wide contract) */ +ZSTDLIB_STATIC_API ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize); + +/*! ZSTD_CCtx_setCParams() : + * Set all parameters provided within @p cparams into the working @p cctx. + * Note : if modifying parameters during compression (MT mode only), + * note that changes to the .windowLog parameter will be ignored. + * @return 0 on success, or an error code (can be checked with ZSTD_isError()). + * On failure, no parameters are updated. + */ +ZSTDLIB_STATIC_API size_t ZSTD_CCtx_setCParams(ZSTD_CCtx* cctx, ZSTD_compressionParameters cparams); + +/*! ZSTD_CCtx_setFParams() : + * Set all parameters provided within @p fparams into the working @p cctx. + * @return 0 on success, or an error code (can be checked with ZSTD_isError()). + */ +ZSTDLIB_STATIC_API size_t ZSTD_CCtx_setFParams(ZSTD_CCtx* cctx, ZSTD_frameParameters fparams); + +/*! ZSTD_CCtx_setParams() : + * Set all parameters provided within @p params into the working @p cctx. + * @return 0 on success, or an error code (can be checked with ZSTD_isError()). + */ +ZSTDLIB_STATIC_API size_t ZSTD_CCtx_setParams(ZSTD_CCtx* cctx, ZSTD_parameters params); + +/*! ZSTD_compress_advanced() : + * Note : this function is now DEPRECATED. + * It can be replaced by ZSTD_compress2(), in combination with ZSTD_CCtx_setParameter() and other parameter setters. + * This prototype will generate compilation warnings. */ +ZSTD_DEPRECATED("use ZSTD_compress2") +ZSTDLIB_STATIC_API +size_t ZSTD_compress_advanced(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict,size_t dictSize, + ZSTD_parameters params); + +/*! ZSTD_compress_usingCDict_advanced() : + * Note : this function is now DEPRECATED. + * It can be replaced by ZSTD_compress2(), in combination with ZSTD_CCtx_loadDictionary() and other parameter setters. + * This prototype will generate compilation warnings. */ +ZSTD_DEPRECATED("use ZSTD_compress2 with ZSTD_CCtx_loadDictionary") +ZSTDLIB_STATIC_API +size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const ZSTD_CDict* cdict, + ZSTD_frameParameters fParams); + + +/*! ZSTD_CCtx_loadDictionary_byReference() : + * Same as ZSTD_CCtx_loadDictionary(), but dictionary content is referenced, instead of being copied into CCtx. + * It saves some memory, but also requires that `dict` outlives its usage within `cctx` */ +ZSTDLIB_STATIC_API size_t ZSTD_CCtx_loadDictionary_byReference(ZSTD_CCtx* cctx, const void* dict, size_t dictSize); + +/*! ZSTD_CCtx_loadDictionary_advanced() : + * Same as ZSTD_CCtx_loadDictionary(), but gives finer control over + * how to load the dictionary (by copy ? by reference ?) + * and how to interpret it (automatic ? force raw mode ? full mode only ?) */ +ZSTDLIB_STATIC_API size_t ZSTD_CCtx_loadDictionary_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType); + +/*! ZSTD_CCtx_refPrefix_advanced() : + * Same as ZSTD_CCtx_refPrefix(), but gives finer control over + * how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?) */ +ZSTDLIB_STATIC_API size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType); + +/* === experimental parameters === */ +/* these parameters can be used with ZSTD_setParameter() + * they are not guaranteed to remain supported in the future */ + + /* Enables rsyncable mode, + * which makes compressed files more rsync friendly + * by adding periodic synchronization points to the compressed data. + * The target average block size is ZSTD_c_jobSize / 2. + * It's possible to modify the job size to increase or decrease + * the granularity of the synchronization point. + * Once the jobSize is smaller than the window size, + * it will result in compression ratio degradation. + * NOTE 1: rsyncable mode only works when multithreading is enabled. + * NOTE 2: rsyncable performs poorly in combination with long range mode, + * since it will decrease the effectiveness of synchronization points, + * though mileage may vary. + * NOTE 3: Rsyncable mode limits maximum compression speed to ~400 MB/s. + * If the selected compression level is already running significantly slower, + * the overall speed won't be significantly impacted. + */ + #define ZSTD_c_rsyncable ZSTD_c_experimentalParam1 + +/* Select a compression format. + * The value must be of type ZSTD_format_e. + * See ZSTD_format_e enum definition for details */ +#define ZSTD_c_format ZSTD_c_experimentalParam2 + +/* Force back-reference distances to remain < windowSize, + * even when referencing into Dictionary content (default:0) */ +#define ZSTD_c_forceMaxWindow ZSTD_c_experimentalParam3 + +/* Controls whether the contents of a CDict + * are used in place, or copied into the working context. + * Accepts values from the ZSTD_dictAttachPref_e enum. + * See the comments on that enum for an explanation of the feature. */ +#define ZSTD_c_forceAttachDict ZSTD_c_experimentalParam4 + +/* Controlled with ZSTD_ParamSwitch_e enum. + * Default is ZSTD_ps_auto. + * Set to ZSTD_ps_disable to never compress literals. + * Set to ZSTD_ps_enable to always compress literals. (Note: uncompressed literals + * may still be emitted if huffman is not beneficial to use.) + * + * By default, in ZSTD_ps_auto, the library will decide at runtime whether to use + * literals compression based on the compression parameters - specifically, + * negative compression levels do not use literal compression. + */ +#define ZSTD_c_literalCompressionMode ZSTD_c_experimentalParam5 + +/* User's best guess of source size. + * Hint is not valid when srcSizeHint == 0. + * There is no guarantee that hint is close to actual source size, + * but compression ratio may regress significantly if guess considerably underestimates */ +#define ZSTD_c_srcSizeHint ZSTD_c_experimentalParam7 + +/* Controls whether the new and experimental "dedicated dictionary search + * structure" can be used. This feature is still rough around the edges, be + * prepared for surprising behavior! + * + * How to use it: + * + * When using a CDict, whether to use this feature or not is controlled at + * CDict creation, and it must be set in a CCtxParams set passed into that + * construction (via ZSTD_createCDict_advanced2()). A compression will then + * use the feature or not based on how the CDict was constructed; the value of + * this param, set in the CCtx, will have no effect. + * + * However, when a dictionary buffer is passed into a CCtx, such as via + * ZSTD_CCtx_loadDictionary(), this param can be set on the CCtx to control + * whether the CDict that is created internally can use the feature or not. + * + * What it does: + * + * Normally, the internal data structures of the CDict are analogous to what + * would be stored in a CCtx after compressing the contents of a dictionary. + * To an approximation, a compression using a dictionary can then use those + * data structures to simply continue what is effectively a streaming + * compression where the simulated compression of the dictionary left off. + * Which is to say, the search structures in the CDict are normally the same + * format as in the CCtx. + * + * It is possible to do better, since the CDict is not like a CCtx: the search + * structures are written once during CDict creation, and then are only read + * after that, while the search structures in the CCtx are both read and + * written as the compression goes along. This means we can choose a search + * structure for the dictionary that is read-optimized. + * + * This feature enables the use of that different structure. + * + * Note that some of the members of the ZSTD_compressionParameters struct have + * different semantics and constraints in the dedicated search structure. It is + * highly recommended that you simply set a compression level in the CCtxParams + * you pass into the CDict creation call, and avoid messing with the cParams + * directly. + * + * Effects: + * + * This will only have any effect when the selected ZSTD_strategy + * implementation supports this feature. Currently, that's limited to + * ZSTD_greedy, ZSTD_lazy, and ZSTD_lazy2. + * + * Note that this means that the CDict tables can no longer be copied into the + * CCtx, so the dict attachment mode ZSTD_dictForceCopy will no longer be + * usable. The dictionary can only be attached or reloaded. + * + * In general, you should expect compression to be faster--sometimes very much + * so--and CDict creation to be slightly slower. Eventually, we will probably + * make this mode the default. + */ +#define ZSTD_c_enableDedicatedDictSearch ZSTD_c_experimentalParam8 + +/* ZSTD_c_stableInBuffer + * Experimental parameter. + * Default is 0 == disabled. Set to 1 to enable. + * + * Tells the compressor that input data presented with ZSTD_inBuffer + * will ALWAYS be the same between calls. + * Technically, the @src pointer must never be changed, + * and the @pos field can only be updated by zstd. + * However, it's possible to increase the @size field, + * allowing scenarios where more data can be appended after compressions starts. + * These conditions are checked by the compressor, + * and compression will fail if they are not respected. + * Also, data in the ZSTD_inBuffer within the range [src, src + pos) + * MUST not be modified during compression or it will result in data corruption. + * + * When this flag is enabled zstd won't allocate an input window buffer, + * because the user guarantees it can reference the ZSTD_inBuffer until + * the frame is complete. But, it will still allocate an output buffer + * large enough to fit a block (see ZSTD_c_stableOutBuffer). This will also + * avoid the memcpy() from the input buffer to the input window buffer. + * + * NOTE: So long as the ZSTD_inBuffer always points to valid memory, using + * this flag is ALWAYS memory safe, and will never access out-of-bounds + * memory. However, compression WILL fail if conditions are not respected. + * + * WARNING: The data in the ZSTD_inBuffer in the range [src, src + pos) MUST + * not be modified during compression or it will result in data corruption. + * This is because zstd needs to reference data in the ZSTD_inBuffer to find + * matches. Normally zstd maintains its own window buffer for this purpose, + * but passing this flag tells zstd to rely on user provided buffer instead. + */ +#define ZSTD_c_stableInBuffer ZSTD_c_experimentalParam9 + +/* ZSTD_c_stableOutBuffer + * Experimental parameter. + * Default is 0 == disabled. Set to 1 to enable. + * + * Tells he compressor that the ZSTD_outBuffer will not be resized between + * calls. Specifically: (out.size - out.pos) will never grow. This gives the + * compressor the freedom to say: If the compressed data doesn't fit in the + * output buffer then return ZSTD_error_dstSizeTooSmall. This allows us to + * always decompress directly into the output buffer, instead of decompressing + * into an internal buffer and copying to the output buffer. + * + * When this flag is enabled zstd won't allocate an output buffer, because + * it can write directly to the ZSTD_outBuffer. It will still allocate the + * input window buffer (see ZSTD_c_stableInBuffer). + * + * Zstd will check that (out.size - out.pos) never grows and return an error + * if it does. While not strictly necessary, this should prevent surprises. + */ +#define ZSTD_c_stableOutBuffer ZSTD_c_experimentalParam10 + +/* ZSTD_c_blockDelimiters + * Default is 0 == ZSTD_sf_noBlockDelimiters. + * + * For use with sequence compression API: ZSTD_compressSequences(). + * + * Designates whether or not the given array of ZSTD_Sequence contains block delimiters + * and last literals, which are defined as sequences with offset == 0 and matchLength == 0. + * See the definition of ZSTD_Sequence for more specifics. + */ +#define ZSTD_c_blockDelimiters ZSTD_c_experimentalParam11 + +/* ZSTD_c_validateSequences + * Default is 0 == disabled. Set to 1 to enable sequence validation. + * + * For use with sequence compression API: ZSTD_compressSequences*(). + * Designates whether or not provided sequences are validated within ZSTD_compressSequences*() + * during function execution. + * + * When Sequence validation is disabled (default), Sequences are compressed as-is, + * so they must correct, otherwise it would result in a corruption error. + * + * Sequence validation adds some protection, by ensuring that all values respect boundary conditions. + * If a Sequence is detected invalid (see doc/zstd_compression_format.md for + * specifics regarding offset/matchlength requirements) then the function will bail out and + * return an error. + */ +#define ZSTD_c_validateSequences ZSTD_c_experimentalParam12 + +/* ZSTD_c_blockSplitterLevel + * note: this parameter only influences the first splitter stage, + * which is active before producing the sequences. + * ZSTD_c_splitAfterSequences controls the next splitter stage, + * which is active after sequence production. + * Note that both can be combined. + * Allowed values are between 0 and ZSTD_BLOCKSPLITTER_LEVEL_MAX included. + * 0 means "auto", which will select a value depending on current ZSTD_c_strategy. + * 1 means no splitting. + * Then, values from 2 to 6 are sorted in increasing cpu load order. + * + * Note that currently the first block is never split, + * to ensure expansion guarantees in presence of incompressible data. + */ +#define ZSTD_BLOCKSPLITTER_LEVEL_MAX 6 +#define ZSTD_c_blockSplitterLevel ZSTD_c_experimentalParam20 + +/* ZSTD_c_splitAfterSequences + * This is a stronger splitter algorithm, + * based on actual sequences previously produced by the selected parser. + * It's also slower, and as a consequence, mostly used for high compression levels. + * While the post-splitter does overlap with the pre-splitter, + * both can nonetheless be combined, + * notably with ZSTD_c_blockSplitterLevel at ZSTD_BLOCKSPLITTER_LEVEL_MAX, + * resulting in higher compression ratio than just one of them. + * + * Default is ZSTD_ps_auto. + * Set to ZSTD_ps_disable to never use block splitter. + * Set to ZSTD_ps_enable to always use block splitter. + * + * By default, in ZSTD_ps_auto, the library will decide at runtime whether to use + * block splitting based on the compression parameters. + */ +#define ZSTD_c_splitAfterSequences ZSTD_c_experimentalParam13 + +/* ZSTD_c_useRowMatchFinder + * Controlled with ZSTD_ParamSwitch_e enum. + * Default is ZSTD_ps_auto. + * Set to ZSTD_ps_disable to never use row-based matchfinder. + * Set to ZSTD_ps_enable to force usage of row-based matchfinder. + * + * By default, in ZSTD_ps_auto, the library will decide at runtime whether to use + * the row-based matchfinder based on support for SIMD instructions and the window log. + * Note that this only pertains to compression strategies: greedy, lazy, and lazy2 + */ +#define ZSTD_c_useRowMatchFinder ZSTD_c_experimentalParam14 + +/* ZSTD_c_deterministicRefPrefix + * Default is 0 == disabled. Set to 1 to enable. + * + * Zstd produces different results for prefix compression when the prefix is + * directly adjacent to the data about to be compressed vs. when it isn't. + * This is because zstd detects that the two buffers are contiguous and it can + * use a more efficient match finding algorithm. However, this produces different + * results than when the two buffers are non-contiguous. This flag forces zstd + * to always load the prefix in non-contiguous mode, even if it happens to be + * adjacent to the data, to guarantee determinism. + * + * If you really care about determinism when using a dictionary or prefix, + * like when doing delta compression, you should select this option. It comes + * at a speed penalty of about ~2.5% if the dictionary and data happened to be + * contiguous, and is free if they weren't contiguous. We don't expect that + * intentionally making the dictionary and data contiguous will be worth the + * cost to memcpy() the data. + */ +#define ZSTD_c_deterministicRefPrefix ZSTD_c_experimentalParam15 + +/* ZSTD_c_prefetchCDictTables + * Controlled with ZSTD_ParamSwitch_e enum. Default is ZSTD_ps_auto. + * + * In some situations, zstd uses CDict tables in-place rather than copying them + * into the working context. (See docs on ZSTD_dictAttachPref_e above for details). + * In such situations, compression speed is seriously impacted when CDict tables are + * "cold" (outside CPU cache). This parameter instructs zstd to prefetch CDict tables + * when they are used in-place. + * + * For sufficiently small inputs, the cost of the prefetch will outweigh the benefit. + * For sufficiently large inputs, zstd will by default memcpy() CDict tables + * into the working context, so there is no need to prefetch. This parameter is + * targeted at a middle range of input sizes, where a prefetch is cheap enough to be + * useful but memcpy() is too expensive. The exact range of input sizes where this + * makes sense is best determined by careful experimentation. + * + * Note: for this parameter, ZSTD_ps_auto is currently equivalent to ZSTD_ps_disable, + * but in the future zstd may conditionally enable this feature via an auto-detection + * heuristic for cold CDicts. + * Use ZSTD_ps_disable to opt out of prefetching under any circumstances. + */ +#define ZSTD_c_prefetchCDictTables ZSTD_c_experimentalParam16 + +/* ZSTD_c_enableSeqProducerFallback + * Allowed values are 0 (disable) and 1 (enable). The default setting is 0. + * + * Controls whether zstd will fall back to an internal sequence producer if an + * external sequence producer is registered and returns an error code. This fallback + * is block-by-block: the internal sequence producer will only be called for blocks + * where the external sequence producer returns an error code. Fallback parsing will + * follow any other cParam settings, such as compression level, the same as in a + * normal (fully-internal) compression operation. + * + * The user is strongly encouraged to read the full Block-Level Sequence Producer API + * documentation (below) before setting this parameter. */ +#define ZSTD_c_enableSeqProducerFallback ZSTD_c_experimentalParam17 + +/* ZSTD_c_maxBlockSize + * Allowed values are between 1KB and ZSTD_BLOCKSIZE_MAX (128KB). + * The default is ZSTD_BLOCKSIZE_MAX, and setting to 0 will set to the default. + * + * This parameter can be used to set an upper bound on the blocksize + * that overrides the default ZSTD_BLOCKSIZE_MAX. It cannot be used to set upper + * bounds greater than ZSTD_BLOCKSIZE_MAX or bounds lower than 1KB (will make + * compressBound() inaccurate). Only currently meant to be used for testing. + */ +#define ZSTD_c_maxBlockSize ZSTD_c_experimentalParam18 + +/* ZSTD_c_repcodeResolution + * This parameter only has an effect if ZSTD_c_blockDelimiters is + * set to ZSTD_sf_explicitBlockDelimiters (may change in the future). + * + * This parameter affects how zstd parses external sequences, + * provided via the ZSTD_compressSequences*() API + * or from an external block-level sequence producer. + * + * If set to ZSTD_ps_enable, the library will check for repeated offsets within + * external sequences, even if those repcodes are not explicitly indicated in + * the "rep" field. Note that this is the only way to exploit repcode matches + * while using compressSequences*() or an external sequence producer, since zstd + * currently ignores the "rep" field of external sequences. + * + * If set to ZSTD_ps_disable, the library will not exploit repeated offsets in + * external sequences, regardless of whether the "rep" field has been set. This + * reduces sequence compression overhead by about 25% while sacrificing some + * compression ratio. + * + * The default value is ZSTD_ps_auto, for which the library will enable/disable + * based on compression level (currently: level<10 disables, level>=10 enables). + */ +#define ZSTD_c_repcodeResolution ZSTD_c_experimentalParam19 +#define ZSTD_c_searchForExternalRepcodes ZSTD_c_experimentalParam19 /* older name */ + + +/*! ZSTD_CCtx_getParameter() : + * Get the requested compression parameter value, selected by enum ZSTD_cParameter, + * and store it into int* value. + * @return : 0, or an error code (which can be tested with ZSTD_isError()). + */ +ZSTDLIB_STATIC_API size_t ZSTD_CCtx_getParameter(const ZSTD_CCtx* cctx, ZSTD_cParameter param, int* value); + + +/*! ZSTD_CCtx_params : + * Quick howto : + * - ZSTD_createCCtxParams() : Create a ZSTD_CCtx_params structure + * - ZSTD_CCtxParams_setParameter() : Push parameters one by one into + * an existing ZSTD_CCtx_params structure. + * This is similar to + * ZSTD_CCtx_setParameter(). + * - ZSTD_CCtx_setParametersUsingCCtxParams() : Apply parameters to + * an existing CCtx. + * These parameters will be applied to + * all subsequent frames. + * - ZSTD_compressStream2() : Do compression using the CCtx. + * - ZSTD_freeCCtxParams() : Free the memory, accept NULL pointer. + * + * This can be used with ZSTD_estimateCCtxSize_advanced_usingCCtxParams() + * for static allocation of CCtx for single-threaded compression. + */ +ZSTDLIB_STATIC_API ZSTD_CCtx_params* ZSTD_createCCtxParams(void); +ZSTDLIB_STATIC_API size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params); /* accept NULL pointer */ + +/*! ZSTD_CCtxParams_reset() : + * Reset params to default values. + */ +ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params); + +/*! ZSTD_CCtxParams_init() : + * Initializes the compression parameters of cctxParams according to + * compression level. All other parameters are reset to their default values. + */ +ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel); + +/*! ZSTD_CCtxParams_init_advanced() : + * Initializes the compression and frame parameters of cctxParams according to + * params. All other parameters are reset to their default values. + */ +ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params); + +/*! ZSTD_CCtxParams_setParameter() : Requires v1.4.0+ + * Similar to ZSTD_CCtx_setParameter. + * Set one compression parameter, selected by enum ZSTD_cParameter. + * Parameters must be applied to a ZSTD_CCtx using + * ZSTD_CCtx_setParametersUsingCCtxParams(). + * @result : a code representing success or failure (which can be tested with + * ZSTD_isError()). + */ +ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* params, ZSTD_cParameter param, int value); + +/*! ZSTD_CCtxParams_getParameter() : + * Similar to ZSTD_CCtx_getParameter. + * Get the requested value of one compression parameter, selected by enum ZSTD_cParameter. + * @result : 0, or an error code (which can be tested with ZSTD_isError()). + */ +ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_getParameter(const ZSTD_CCtx_params* params, ZSTD_cParameter param, int* value); + +/*! ZSTD_CCtx_setParametersUsingCCtxParams() : + * Apply a set of ZSTD_CCtx_params to the compression context. + * This can be done even after compression is started, + * if nbWorkers==0, this will have no impact until a new compression is started. + * if nbWorkers>=1, new parameters will be picked up at next job, + * with a few restrictions (windowLog, pledgedSrcSize, nbWorkers, jobSize, and overlapLog are not updated). + */ +ZSTDLIB_STATIC_API size_t ZSTD_CCtx_setParametersUsingCCtxParams( + ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params); + +/*! ZSTD_compressStream2_simpleArgs() : + * Same as ZSTD_compressStream2(), + * but using only integral types as arguments. + * This variant might be helpful for binders from dynamic languages + * which have troubles handling structures containing memory pointers. + */ +ZSTDLIB_STATIC_API size_t ZSTD_compressStream2_simpleArgs ( + ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, size_t* dstPos, + const void* src, size_t srcSize, size_t* srcPos, + ZSTD_EndDirective endOp); + + +/*************************************** +* Advanced decompression functions +***************************************/ + +/*! ZSTD_isFrame() : + * Tells if the content of `buffer` starts with a valid Frame Identifier. + * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0. + * Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled. + * Note 3 : Skippable Frame Identifiers are considered valid. */ +ZSTDLIB_STATIC_API unsigned ZSTD_isFrame(const void* buffer, size_t size); + +/*! ZSTD_createDDict_byReference() : + * Create a digested dictionary, ready to start decompression operation without startup delay. + * Dictionary content is referenced, and therefore stays in dictBuffer. + * It is important that dictBuffer outlives DDict, + * it must remain read accessible throughout the lifetime of DDict */ +ZSTDLIB_STATIC_API ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize); + +/*! ZSTD_DCtx_loadDictionary_byReference() : + * Same as ZSTD_DCtx_loadDictionary(), + * but references `dict` content instead of copying it into `dctx`. + * This saves memory if `dict` remains around., + * However, it's imperative that `dict` remains accessible (and unmodified) while being used, so it must outlive decompression. */ +ZSTDLIB_STATIC_API size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize); + +/*! ZSTD_DCtx_loadDictionary_advanced() : + * Same as ZSTD_DCtx_loadDictionary(), + * but gives direct control over + * how to load the dictionary (by copy ? by reference ?) + * and how to interpret it (automatic ? force raw mode ? full mode only ?). */ +ZSTDLIB_STATIC_API size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType); + +/*! ZSTD_DCtx_refPrefix_advanced() : + * Same as ZSTD_DCtx_refPrefix(), but gives finer control over + * how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?) */ +ZSTDLIB_STATIC_API size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType); + +/*! ZSTD_DCtx_setMaxWindowSize() : + * Refuses allocating internal buffers for frames requiring a window size larger than provided limit. + * This protects a decoder context from reserving too much memory for itself (potential attack scenario). + * This parameter is only useful in streaming mode, since no internal buffer is allocated in single-pass mode. + * By default, a decompression context accepts all window sizes <= (1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT) + * @return : 0, or an error code (which can be tested using ZSTD_isError()). + */ +ZSTDLIB_STATIC_API size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize); + +/*! ZSTD_DCtx_getParameter() : + * Get the requested decompression parameter value, selected by enum ZSTD_dParameter, + * and store it into int* value. + * @return : 0, or an error code (which can be tested with ZSTD_isError()). + */ +ZSTDLIB_STATIC_API size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int* value); + +/* ZSTD_d_format + * experimental parameter, + * allowing selection between ZSTD_format_e input compression formats + */ +#define ZSTD_d_format ZSTD_d_experimentalParam1 +/* ZSTD_d_stableOutBuffer + * Experimental parameter. + * Default is 0 == disabled. Set to 1 to enable. + * + * Tells the decompressor that the ZSTD_outBuffer will ALWAYS be the same + * between calls, except for the modifications that zstd makes to pos (the + * caller must not modify pos). This is checked by the decompressor, and + * decompression will fail if it ever changes. Therefore the ZSTD_outBuffer + * MUST be large enough to fit the entire decompressed frame. This will be + * checked when the frame content size is known. The data in the ZSTD_outBuffer + * in the range [dst, dst + pos) MUST not be modified during decompression + * or you will get data corruption. + * + * When this flag is enabled zstd won't allocate an output buffer, because + * it can write directly to the ZSTD_outBuffer, but it will still allocate + * an input buffer large enough to fit any compressed block. This will also + * avoid the memcpy() from the internal output buffer to the ZSTD_outBuffer. + * If you need to avoid the input buffer allocation use the buffer-less + * streaming API. + * + * NOTE: So long as the ZSTD_outBuffer always points to valid memory, using + * this flag is ALWAYS memory safe, and will never access out-of-bounds + * memory. However, decompression WILL fail if you violate the preconditions. + * + * WARNING: The data in the ZSTD_outBuffer in the range [dst, dst + pos) MUST + * not be modified during decompression or you will get data corruption. This + * is because zstd needs to reference data in the ZSTD_outBuffer to regenerate + * matches. Normally zstd maintains its own buffer for this purpose, but passing + * this flag tells zstd to use the user provided buffer. + */ +#define ZSTD_d_stableOutBuffer ZSTD_d_experimentalParam2 + +/* ZSTD_d_forceIgnoreChecksum + * Experimental parameter. + * Default is 0 == disabled. Set to 1 to enable + * + * Tells the decompressor to skip checksum validation during decompression, regardless + * of whether checksumming was specified during compression. This offers some + * slight performance benefits, and may be useful for debugging. + * Param has values of type ZSTD_forceIgnoreChecksum_e + */ +#define ZSTD_d_forceIgnoreChecksum ZSTD_d_experimentalParam3 + +/* ZSTD_d_refMultipleDDicts + * Experimental parameter. + * Default is 0 == disabled. Set to 1 to enable + * + * If enabled and dctx is allocated on the heap, then additional memory will be allocated + * to store references to multiple ZSTD_DDict. That is, multiple calls of ZSTD_refDDict() + * using a given ZSTD_DCtx, rather than overwriting the previous DDict reference, will instead + * store all references. At decompression time, the appropriate dictID is selected + * from the set of DDicts based on the dictID in the frame. + * + * Usage is simply calling ZSTD_refDDict() on multiple dict buffers. + * + * Param has values of byte ZSTD_refMultipleDDicts_e + * + * WARNING: Enabling this parameter and calling ZSTD_DCtx_refDDict(), will trigger memory + * allocation for the hash table. ZSTD_freeDCtx() also frees this memory. + * Memory is allocated as per ZSTD_DCtx::customMem. + * + * Although this function allocates memory for the table, the user is still responsible for + * memory management of the underlying ZSTD_DDict* themselves. + */ +#define ZSTD_d_refMultipleDDicts ZSTD_d_experimentalParam4 + +/* ZSTD_d_disableHuffmanAssembly + * Set to 1 to disable the Huffman assembly implementation. + * The default value is 0, which allows zstd to use the Huffman assembly + * implementation if available. + * + * This parameter can be used to disable Huffman assembly at runtime. + * If you want to disable it at compile time you can define the macro + * ZSTD_DISABLE_ASM. + */ +#define ZSTD_d_disableHuffmanAssembly ZSTD_d_experimentalParam5 + +/* ZSTD_d_maxBlockSize + * Allowed values are between 1KB and ZSTD_BLOCKSIZE_MAX (128KB). + * The default is ZSTD_BLOCKSIZE_MAX, and setting to 0 will set to the default. + * + * Forces the decompressor to reject blocks whose content size is + * larger than the configured maxBlockSize. When maxBlockSize is + * larger than the windowSize, the windowSize is used instead. + * This saves memory on the decoder when you know all blocks are small. + * + * This option is typically used in conjunction with ZSTD_c_maxBlockSize. + * + * WARNING: This causes the decoder to reject otherwise valid frames + * that have block sizes larger than the configured maxBlockSize. + */ +#define ZSTD_d_maxBlockSize ZSTD_d_experimentalParam6 + + +/*! ZSTD_DCtx_setFormat() : + * This function is REDUNDANT. Prefer ZSTD_DCtx_setParameter(). + * Instruct the decoder context about what kind of data to decode next. + * This instruction is mandatory to decode data without a fully-formed header, + * such ZSTD_f_zstd1_magicless for example. + * @return : 0, or an error code (which can be tested using ZSTD_isError()). */ +ZSTD_DEPRECATED("use ZSTD_DCtx_setParameter() instead") +ZSTDLIB_STATIC_API +size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format); + +/*! ZSTD_decompressStream_simpleArgs() : + * Same as ZSTD_decompressStream(), + * but using only integral types as arguments. + * This can be helpful for binders from dynamic languages + * which have troubles handling structures containing memory pointers. + */ +ZSTDLIB_STATIC_API size_t ZSTD_decompressStream_simpleArgs ( + ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, size_t* dstPos, + const void* src, size_t srcSize, size_t* srcPos); + + +/******************************************************************** +* Advanced streaming functions +* Warning : most of these functions are now redundant with the Advanced API. +* Once Advanced API reaches "stable" status, +* redundant functions will be deprecated, and then at some point removed. +********************************************************************/ + +/*===== Advanced Streaming compression functions =====*/ + +/*! ZSTD_initCStream_srcSize() : + * This function is DEPRECATED, and equivalent to: + * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + * ZSTD_CCtx_refCDict(zcs, NULL); // clear the dictionary (if any) + * ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel); + * ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize); + * + * pledgedSrcSize must be correct. If it is not known at init time, use + * ZSTD_CONTENTSIZE_UNKNOWN. Note that, for compatibility with older programs, + * "0" also disables frame content size field. It may be enabled in the future. + * This prototype will generate compilation warnings. + */ +ZSTD_DEPRECATED("use ZSTD_CCtx_reset, see zstd.h for detailed instructions") +ZSTDLIB_STATIC_API +size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs, + int compressionLevel, + unsigned long long pledgedSrcSize); + +/*! ZSTD_initCStream_usingDict() : + * This function is DEPRECATED, and is equivalent to: + * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + * ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel); + * ZSTD_CCtx_loadDictionary(zcs, dict, dictSize); + * + * Creates of an internal CDict (incompatible with static CCtx), except if + * dict == NULL or dictSize < 8, in which case no dict is used. + * Note: dict is loaded with ZSTD_dct_auto (treated as a full zstd dictionary if + * it begins with ZSTD_MAGIC_DICTIONARY, else as raw content) and ZSTD_dlm_byCopy. + * This prototype will generate compilation warnings. + */ +ZSTD_DEPRECATED("use ZSTD_CCtx_reset, see zstd.h for detailed instructions") +ZSTDLIB_STATIC_API +size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, + const void* dict, size_t dictSize, + int compressionLevel); + +/*! ZSTD_initCStream_advanced() : + * This function is DEPRECATED, and is equivalent to: + * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + * ZSTD_CCtx_setParams(zcs, params); + * ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize); + * ZSTD_CCtx_loadDictionary(zcs, dict, dictSize); + * + * dict is loaded with ZSTD_dct_auto and ZSTD_dlm_byCopy. + * pledgedSrcSize must be correct. + * If srcSize is not known at init time, use value ZSTD_CONTENTSIZE_UNKNOWN. + * This prototype will generate compilation warnings. + */ +ZSTD_DEPRECATED("use ZSTD_CCtx_reset, see zstd.h for detailed instructions") +ZSTDLIB_STATIC_API +size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs, + const void* dict, size_t dictSize, + ZSTD_parameters params, + unsigned long long pledgedSrcSize); + +/*! ZSTD_initCStream_usingCDict() : + * This function is DEPRECATED, and equivalent to: + * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + * ZSTD_CCtx_refCDict(zcs, cdict); + * + * note : cdict will just be referenced, and must outlive compression session + * This prototype will generate compilation warnings. + */ +ZSTD_DEPRECATED("use ZSTD_CCtx_reset and ZSTD_CCtx_refCDict, see zstd.h for detailed instructions") +ZSTDLIB_STATIC_API +size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict); + +/*! ZSTD_initCStream_usingCDict_advanced() : + * This function is DEPRECATED, and is equivalent to: + * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + * ZSTD_CCtx_setFParams(zcs, fParams); + * ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize); + * ZSTD_CCtx_refCDict(zcs, cdict); + * + * same as ZSTD_initCStream_usingCDict(), with control over frame parameters. + * pledgedSrcSize must be correct. If srcSize is not known at init time, use + * value ZSTD_CONTENTSIZE_UNKNOWN. + * This prototype will generate compilation warnings. + */ +ZSTD_DEPRECATED("use ZSTD_CCtx_reset and ZSTD_CCtx_refCDict, see zstd.h for detailed instructions") +ZSTDLIB_STATIC_API +size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs, + const ZSTD_CDict* cdict, + ZSTD_frameParameters fParams, + unsigned long long pledgedSrcSize); + +/*! ZSTD_resetCStream() : + * This function is DEPRECATED, and is equivalent to: + * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + * ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize); + * Note: ZSTD_resetCStream() interprets pledgedSrcSize == 0 as ZSTD_CONTENTSIZE_UNKNOWN, but + * ZSTD_CCtx_setPledgedSrcSize() does not do the same, so ZSTD_CONTENTSIZE_UNKNOWN must be + * explicitly specified. + * + * start a new frame, using same parameters from previous frame. + * This is typically useful to skip dictionary loading stage, since it will reuse it in-place. + * Note that zcs must be init at least once before using ZSTD_resetCStream(). + * If pledgedSrcSize is not known at reset time, use macro ZSTD_CONTENTSIZE_UNKNOWN. + * If pledgedSrcSize > 0, its value must be correct, as it will be written in header, and controlled at the end. + * For the time being, pledgedSrcSize==0 is interpreted as "srcSize unknown" for compatibility with older programs, + * but it will change to mean "empty" in future version, so use macro ZSTD_CONTENTSIZE_UNKNOWN instead. + * @return : 0, or an error code (which can be tested using ZSTD_isError()) + * This prototype will generate compilation warnings. + */ +ZSTD_DEPRECATED("use ZSTD_CCtx_reset, see zstd.h for detailed instructions") +ZSTDLIB_STATIC_API +size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize); + + +typedef struct { + unsigned long long ingested; /* nb input bytes read and buffered */ + unsigned long long consumed; /* nb input bytes actually compressed */ + unsigned long long produced; /* nb of compressed bytes generated and buffered */ + unsigned long long flushed; /* nb of compressed bytes flushed : not provided; can be tracked from caller side */ + unsigned currentJobID; /* MT only : latest started job nb */ + unsigned nbActiveWorkers; /* MT only : nb of workers actively compressing at probe time */ +} ZSTD_frameProgression; + +/* ZSTD_getFrameProgression() : + * tells how much data has been ingested (read from input) + * consumed (input actually compressed) and produced (output) for current frame. + * Note : (ingested - consumed) is amount of input data buffered internally, not yet compressed. + * Aggregates progression inside active worker threads. + */ +ZSTDLIB_STATIC_API ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx); + +/*! ZSTD_toFlushNow() : + * Tell how many bytes are ready to be flushed immediately. + * Useful for multithreading scenarios (nbWorkers >= 1). + * Probe the oldest active job, defined as oldest job not yet entirely flushed, + * and check its output buffer. + * @return : amount of data stored in oldest job and ready to be flushed immediately. + * if @return == 0, it means either : + * + there is no active job (could be checked with ZSTD_frameProgression()), or + * + oldest job is still actively compressing data, + * but everything it has produced has also been flushed so far, + * therefore flush speed is limited by production speed of oldest job + * irrespective of the speed of concurrent (and newer) jobs. + */ +ZSTDLIB_STATIC_API size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx); + + +/*===== Advanced Streaming decompression functions =====*/ + +/*! + * This function is deprecated, and is equivalent to: + * + * ZSTD_DCtx_reset(zds, ZSTD_reset_session_only); + * ZSTD_DCtx_loadDictionary(zds, dict, dictSize); + * + * note: no dictionary will be used if dict == NULL or dictSize < 8 + */ +ZSTD_DEPRECATED("use ZSTD_DCtx_reset + ZSTD_DCtx_loadDictionary, see zstd.h for detailed instructions") +ZSTDLIB_STATIC_API size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize); + +/*! + * This function is deprecated, and is equivalent to: + * + * ZSTD_DCtx_reset(zds, ZSTD_reset_session_only); + * ZSTD_DCtx_refDDict(zds, ddict); + * + * note : ddict is referenced, it must outlive decompression session + */ +ZSTD_DEPRECATED("use ZSTD_DCtx_reset + ZSTD_DCtx_refDDict, see zstd.h for detailed instructions") +ZSTDLIB_STATIC_API size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* zds, const ZSTD_DDict* ddict); + +/*! + * This function is deprecated, and is equivalent to: + * + * ZSTD_DCtx_reset(zds, ZSTD_reset_session_only); + * + * reuse decompression parameters from previous init; saves dictionary loading + */ +ZSTD_DEPRECATED("use ZSTD_DCtx_reset, see zstd.h for detailed instructions") +ZSTDLIB_STATIC_API size_t ZSTD_resetDStream(ZSTD_DStream* zds); + + +/* ********************* BLOCK-LEVEL SEQUENCE PRODUCER API ********************* + * + * *** OVERVIEW *** + * The Block-Level Sequence Producer API allows users to provide their own custom + * sequence producer which libzstd invokes to process each block. The produced list + * of sequences (literals and matches) is then post-processed by libzstd to produce + * valid compressed blocks. + * + * This block-level offload API is a more granular complement of the existing + * frame-level offload API compressSequences() (introduced in v1.5.1). It offers + * an easier migration story for applications already integrated with libzstd: the + * user application continues to invoke the same compression functions + * ZSTD_compress2() or ZSTD_compressStream2() as usual, and transparently benefits + * from the specific advantages of the external sequence producer. For example, + * the sequence producer could be tuned to take advantage of known characteristics + * of the input, to offer better speed / ratio, or could leverage hardware + * acceleration not available within libzstd itself. + * + * See contrib/externalSequenceProducer for an example program employing the + * Block-Level Sequence Producer API. + * + * *** USAGE *** + * The user is responsible for implementing a function of type + * ZSTD_sequenceProducer_F. For each block, zstd will pass the following + * arguments to the user-provided function: + * + * - sequenceProducerState: a pointer to a user-managed state for the sequence + * producer. + * + * - outSeqs, outSeqsCapacity: an output buffer for the sequence producer. + * outSeqsCapacity is guaranteed >= ZSTD_sequenceBound(srcSize). The memory + * backing outSeqs is managed by the CCtx. + * + * - src, srcSize: an input buffer for the sequence producer to parse. + * srcSize is guaranteed to be <= ZSTD_BLOCKSIZE_MAX. + * + * - dict, dictSize: a history buffer, which may be empty, which the sequence + * producer may reference as it parses the src buffer. Currently, zstd will + * always pass dictSize == 0 into external sequence producers, but this will + * change in the future. + * + * - compressionLevel: a signed integer representing the zstd compression level + * set by the user for the current operation. The sequence producer may choose + * to use this information to change its compression strategy and speed/ratio + * tradeoff. Note: the compression level does not reflect zstd parameters set + * through the advanced API. + * + * - windowSize: a size_t representing the maximum allowed offset for external + * sequences. Note that sequence offsets are sometimes allowed to exceed the + * windowSize if a dictionary is present, see doc/zstd_compression_format.md + * for details. + * + * The user-provided function shall return a size_t representing the number of + * sequences written to outSeqs. This return value will be treated as an error + * code if it is greater than outSeqsCapacity. The return value must be non-zero + * if srcSize is non-zero. The ZSTD_SEQUENCE_PRODUCER_ERROR macro is provided + * for convenience, but any value greater than outSeqsCapacity will be treated as + * an error code. + * + * If the user-provided function does not return an error code, the sequences + * written to outSeqs must be a valid parse of the src buffer. Data corruption may + * occur if the parse is not valid. A parse is defined to be valid if the + * following conditions hold: + * - The sum of matchLengths and literalLengths must equal srcSize. + * - All sequences in the parse, except for the final sequence, must have + * matchLength >= ZSTD_MINMATCH_MIN. The final sequence must have + * matchLength >= ZSTD_MINMATCH_MIN or matchLength == 0. + * - All offsets must respect the windowSize parameter as specified in + * doc/zstd_compression_format.md. + * - If the final sequence has matchLength == 0, it must also have offset == 0. + * + * zstd will only validate these conditions (and fail compression if they do not + * hold) if the ZSTD_c_validateSequences cParam is enabled. Note that sequence + * validation has a performance cost. + * + * If the user-provided function returns an error, zstd will either fall back + * to an internal sequence producer or fail the compression operation. The user can + * choose between the two behaviors by setting the ZSTD_c_enableSeqProducerFallback + * cParam. Fallback compression will follow any other cParam settings, such as + * compression level, the same as in a normal compression operation. + * + * The user shall instruct zstd to use a particular ZSTD_sequenceProducer_F + * function by calling + * ZSTD_registerSequenceProducer(cctx, + * sequenceProducerState, + * sequenceProducer) + * This setting will persist until the next parameter reset of the CCtx. + * + * The sequenceProducerState must be initialized by the user before calling + * ZSTD_registerSequenceProducer(). The user is responsible for destroying the + * sequenceProducerState. + * + * *** LIMITATIONS *** + * This API is compatible with all zstd compression APIs which respect advanced parameters. + * However, there are three limitations: + * + * First, the ZSTD_c_enableLongDistanceMatching cParam is not currently supported. + * COMPRESSION WILL FAIL if it is enabled and the user tries to compress with a block-level + * external sequence producer. + * - Note that ZSTD_c_enableLongDistanceMatching is auto-enabled by default in some + * cases (see its documentation for details). Users must explicitly set + * ZSTD_c_enableLongDistanceMatching to ZSTD_ps_disable in such cases if an external + * sequence producer is registered. + * - As of this writing, ZSTD_c_enableLongDistanceMatching is disabled by default + * whenever ZSTD_c_windowLog < 128MB, but that's subject to change. Users should + * check the docs on ZSTD_c_enableLongDistanceMatching whenever the Block-Level Sequence + * Producer API is used in conjunction with advanced settings (like ZSTD_c_windowLog). + * + * Second, history buffers are not currently supported. Concretely, zstd will always pass + * dictSize == 0 to the external sequence producer (for now). This has two implications: + * - Dictionaries are not currently supported. Compression will *not* fail if the user + * references a dictionary, but the dictionary won't have any effect. + * - Stream history is not currently supported. All advanced compression APIs, including + * streaming APIs, work with external sequence producers, but each block is treated as + * an independent chunk without history from previous blocks. + * + * Third, multi-threading within a single compression is not currently supported. In other words, + * COMPRESSION WILL FAIL if ZSTD_c_nbWorkers > 0 and an external sequence producer is registered. + * Multi-threading across compressions is fine: simply create one CCtx per thread. + * + * Long-term, we plan to overcome all three limitations. There is no technical blocker to + * overcoming them. It is purely a question of engineering effort. + */ + +#define ZSTD_SEQUENCE_PRODUCER_ERROR ((size_t)(-1)) + +typedef size_t (*ZSTD_sequenceProducer_F) ( + void* sequenceProducerState, + ZSTD_Sequence* outSeqs, size_t outSeqsCapacity, + const void* src, size_t srcSize, + const void* dict, size_t dictSize, + int compressionLevel, + size_t windowSize +); + +/*! ZSTD_registerSequenceProducer() : + * Instruct zstd to use a block-level external sequence producer function. + * + * The sequenceProducerState must be initialized by the caller, and the caller is + * responsible for managing its lifetime. This parameter is sticky across + * compressions. It will remain set until the user explicitly resets compression + * parameters. + * + * Sequence producer registration is considered to be an "advanced parameter", + * part of the "advanced API". This means it will only have an effect on compression + * APIs which respect advanced parameters, such as compress2() and compressStream2(). + * Older compression APIs such as compressCCtx(), which predate the introduction of + * "advanced parameters", will ignore any external sequence producer setting. + * + * The sequence producer can be "cleared" by registering a NULL function pointer. This + * removes all limitations described above in the "LIMITATIONS" section of the API docs. + * + * The user is strongly encouraged to read the full API documentation (above) before + * calling this function. */ +ZSTDLIB_STATIC_API void +ZSTD_registerSequenceProducer( + ZSTD_CCtx* cctx, + void* sequenceProducerState, + ZSTD_sequenceProducer_F sequenceProducer +); + +/*! ZSTD_CCtxParams_registerSequenceProducer() : + * Same as ZSTD_registerSequenceProducer(), but operates on ZSTD_CCtx_params. + * This is used for accurate size estimation with ZSTD_estimateCCtxSize_usingCCtxParams(), + * which is needed when creating a ZSTD_CCtx with ZSTD_initStaticCCtx(). + * + * If you are using the external sequence producer API in a scenario where ZSTD_initStaticCCtx() + * is required, then this function is for you. Otherwise, you probably don't need it. + * + * See tests/zstreamtest.c for example usage. */ +ZSTDLIB_STATIC_API void +ZSTD_CCtxParams_registerSequenceProducer( + ZSTD_CCtx_params* params, + void* sequenceProducerState, + ZSTD_sequenceProducer_F sequenceProducer +); + + +/********************************************************************* +* Buffer-less and synchronous inner streaming functions (DEPRECATED) +* +* This API is deprecated, and will be removed in a future version. +* It allows streaming (de)compression with user allocated buffers. +* However, it is hard to use, and not as well tested as the rest of +* our API. +* +* Please use the normal streaming API instead: ZSTD_compressStream2, +* and ZSTD_decompressStream. +* If there is functionality that you need, but it doesn't provide, +* please open an issue on our GitHub. +********************************************************************* */ + +/** + Buffer-less streaming compression (synchronous mode) + + A ZSTD_CCtx object is required to track streaming operations. + Use ZSTD_createCCtx() / ZSTD_freeCCtx() to manage resource. + ZSTD_CCtx object can be reused multiple times within successive compression operations. + + Start by initializing a context. + Use ZSTD_compressBegin(), or ZSTD_compressBegin_usingDict() for dictionary compression. + + Then, consume your input using ZSTD_compressContinue(). + There are some important considerations to keep in mind when using this advanced function : + - ZSTD_compressContinue() has no internal buffer. It uses externally provided buffers only. + - Interface is synchronous : input is consumed entirely and produces 1+ compressed blocks. + - Caller must ensure there is enough space in `dst` to store compressed data under worst case scenario. + Worst case evaluation is provided by ZSTD_compressBound(). + ZSTD_compressContinue() doesn't guarantee recover after a failed compression. + - ZSTD_compressContinue() presumes prior input ***is still accessible and unmodified*** (up to maximum distance size, see WindowLog). + It remembers all previous contiguous blocks, plus one separated memory segment (which can itself consists of multiple contiguous blocks) + - ZSTD_compressContinue() detects that prior input has been overwritten when `src` buffer overlaps. + In which case, it will "discard" the relevant memory section from its history. + + Finish a frame with ZSTD_compressEnd(), which will write the last block(s) and optional checksum. + It's possible to use srcSize==0, in which case, it will write a final empty block to end the frame. + Without last block mark, frames are considered unfinished (hence corrupted) by compliant decoders. + + `ZSTD_CCtx` object can be reused (ZSTD_compressBegin()) to compress again. +*/ + +/*===== Buffer-less streaming compression functions =====*/ +ZSTD_DEPRECATED("The buffer-less API is deprecated in favor of the normal streaming API. See docs.") +ZSTDLIB_STATIC_API size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel); +ZSTD_DEPRECATED("The buffer-less API is deprecated in favor of the normal streaming API. See docs.") +ZSTDLIB_STATIC_API size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel); +ZSTD_DEPRECATED("The buffer-less API is deprecated in favor of the normal streaming API. See docs.") +ZSTDLIB_STATIC_API size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict); /**< note: fails if cdict==NULL */ + +ZSTD_DEPRECATED("This function will likely be removed in a future release. It is misleading and has very limited utility.") +ZSTDLIB_STATIC_API +size_t ZSTD_copyCCtx(ZSTD_CCtx* cctx, const ZSTD_CCtx* preparedCCtx, unsigned long long pledgedSrcSize); /**< note: if pledgedSrcSize is not known, use ZSTD_CONTENTSIZE_UNKNOWN */ + +ZSTD_DEPRECATED("The buffer-less API is deprecated in favor of the normal streaming API. See docs.") +ZSTDLIB_STATIC_API size_t ZSTD_compressContinue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); +ZSTD_DEPRECATED("The buffer-less API is deprecated in favor of the normal streaming API. See docs.") +ZSTDLIB_STATIC_API size_t ZSTD_compressEnd(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); + +/* The ZSTD_compressBegin_advanced() and ZSTD_compressBegin_usingCDict_advanced() are now DEPRECATED and will generate a compiler warning */ +ZSTD_DEPRECATED("use advanced API to access custom parameters") +ZSTDLIB_STATIC_API +size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize); /**< pledgedSrcSize : If srcSize is not known at init time, use ZSTD_CONTENTSIZE_UNKNOWN */ +ZSTD_DEPRECATED("use advanced API to access custom parameters") +ZSTDLIB_STATIC_API +size_t ZSTD_compressBegin_usingCDict_advanced(ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict, ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize); /* compression parameters are already set within cdict. pledgedSrcSize must be correct. If srcSize is not known, use macro ZSTD_CONTENTSIZE_UNKNOWN */ +/** + Buffer-less streaming decompression (synchronous mode) + + A ZSTD_DCtx object is required to track streaming operations. + Use ZSTD_createDCtx() / ZSTD_freeDCtx() to manage it. + A ZSTD_DCtx object can be reused multiple times. + + First typical operation is to retrieve frame parameters, using ZSTD_getFrameHeader(). + Frame header is extracted from the beginning of compressed frame, so providing only the frame's beginning is enough. + Data fragment must be large enough to ensure successful decoding. + `ZSTD_frameHeaderSize_max` bytes is guaranteed to always be large enough. + result : 0 : successful decoding, the `ZSTD_frameHeader` structure is correctly filled. + >0 : `srcSize` is too small, please provide at least result bytes on next attempt. + errorCode, which can be tested using ZSTD_isError(). + + It fills a ZSTD_FrameHeader structure with important information to correctly decode the frame, + such as the dictionary ID, content size, or maximum back-reference distance (`windowSize`). + Note that these values could be wrong, either because of data corruption, or because a 3rd party deliberately spoofs false information. + As a consequence, check that values remain within valid application range. + For example, do not allocate memory blindly, check that `windowSize` is within expectation. + Each application can set its own limits, depending on local restrictions. + For extended interoperability, it is recommended to support `windowSize` of at least 8 MB. + + ZSTD_decompressContinue() needs previous data blocks during decompression, up to `windowSize` bytes. + ZSTD_decompressContinue() is very sensitive to contiguity, + if 2 blocks don't follow each other, make sure that either the compressor breaks contiguity at the same place, + or that previous contiguous segment is large enough to properly handle maximum back-reference distance. + There are multiple ways to guarantee this condition. + + The most memory efficient way is to use a round buffer of sufficient size. + Sufficient size is determined by invoking ZSTD_decodingBufferSize_min(), + which can return an error code if required value is too large for current system (in 32-bits mode). + In a round buffer methodology, ZSTD_decompressContinue() decompresses each block next to previous one, + up to the moment there is not enough room left in the buffer to guarantee decoding another full block, + which maximum size is provided in `ZSTD_frameHeader` structure, field `blockSizeMax`. + At which point, decoding can resume from the beginning of the buffer. + Note that already decoded data stored in the buffer should be flushed before being overwritten. + + There are alternatives possible, for example using two or more buffers of size `windowSize` each, though they consume more memory. + + Finally, if you control the compression process, you can also ignore all buffer size rules, + as long as the encoder and decoder progress in "lock-step", + aka use exactly the same buffer sizes, break contiguity at the same place, etc. + + Once buffers are setup, start decompression, with ZSTD_decompressBegin(). + If decompression requires a dictionary, use ZSTD_decompressBegin_usingDict() or ZSTD_decompressBegin_usingDDict(). + + Then use ZSTD_nextSrcSizeToDecompress() and ZSTD_decompressContinue() alternatively. + ZSTD_nextSrcSizeToDecompress() tells how many bytes to provide as 'srcSize' to ZSTD_decompressContinue(). + ZSTD_decompressContinue() requires this _exact_ amount of bytes, or it will fail. + + result of ZSTD_decompressContinue() is the number of bytes regenerated within 'dst' (necessarily <= dstCapacity). + It can be zero : it just means ZSTD_decompressContinue() has decoded some metadata item. + It can also be an error code, which can be tested with ZSTD_isError(). + + A frame is fully decoded when ZSTD_nextSrcSizeToDecompress() returns zero. + Context can then be reset to start a new decompression. + + Note : it's possible to know if next input to present is a header or a block, using ZSTD_nextInputType(). + This information is not required to properly decode a frame. + + == Special case : skippable frames == + + Skippable frames allow integration of user-defined data into a flow of concatenated frames. + Skippable frames will be ignored (skipped) by decompressor. + The format of skippable frames is as follows : + a) Skippable frame ID - 4 Bytes, Little endian format, any value from 0x184D2A50 to 0x184D2A5F + b) Frame Size - 4 Bytes, Little endian format, unsigned 32-bits + c) Frame Content - any content (User Data) of length equal to Frame Size + For skippable frames ZSTD_getFrameHeader() returns zfhPtr->frameType==ZSTD_skippableFrame. + For skippable frames ZSTD_decompressContinue() always returns 0 : it only skips the content. +*/ + +/*===== Buffer-less streaming decompression functions =====*/ + +ZSTDLIB_STATIC_API size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize); /**< when frame content size is not known, pass in frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN */ + +ZSTDLIB_STATIC_API size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx); +ZSTDLIB_STATIC_API size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize); +ZSTDLIB_STATIC_API size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict); + +ZSTDLIB_STATIC_API size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx); +ZSTDLIB_STATIC_API size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); + +/* misc */ +ZSTD_DEPRECATED("This function will likely be removed in the next minor release. It is misleading and has very limited utility.") +ZSTDLIB_STATIC_API void ZSTD_copyDCtx(ZSTD_DCtx* dctx, const ZSTD_DCtx* preparedDCtx); +typedef enum { ZSTDnit_frameHeader, ZSTDnit_blockHeader, ZSTDnit_block, ZSTDnit_lastBlock, ZSTDnit_checksum, ZSTDnit_skippableFrame } ZSTD_nextInputType_e; +ZSTDLIB_STATIC_API ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx); + + + + +/* ========================================= */ +/** Block level API (DEPRECATED) */ +/* ========================================= */ + +/*! + + This API is deprecated in favor of the regular compression API. + You can get the frame header down to 2 bytes by setting: + - ZSTD_c_format = ZSTD_f_zstd1_magicless + - ZSTD_c_contentSizeFlag = 0 + - ZSTD_c_checksumFlag = 0 + - ZSTD_c_dictIDFlag = 0 + + This API is not as well tested as our normal API, so we recommend not using it. + We will be removing it in a future version. If the normal API doesn't provide + the functionality you need, please open a GitHub issue. + + Block functions produce and decode raw zstd blocks, without frame metadata. + Frame metadata cost is typically ~12 bytes, which can be non-negligible for very small blocks (< 100 bytes). + But users will have to take in charge needed metadata to regenerate data, such as compressed and content sizes. + + A few rules to respect : + - Compressing and decompressing require a context structure + + Use ZSTD_createCCtx() and ZSTD_createDCtx() + - It is necessary to init context before starting + + compression : any ZSTD_compressBegin*() variant, including with dictionary + + decompression : any ZSTD_decompressBegin*() variant, including with dictionary + - Block size is limited, it must be <= ZSTD_getBlockSize() <= ZSTD_BLOCKSIZE_MAX == 128 KB + + If input is larger than a block size, it's necessary to split input data into multiple blocks + + For inputs larger than a single block, consider using regular ZSTD_compress() instead. + Frame metadata is not that costly, and quickly becomes negligible as source size grows larger than a block. + - When a block is considered not compressible enough, ZSTD_compressBlock() result will be 0 (zero) ! + ===> In which case, nothing is produced into `dst` ! + + User __must__ test for such outcome and deal directly with uncompressed data + + A block cannot be declared incompressible if ZSTD_compressBlock() return value was != 0. + Doing so would mess up with statistics history, leading to potential data corruption. + + ZSTD_decompressBlock() _doesn't accept uncompressed data as input_ !! + + In case of multiple successive blocks, should some of them be uncompressed, + decoder must be informed of their existence in order to follow proper history. + Use ZSTD_insertBlock() for such a case. +*/ + +/*===== Raw zstd block functions =====*/ +ZSTD_DEPRECATED("The block API is deprecated in favor of the normal compression API. See docs.") +ZSTDLIB_STATIC_API size_t ZSTD_getBlockSize (const ZSTD_CCtx* cctx); +ZSTD_DEPRECATED("The block API is deprecated in favor of the normal compression API. See docs.") +ZSTDLIB_STATIC_API size_t ZSTD_compressBlock (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); +ZSTD_DEPRECATED("The block API is deprecated in favor of the normal compression API. See docs.") +ZSTDLIB_STATIC_API size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); +ZSTD_DEPRECATED("The block API is deprecated in favor of the normal compression API. See docs.") +ZSTDLIB_STATIC_API size_t ZSTD_insertBlock (ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize); /**< insert uncompressed block into `dctx` history. Useful for multi-blocks decompression. */ + +#if defined (__cplusplus) +} +#endif + +#endif /* ZSTD_H_ZSTD_STATIC_LINKING_ONLY */ diff --git a/src/third-party/zstd/zstd_errors.h b/src/third-party/zstd/zstd_errors.h new file mode 100644 index 0000000000000..8ebc95cbb2ab8 --- /dev/null +++ b/src/third-party/zstd/zstd_errors.h @@ -0,0 +1,107 @@ +/* + * Copyright (c) Meta Platforms, Inc. and affiliates. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_ERRORS_H_398273423 +#define ZSTD_ERRORS_H_398273423 + +#if defined (__cplusplus) +extern "C" { +#endif + +/* ===== ZSTDERRORLIB_API : control library symbols visibility ===== */ +#ifndef ZSTDERRORLIB_VISIBLE + /* Backwards compatibility with old macro name */ +# ifdef ZSTDERRORLIB_VISIBILITY +# define ZSTDERRORLIB_VISIBLE ZSTDERRORLIB_VISIBILITY +# elif defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__) +# define ZSTDERRORLIB_VISIBLE __attribute__ ((visibility ("default"))) +# else +# define ZSTDERRORLIB_VISIBLE +# endif +#endif + +#ifndef ZSTDERRORLIB_HIDDEN +# if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__) +# define ZSTDERRORLIB_HIDDEN __attribute__ ((visibility ("hidden"))) +# else +# define ZSTDERRORLIB_HIDDEN +# endif +#endif + +#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1) +# define ZSTDERRORLIB_API __declspec(dllexport) ZSTDERRORLIB_VISIBLE +#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1) +# define ZSTDERRORLIB_API __declspec(dllimport) ZSTDERRORLIB_VISIBLE /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ +#else +# define ZSTDERRORLIB_API ZSTDERRORLIB_VISIBLE +#endif + +/*-********************************************* + * Error codes list + *-********************************************* + * Error codes _values_ are pinned down since v1.3.1 only. + * Therefore, don't rely on values if you may link to any version < v1.3.1. + * + * Only values < 100 are considered stable. + * + * note 1 : this API shall be used with static linking only. + * dynamic linking is not yet officially supported. + * note 2 : Prefer relying on the enum than on its value whenever possible + * This is the only supported way to use the error list < v1.3.1 + * note 3 : ZSTD_isError() is always correct, whatever the library version. + **********************************************/ +typedef enum { + ZSTD_error_no_error = 0, + ZSTD_error_GENERIC = 1, + ZSTD_error_prefix_unknown = 10, + ZSTD_error_version_unsupported = 12, + ZSTD_error_frameParameter_unsupported = 14, + ZSTD_error_frameParameter_windowTooLarge = 16, + ZSTD_error_corruption_detected = 20, + ZSTD_error_checksum_wrong = 22, + ZSTD_error_literals_headerWrong = 24, + ZSTD_error_dictionary_corrupted = 30, + ZSTD_error_dictionary_wrong = 32, + ZSTD_error_dictionaryCreation_failed = 34, + ZSTD_error_parameter_unsupported = 40, + ZSTD_error_parameter_combination_unsupported = 41, + ZSTD_error_parameter_outOfBound = 42, + ZSTD_error_tableLog_tooLarge = 44, + ZSTD_error_maxSymbolValue_tooLarge = 46, + ZSTD_error_maxSymbolValue_tooSmall = 48, + ZSTD_error_cannotProduce_uncompressedBlock = 49, + ZSTD_error_stabilityCondition_notRespected = 50, + ZSTD_error_stage_wrong = 60, + ZSTD_error_init_missing = 62, + ZSTD_error_memory_allocation = 64, + ZSTD_error_workSpace_tooSmall= 66, + ZSTD_error_dstSize_tooSmall = 70, + ZSTD_error_srcSize_wrong = 72, + ZSTD_error_dstBuffer_null = 74, + ZSTD_error_noForwardProgress_destFull = 80, + ZSTD_error_noForwardProgress_inputEmpty = 82, + /* following error codes are __NOT STABLE__, they can be removed or changed in future versions */ + ZSTD_error_frameIndex_tooLarge = 100, + ZSTD_error_seekableIO = 102, + ZSTD_error_dstBuffer_wrong = 104, + ZSTD_error_srcBuffer_wrong = 105, + ZSTD_error_sequenceProducer_failed = 106, + ZSTD_error_externalSequences_invalid = 107, + ZSTD_error_maxCode = 120 /* never EVER use this value directly, it can change in future versions! Use ZSTD_isError() instead */ +} ZSTD_ErrorCode; + +ZSTDERRORLIB_API const char* ZSTD_getErrorString(ZSTD_ErrorCode code); /**< Same as ZSTD_getErrorName, but using a `ZSTD_ErrorCode` enum argument */ + + +#if defined (__cplusplus) +} +#endif + +#endif /* ZSTD_ERRORS_H_398273423 */