-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathapp.py
52 lines (39 loc) · 1.51 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from flask import Flask, render_template, request
import numpy as np
import os
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
from werkzeug.utils import secure_filename
from flask import (Flask, redirect, render_template, request,
send_from_directory, url_for)
app = Flask(__name__)
# Load the model
model = load_model('./models/apple-224.h5')
def model_predict(img_path, model):
test_image = image.load_img(img_path, target_size=(224, 224))
test_image = image.img_to_array(test_image)
test_image = test_image / 255.0
test_image = np.expand_dims(test_image, axis=0)
result = model.predict(test_image)
return result
@app.route('/', methods=['GET'])
def index():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
# Retrieve the uploaded image file
image_file = request.files['file']
# Save the file to the uploads folder
basepath = os.path.dirname(os.path.realpath('__file__'))
file_path = os.path.join(basepath, './uploads', secure_filename(image_file.filename))
image_file.save(file_path)
# Make prediction
result = model_predict(file_path, model)
categories = ['Healthy', 'Multiple Disease', 'Rust', 'Scab']
# Process the result
pred_class = np.argmax(result)
output = categories[pred_class]
# Return the prediction result
return output
if __name__ == '__main__':
app.run()