-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathconvert.py
138 lines (122 loc) · 4.53 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import sys
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--yolov5-repo",
required=True,
# default="",
help="path to yolov5 repo",
)
parser.add_argument(
"--weight", type=str, default="yolov5s.pt", help="yolov5 weight path"
)
parser.add_argument(
"--img-size",
type=int,
default=640,
help="image input size (pixels)",
)
parser.add_argument(
"--conf-thres", type=float, default=0.25, help="confidence threshold"
)
parser.add_argument(
"--iou-thres", type=float, default=0.45, help="NMS IoU threshold"
)
parser.add_argument(
"--device", default="cpu", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
)
parser.add_argument(
"--quantize",
default=False,
action="store_true",
help="quantize model to FP16 and Int8",
)
# Other model options
parser.add_argument("--description", default="yolov5s", help="model description")
parser.add_argument("--author", default="yolov5", help="model author")
parser.add_argument("--version", default="6.2", help="model version")
parser.add_argument("--license", default="GPL-3.0", help="model license")
args = parser.parse_args()
sys.path.insert(0, args.yolov5_repo)
import types
import models
from utils.general import check_img_size
from utils.activations import Hardswish, SiLU
from utils.torch_utils import select_device
from models.experimental import attempt_load
import coremltools.proto.FeatureTypes_pb2 as ft
from conversion_modules import *
weight = args.weight
img_size = [args.img_size] * 2
iouThreshold = args.iou_thres
confidenceThreshold = args.conf_thres
quantize = args.quantize
device = select_device(args.device) # cpu or cuda
model = attempt_load(weight) # load FP32 model
labels = model.names
# check model
gs = int(max(model.stride)) # grid size (max stride)
img_size = [
check_img_size(x, gs) for x in img_size
] # verify img_size are gs-multiples
# input
im = torch.zeros(1, 3, *img_size).to(device) # init img
# update model
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.7.0 compatibility
if isinstance(m, models.common.Conv): # assign export-friendly activations
if isinstance(m.act, nn.Hardswish):
m.act = Hardswish()
elif isinstance(m.act, nn.SiLU):
m.act = SiLU()
elif isinstance(m, models.yolo.Detect):
m.inplace = False
m.forward = types.MethodType(detect_export_forward, m)
for _ in range(2):
y = model(im) # dry run
# export model
export_model = ExportModel(model, img_size=img_size)
num_boxes = y[0].shape[1]
num_classes = y[0].shape[2] - 5
# convert to torchscript
ts = torch.jit.trace(export_model, im, strict=False)
# CoreML model export
# convert model from torchscript and apply pixel scaling as per detect.py
coreml_model = ct.convert(
ts,
inputs=[
ct.ImageType(name="input", shape=im.shape, scale=1 / 255.0, bias=[0, 0, 0])
],
)
spec = coreml_model.get_spec()
old_scores_output_name = spec.description.output[0].name
old_box_output_name = spec.description.output[1].name
ct.utils.rename_feature(spec, old_scores_output_name, "raw_confidence")
ct.utils.rename_feature(spec, old_box_output_name, "raw_coordinates")
spec.description.output[0].type.multiArrayType.shape.extend(
[num_boxes, num_classes]
)
spec.description.output[1].type.multiArrayType.shape.extend([num_boxes, 4])
spec.description.output[0].type.multiArrayType.dataType = ft.ArrayFeatureType.DOUBLE
spec.description.output[1].type.multiArrayType.dataType = ft.ArrayFeatureType.DOUBLE
builder = ct.models.neural_network.NeuralNetworkBuilder(spec=spec)
spec.description
nmsSpec = createNmsModelSpec(
builder.spec, num_classes, labels, iouThreshold, confidenceThreshold
)
# run the functions to add decode layer and NMS to the model.
nms_model = ct.models.MLModel(nmsSpec)
combineModelsAndExport(
builder.spec,
nmsSpec,
weight.replace(".pt", ".mlmodel"),
img_size,
iouThreshold,
confidenceThreshold,
quantize,
args.description,
args.author,
args.version,
args.license,
) # The model will be saved in this path.