forked from meta-llama/llama-recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
safety_utils.py
222 lines (171 loc) · 8.51 KB
/
safety_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import os
import torch
import warnings
from typing import List
from string import Template
from enum import Enum
class AgentType(Enum):
AGENT = "Agent"
USER = "User"
# Class for performing safety checks using AuditNLG library
class AuditNLGSensitiveTopics(object):
def __init__(self):
pass
def __call__(self, output_text, **kwargs):
try:
from auditnlg.safety.exam import safety_scores
except ImportError as e:
print("Could not import optional dependency: auditnlg\nPlease install manually with:\n pip install auditnlg\nFollowed by:\npip install -r requirements.txt")
raise e
data = [{"output": output_text}]
result = safety_scores(data=data, method="sensitive_topics")
scores = result[1]["all_scores"][0]
is_safe = scores["pred_class"] == "none"
report = ""
if not is_safe:
report += f"Predicted class: {scores['pred_class']}\n"
report += "|" + "|".join(f"{n:^10}" for n in [list(k.keys())[0] for k in scores["class_scores"]]) + "|\n"
report += "|" + "|".join(f"{n:^10.5}" for n in [list(k.values())[0] for k in scores["class_scores"]]) + "|\n"
return "Sensitive Topics", is_safe, report
class SalesforceSafetyChecker(object):
def __init__(self):
pass
def __call__(self, output_text, **kwargs):
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig
config = AutoConfig.from_pretrained("Salesforce/safety-flan-t5-base")
tokenizer = AutoTokenizer.from_pretrained("Salesforce/safety-flan-t5-base")
model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/safety-flan-t5-base", config=config)
model.eval()
prefix = "Is the <Text> field safe or unsafe?"
input_ids = tokenizer(prefix + " <Text> " + output_text + " <Context> ", return_tensors="pt").input_ids
if len(input_ids[0]) > 512:
warnings.warn(
"Input length is > 512 token. Safety check result could be incorrect."
)
with torch.no_grad():
outputs = model.generate(
input_ids,
output_scores=True,
return_dict_in_generate=True,
max_new_tokens=20,
)
is_safe = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True).split(" ")[0] == "safe"
report = ""
if not is_safe:
true_false_ids = tokenizer("true false").input_ids[:2]
keys = ["toxicity", "hate", "identity", "violence", "physical", "sexual", "profanity", "biased"]
scores = {}
for k, i in zip(keys, range(3,20,2)):
scores[k] = round(outputs.scores[i][0,true_false_ids].softmax(dim=0)[0].item(), 5)
report += "|" + "|".join(f"{n:^10}" for n in scores.keys()) + "|\n"
report += "|" + "|".join(f"{n:^10}" for n in scores.values()) + "|\n"
return "Salesforce Content Safety Flan T5 Base", is_safe, report
def get_total_length(self, data):
prefix = "Is the <Text> field safe or unsafe "
input_sample = "<Text> {output} <Context> ".format(**data[0])
return len(self.tokenizer(prefix + input_sample)["input_ids"])
# Class for performing safety checks using Azure Content Safety service
class AzureSaftyChecker(object):
def __init__(self):
try:
from azure.ai.contentsafety import ContentSafetyClient
from azure.core.credentials import AzureKeyCredential
key = os.environ["CONTENT_SAFETY_KEY"]
endpoint = os.environ["CONTENT_SAFETY_ENDPOINT"]
except ImportError:
raise Exception(
"Could not import required package azure-ai-contentsafety. Install with: pip install azure-ai-contentsafety"
)
except KeyError:
raise Exception(
"Environment variables not set. Please set CONTENT_SAFETY_KEY and CONTENT_SAFETY_ENDPOINT."
)
self.client = ContentSafetyClient(endpoint, AzureKeyCredential(key))
def __call__(self, output_text, **kwargs):
from azure.core.exceptions import HttpResponseError
from azure.ai.contentsafety.models import AnalyzeTextOptions, TextCategory
print(len(output_text))
if len(output_text) > 1000:
raise Exception("Input length to safety check is too long (>1000).")
categories = [
TextCategory.VIOLENCE,
TextCategory.SELF_HARM,
TextCategory.SEXUAL,
TextCategory.HATE,
]
request = AnalyzeTextOptions(text=output_text, categories=categories)
try:
response = self.client.analyze_text(request)
except HttpResponseError as e:
print("Analyze text failed.")
if e.error:
print(f"Error code: {e.error.code}")
print(f"Error message: {e.error.message}")
raise
print(e)
raise e
levels = {0: "Safe", 2: "Low", 4: "Medium", 6: "High"}
severities = [
getattr(response, c.name.lower() + "_result").severity for c in categories
]
DEFAULT_LEVELS = [0, 0, 0, 0]
is_safe = all([s <= l for s, l in zip(severities, DEFAULT_LEVELS)])
report = ""
if not is_safe:
report = "|" + "|".join(f"{c.name:^10}" for c in categories) + "|\n"
report += "|" + "|".join(f"{levels[s]:^10}" for s in severities) + "|\n"
return "Azure Content Saftey API", is_safe, report
class LlamaGuardSafetyChecker(object):
def __init__(self):
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from llama_recipes.inference.prompt_format_utils import build_default_prompt, create_conversation, LlamaGuardVersion
model_id = "meta-llama/LlamaGuard-7b"
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
self.model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config, device_map="auto")
def __call__(self, output_text, **kwargs):
agent_type = kwargs.get('agent_type', AgentType.USER)
user_prompt = kwargs.get('user_prompt', "")
model_prompt = output_text.strip()
if(agent_type == AgentType.AGENT):
if user_prompt == "":
print("empty user prompt for agent check, returning unsafe")
return "Llama Guard", False, "Missing user_prompt from Agent response check"
else:
model_prompt = model_prompt.replace(user_prompt, "")
user_prompt = f"User: {user_prompt}"
agent_prompt = f"Agent: {model_prompt}"
chat = [
{"role": "user", "content": user_prompt},
{"role": "assistant", "content": agent_prompt},
]
else:
chat = [
{"role": "user", "content": model_prompt},
]
input_ids = self.tokenizer.apply_chat_template(chat, return_tensors="pt").to("cuda")
prompt_len = input_ids.shape[-1]
output = self.model.generate(input_ids=input_ids, max_new_tokens=100, pad_token_id=0)
result = self.tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)
splitted_result = result.split("\n")[0];
is_safe = splitted_result == "safe"
report = result
return "Llama Guard", is_safe, report
# Function to load the PeftModel for performance optimization
# Function to determine which safety checker to use based on the options selected
def get_safety_checker(enable_azure_content_safety,
enable_sensitive_topics,
enable_salesforce_content_safety,
enable_llamaguard_content_safety):
safety_checker = []
if enable_azure_content_safety:
safety_checker.append(AzureSaftyChecker())
if enable_sensitive_topics:
safety_checker.append(AuditNLGSensitiveTopics())
if enable_salesforce_content_safety:
safety_checker.append(SalesforceSafetyChecker())
if enable_llamaguard_content_safety:
safety_checker.append(LlamaGuardSafetyChecker())
return safety_checker